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The theoretical valence electron momentum density distribution o(q) and the Compton profile
J:(gz) of semiconductors have been studied by the pseudopotential method with a full inclusion of the
core-orthogonalization (CO) in valence electron states. Since the CO introduces momentum compo-
nents spreading over high momentum region, it is expected to improve usual calculation of pP**““ and
J2"°%"%° based on the pseudo-electron model.

Calculations are performed by the Fourier inversion formalism combined with the cubic har-
monics expansion technique. Germanium is chosen as a prototype material with many core states.
Results show that the CO contributions to the two quantities, do and 4/, are fairly anisotropic. The
CO contribution to the Compton profile gives Jz/J:°**"“ of 0.97 at the momentum ¢=0 with —3.3%
reduction. In higher momentum region beyond the Jones zone, absolute contribution 4/ is small but
Jz is enhanced by 1.9~3.5 times than /.,*"* at the 4J.-peak position of g~1.5 a.u.”, depending on
the direction of observation.
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§1 Introduction

The y-ray Compton scattering is a powerful
tool for investigating electronic structure of
solids in electron momentum space®?. On the
assumption of the impulse approximation, the
differential scattering cross section in the in-
dependent electron model is proportional to the
Compton profile /;¥. The observable function
J(qz) of the electron momentum component g.
in the direction of momentum transferred from
the photon to the electron is given by the two-
dimensional integration of the electron momen-
tum density (EMD) distribution o(q) on ¢x and
qy-.

For metals, the Compton profile is used as
one of fundamental probes for studying the
shape of Fermi surface?. For semiconduc-
tors, the so-called Jones zone® surface corre-
sponds to the Fermi surface for metal. The
volume surrounded by the Jones zone surface in
the crystal wave-vector space is perfectly oc-
cupied by the valence electrons. Being
different from the case of Fermi surface, the
geometrical shape of the Jones zone is strictly
determined by the crystallographic symmetry.
If the valence electrons are hypothetically free-
electron-like with no potential effect, the
Compton profile should show a momentum
distribution only within the momentum region
surrounded by the Jones zone surface. The
valence electrons in real semiconductors are
fully affected by crystal potential field and,
therefore, their electron states are not free-
electron-like but, in general, of covalent char-
acter or of covalent-ionic mixed character in
their electronic bonds. Due to the wide range
of momentum spectrum introduced into the
electron states as the potential effect, the
momentum distribution is modified from the
zeroth-order distribution mentioned above.

The boundary of the occupied zone is smeared
from the Jones zone and embedded in real
complex momentum distribution. These devi-
ations in the momentum distribution and then
in the Compton profile are basic data for study-
ing in detail the electronic bonding characters
of semiconductors.

We have been interested in the systematic
study of a series of elemental (IV) and com-
pound (III-V and II-VI) semiconductors on
their electronic bonding characters in relation
to the Compton profiles and then to the momen-
tum density distributions, within a framework
of the pseudopotential (PP) theory for the elec-
tron states®~'%,

As discussed in detail
papers®'V~1% " in the pseudopotential theory for
discussing electronic structures in the momen-
tum space, it is important to treat the effect of
the core-orthogonalization (CO) parts of the
electron wave functions quantitatively. In the
PP theory, the wave function of valence elec-
tron is composed of two parts ; the main part is
the pseudo-wave function describing a relative-
ly smooth-varying behaviour of the electron.
The second part describes the spatially rapid
oscillation of the valence electron in the inner
core region, reflecting the fact that the valence
electron state should be orthogonal to the core
electron states.

Corresponding to the spatially rapid oscilla-
tion of this CO part, the valence electron wave
functions have high momentum components,

in previous

additionally to the momentum components
introduced as the potential effect through the
pseudo-wave functions. Coupling between the
pseudo- and the CO-parts of the wave func-
tions, therefore, affects the EMD distribution
and the Compton profile over a wide range of
momentum.

The purpose of this paper is to study the CO

— 04 —



Core-Orthogonalization Effect on Compton Profile

effects on the EMD distribution and the
Compton profile quantitatively, choosing Ge as
a prototype semiconductor with many inner
core electron states from 1s to 3d.
keep a high accuracy in a fine mesh calculation
in the space of momentum ¢, we employ the
Fourier inversion method?*®12%1®  or the
B(r)-function formalism, combined with the
cubic harmonics expansion technique*'®'® for
the function B(r). Here the spatial function
B(r) is defined'® as a Fourier inversion trans-
form of o(q) and is calculated by using the PP
wave functions. The o(q) is obtained by Four-
ier-tranforming B(r) and then used for calcu-
lating J:(¢gz). The CO contribution to the EMD
distribution, 4o(q), is defined by the difference
between o(q) of the “true” valence electron
system with the CO parts fully taken into
account and p"*®"*(q) of the pseudo-valence
electron system. The CO contribution to the
Compton profile 4/.(q:) is also defined in the
same manner.

Since the method of calculations are given in
detail in refs. 10, 12 and 13, descriptions of the
formalism and calculational method are briefly
givenin § 2. Inref. 13, our formalism in the PP
framework is applied to quantitative estimates
of the CO effects on the electron-positron pair
momentum density (EPMD) distribution and
the angular correlation annihilation radiation.
Results for B(r), 0(q), J(g2), 40(q) and 4J.(qz)
are given in §3. The results of do(q) and
A4J(qz) are discussed in § 4.

In order to

§2 Brief Descriptions of Formalism and
Calculations

2-1. Formalism!O'2'®
The basic quantity to be calculated is the
EMD given by

p(q)=2§§ l fwnk(r)exp(—iq - r)d’r 2,
1)

where ¥,, is the wave function of an electron
with wave vector £ in the nth occupied valence
band. The spatial function B(r) is defined by
the Fourier inversion of the EMD as

B(r)=§p(q)exp(iq - r) /N, 2)

where N is the volume of the crystal with N
unit cells of volume £2.

Let us expand ¥..(r) in terms of the plane
waves as

qfnk(r)=c‘éQan(G)exp[z'(k +@G) - r]/VN,
3)

where G is the crystal reciprocal lattice vector.
The function B(r) is explicitly written by using
the expansion coefficients C..(G) as

B(r)=22ﬂj§0§0|c,,k< G)|?expli(k+ G)- r]/NS.
(4)

The relation between the expansion
coefficients of the true- and the pseudo-valence
electron wave functions, C,. and CPsu®

respectively, is given by
C(@)=Nou| C™(6)

% 3 bl @)ba( Q)G |
6)

where b.(q) is the Fourier coefficient of the cth
inner core electron wave function multiplied by
the crystal structure factor and N, is the re-
normalization constant for the set {C..(G)}.
Because of the spatially rapid oscillation of the
CO parts, the second term in the brackets of eq.
(5), the reciprocal lattice vectors G should be
taken from a very large set of vectors, @,
containing sufficiently large vectors than those
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in a set for the pseudo-wave functions, P.
The functions B(r) and p(q) are expanded in
terms of the crystal cubic harmonics K/ as

B(r)ngli(V)Kli(Qr) (6)

and
P(Q):%]pzf(Q)Kzi(Qq)- (7

Once we have calculated the function Bu(7)
Bu(r)= [B(NKi*(2,)dQ,
__4_77_ .l 2
— A2 5 | Cu(G) |
Xjl| b+ G| v)Ki*(r+¢), 8)

where j, is the spherical Bessel function, o(q) is
easily calculated in fine accuracy since

.Ozz‘(Q):47T(*Z.)"/;mBu(r)jz(qr)rzdr. 9)
The Compton profile /.(g.) defined by

Tha)=(1/2a) [ "dax [ dasolas, av, a)  (10)

is transformed into

JAg:)=2n27:(q2) Ki(B, a), (11)

where

rula)=(1/22) [ pul@) Pdasla)ada.  (12)

Here P, is the Legendre’s polynomial. The CO
contributions dp(q) and 4JAq.) are defined by

do(q)=o(q)— e***"*“(q) (13)

and

AJLq2)=7Jqz)— JE*"*(qz), (14)

where p*¢"(q) and /."**"*(q.) of the pseudo-
valence electron system are derived from B(r)

pseudo

of eq. (4) with C,, instead of C,..
Both /. and J:”*°“® obey the normalization
condition

1/2x [ :dq.Jz(qz) =1/2x [ :quES“"”(qz)

= B(0)=uniform density of
valence electrons, (15)

and then we have
1/27 [ " dgz 4]q:)=0. (16)

Equation (16) contrasts with the following con-
dition for the contribution of the core-orth-
ogonalization, 4I}/(qz), to the one-dimensional
ACAR (angular correlation of annihilation
radiation) in the positron annihilation'®'¥ ;

127 [ das A6(a) =T A(r) = A*(r)], g

= flo-(r)pu(r) = gese(ryorseeee(maer,
an

where o_(r) and p.(r) are the valence electron-
and the positron-densities, respectively. The
function A(r) and the definition of the
“pseudo”- positron are described in refs. 12 and
13.

2-2. Cubic Harmonic Expansion1"®

In the cubic harmonics expansions of B(r)
and p(q), it is confirmed that the convergence in
the expansions is fully attained by inclusion of
[ <22, with the first sixteen harmonics belong-
ing to the I';-representation of the O, group.
The relevant coefficients for constructing the
harmonics are quoted from the Tablel in ref.
17. In these expansions, the term with /=0 is
the component of spherical symmetry. The
sum over / in which the /=0 term is excluded
describes the anisotropic behavior of B(r) or
o(q).

2-3. Pseudopotential and Energy Band

Calculation*®®*®

As a prototype semiconductor, Ge with the
inner core states of 1ls,2s,2p,3s,3p and 3d
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symmetries is chosen. The PP used in the
energy band calculation for Ge was determined
previously*®*® which is a nonlocal 3L+ NL(d)
type PP of Heine-Abarenkov form. The

pseudo

coefficients C,,x (G) of pseudo-valence elec-
tron states are solved under this PP. The
Chadi-Cohen’s 10-special-point scheme?®” is
adopted for making a k-mesh in the Brillouin
zone. The total number of k’s in the fcc
Brillouin zone is 256. In the expansion of the
pseudo-wave function, all plane waves with the
On-group reciprocal lattice vectors G satisfying

|B+G P~ | B P<20 (18)

in units of (27/e)* are taken, where @ is the
lattice constant. The corresponding vector set
P for the expansion includes the 137 reciprocal
lattice vectors. The largest vectors are in the
vector shell of (4,4,0) 2x/a). The Roothaan-
Hartree-Fock atomic wave functions by
Clementi?” are used for the inner core wave
The coefficients C..(G) of the true
valence electron states are calculated by eq. (5).
Because of the highly localized nature of the
core functions, the reciprocal lattice vector set

functions.

B(r) (a)

1.50

s
=1.00
o
©

0.50

“ 0.50
[110](a)

Fig.1. Contour map of B(r) of Ge on the (110) plane: (a) Total B(r) including the spherical compo-

1.00 1.50 2.00

nent. (b) Anisotropic part of B(r).
are explained in the text.

Q was forced to include all the 4621 vectors up
to the very large shell of (13,7,7) (27/a).

§3 Results

We express behaviours of the three-dimen-
sional functions of B(r) and o(q) of the true
valence electron system by contour maps on the
(110) plane containing the following five direc-
tions of [001], [112], [111], [221] and [110].

In Fig. 1, (a) shows the whole behaviour of
B(r) including the spherical component and (b)
shows the anisotropic part of B(r). The dis-
tance parameter # is in units of lattice constant
a (=10.6772 a.u.). In Fig. 1(a), the heavy con-
tour line shows zero and the light one is for
positive value. The contuor spacing is 0.1 in
unit of 1/Q., where £2,=£,/2 is the atomic
volume of Ge. In Fig. 1(b), the heavy, middle
and light lines are for positive, zero and nega-
tive values, respectively, with the spacing 0.01.

The directional variations of B(r) along the
[001], [112], [111], [221] and [110] directions
are shown in Fig. 2, in units of 1/Q..

In Fig. 3, (a) shows the distribution of the
EMD po(q) including the spherical component
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Types of contour lines and contour spacing in the figures
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The distance parameter ¢ is plotted in wave-
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r(a)

number-vector units of (a.u.)™.
the heavy and light lines are for zero and middle and light lines are for positive, zero and
positive values, respectively, with the spacing negative values, respectively, with the spacing
0.05 (a.u.)®. [In this paper q is given in units of 0.04 (a.u.)®.. The dashed lines inserted in Fig. 3
(a.u.)7?, so that p(q) and then pu.(q) are defined  represent the Jones zone edge.

-30 T T 1
.5 -
.20 |- [001] —
15 = — Fig. 2. Directional variation of B(r) of Ge
10 - - on the (110) plane. The sections of
-05 - . B(r) shown in Fig.1(a) are plotted
-00 along the directions indicated.
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30 N B N | oE A R N
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r(a)

to be dimensionless. By factorizing o(q) as p
=(27)°8."" o°, numerical values are given for

In Fig. 3(a), o° in units of (a.w)’.] In Fig. 3(b), the heavy,
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Fig. 3. Contour map of EMD p(q) of Ge on the (110) plane: (a) Total p(q) including the spherical

component.
figures are explained in the text.

[001])(a.u.)"

1.5
[110]}(a.u.)™

Fig. 4. Contour map of the CO contribution to the
valence electron EMD, 4p(q), of Ge on the
(110) plane. Types of contour lines and
contour spacing in the figure are explained
in the text.

The pseudo-EMD pPseude (gq) of the pseudo
valence electron system including no CO contri-
bution is similarly calculated. By subtracting
it from the true-EMD po(q), the CO contribution
do(q) defined by eq.(13) is obtained. The
result is shown in Fig. 4. The meaning of the
contour lines is the same as in Fig. 3(b) and the
contour spacing is 0.01(a.u.)®.

(b) Anisotropic part of p(q).

Types of contour lines and contour spacing in the

The Compton profile J:(qz) derived from the
three-dimensional o(g) are shown in Fig.5
along the five directions given above, in a.u.
[By factorizing J:(g.) with dimension of (a.u.)™?
as J.=27x8."'J.5, numerical values are given for
J£in a.u.] The z-components g. of g along
these directions are denoted in the figure simply
as q.

The CO contribution to the Compton profile
4] qz) of eq. (14) is obtained by using do(q).
Figure 6 shows the results of 4/.(¢q.) along the
five directions on the (110) plane. Note that
the ordinate scale is 12.5 times larger than that
in Fig.5 for J.(g:). Numerical values of [,
Jeseude - 47, and their ratios at g.=0 and gn (the
peak position of 4J;) are given in Table I.

§4 Discussions

The B(r) is a function having a very large
spherical component!® around r=0, similarly
as the positron annihilation A(r) function'®.
Figs. 1(a) and 2 show that, within the region of
r<0.5 (in units of lattice constant), B(r) is
nearly spherical. On the other hand, B(r) is
rather anisotropic outside the region [Figs. 1(b)
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and 2].

It is noticed that, as shown in Fig. 3(a), along
and near the Jones zone boundary, abrupt varia-
tions of o(q) are pronounced. In Ge with dia-
mond structure, there are two atoms in the unit
cell. Four valence electrons are provided per

atom. For full accomodation of the valence

J:(q)

Jz(Q)

0

.5

1.0 1
q(a.u.)”

.5

[221]

J(q)

1T T T

0.5 1.0 1.

q(a.u.)?

5

electrons in the g- or k-space, therefore, the
Jones zone of the four-fold volume of the
Brillouin zone is necessary. As is expected,
the shape of the Jones zone is well caved in the
o(q) contour map of Fig. 3(a), but the deforma-
tion from the geometrically definite boundary is
introduced as the potential effect ; this momen-

Fig.5. The Compton profile /[.(q) of Ge

J2(q)

J2(q)

along the five directions on the (ITO)

plane.

3.

2. —
2. -
1. 7
1. —
0. -
0. 2.0
3.

2. .
2. —
1. —
1. T
0. —
0. 0.0 0.5 1.0 1.5 2.0

q(a.u.)™
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tum-space-effect reflects just the covalent as a whole, similar to those in the EPMD of
bonding character of the valence electrons of Ge'®,
semiconducting Ge in the real space of r.

We can find from the results shown in Fig. 4

The anisotropic nature of B(r) is handed that the CO contribution Jp(q) is not negligibly

over to p(g) in the momentum space.

We can small and is clearly anisotropic.

observe that the contour patterns of o(q) [Fig. In the high momentum region of momenta ¢
3(a)] and of its anisotropic part [Fig. 3(b)] are, z15au"!, weak oscillating patterns of con-
0.12 I ,
0.10 —
0.08 (o01] . _—
0.08 Fig. 6. The CO contribution to the Compt‘on
0.04 B profile, 4/(q), of Ge along the five
S 0.02 //_ﬁ—\ directions on the (110) plane.
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tour are observed in Figs. 3 and 4. These are
thought to be artifactual structures introduced
through the 10-point-scheme with a relatively
small set of the 256 k-vectors in the Brillouin
zone. The next candidate is the 60-point-
scheme of the 1000 £-vectors?®. In this case, a
long CPU time may be necessary for the calcu-
lation under the very-high-momentum expan-
sion of the CO parts of wave functions.
Because the artifacts are not serious quantita-
tively, the 60-point-scheme is not tried at the
present stage.

Figure 5 shows that the Compton profile
J:(gz) along any direction has a long tail beyond
each Jones zone boundary. As will be shown
below, higher momentum contribution to the
tail region from the CO terms is fairly large.
The CO contribution 4/:(qz) is also ebviously
anisotropic (Fig. 6), reflecting the anisotropic
behaviour of Jo(q). Because of the artifacts
noted above, fine ripple structures remain.
The 4Jq.) is negative in the lower momentum

region of ¢<qo (go’s are 0.97, 0.83, 0.93, 0.91 and
0.85, respectively, in the [001], [112], [111],
[221] and [110] directions), and is positive in
the higher momentum region of ¢>go. The
higher momentum Fourier components in the
CO parts of the electron wave functions add the
positive contribution to /.°*®“® and enhance it
in the higher momentum region. According to
eq.(15), both J, and /;°*¢““° are normalized to the
same value, so that the integrated value of
AdJqz) over gq. should be zero [eq.(16)].
Therefore, 4/, for small g. should be negative
to compensate the positive contribution in the
higher momentum region. This leads to the
reduction from J,”*"% to J. in the lower
momentum region. It is in contrast with the
case of the positron annihilation with eq. (17),
where, as shown in Fig. 6 in ref. 13, 4I(q.) is
positive even for small-¢: region. The results
show that the relative reduction J.//.”®"% at ¢
=0 slightly fluctuates among the values of 0.980
([001]), 0.963([112]), 0.961([111]), 0.964([221])

Table I. Numerical values of J,, J.,***"%°, 4], and their ratios at ¢;=0 and ¢, (the peak position of

AJ.). Units of Compton profiles are given in the text.
q.=0
direction A Jpeeude 4], Jo/ JPoeudo A,/ Jpseude
[001] 2.921 2.981 —0.060 0.980 —2.01%
[112] 2.882 2.992 —0.110 0.963 —3.68%
[111] 2.843 2.959 —0.116 0.961 —3.92%
[221] 2.890 2.997 —0.107 0.964 ~3.57%
[110] 2.923 3.018 —0.095 0.969 —3.15%
4z~ Gm
direction (2 Je Vo 47, T/
[001] 1.45 0.0446 0.0196 0.0250 2.28
[112] 1.50 0.0389 0.0146 0.0243 2.66
[111] 1.51 0.0437 0.0125 0.0312 3.50
[221] 1.56 0.0369 0.0111 0.0258 3.32
[110] 1.46 0.0427 0.0220 0.0207 1.94
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and 0.969([110]). The fluctuation is due to the
artifacts mentioned above. The results indi-
cate that a reasonable value of the relative
reduction at ¢g=0 is nearly 0.967; —3.3%
reduction. On the other hand, while the abso-
lute values of A4J: in the higher momentum
region are small, the relative enhancements
T[] are very large; as shown in Tablel,
they are 2.28, 2.66, 3.50, 3.32 and 1.94 at the 4/~
peak positions of ¢=1.45([001]), 1.50([112]),
1.51([111]), 1.56([221]) and 1.46([110]), respec-
tively. It is worth to note again that the CO
contribution is fairly anisotropic.

It will be possible in the near future to
observe experimantally the behaviour of the
CO effects on the EMD distribution and on the
Compton profile by high-resolutional technique
in progress.

Acknowledgment

This work is a part of a research project of
Studies of the Electron Distribution in Com-
pound Semiconductors supported financially by
the British Council.

References

1) Berggren, K.F., Manninen, S., Paakkari, T. et
al.: Chap. 6 Solid, Compton Scattering, ed. by
Williams, B., McGraw-Hill, New York, 1977,
pp- 139-208

2) Cooper, M.J.: Compton Scattering and Elec-
tron Momentum Determination, Rep. Prog.
Phys., 48, 415-481, 1985

3) Platsman, P. and Tzoar, N.: Chap. 2 Theory,
Compton Scattering, ed. by Williams, B,
McGraw-Hill, New York, 1977, pp. 28-42

4) Mijnarends, P.E.: Reconstruction of Three-
Dimensional Distribution, Compton Scattering,
ed. by Williams, B., McGraw-Hill, New York,
1977, pp. 323-345

5) Phillips,
Densities, Bonds and Bands, Academic Press,

J.C.: Pseudopotentials and Charge

7)

9)

10)

11)

12)

13)

14)

— 103 —

New York, 1973, pp. 126-153

H., Shindo, K. and Kobayasi, T.:
Pseudopotential Approach to Anisotropies of
Compton-Profiles of Si and Ge, J. Phys. Soc.
Jpn., 46, 77-83, 1979

H., Kobayasi, T. and Shindo, K.:
Anisotropies of Compton Profiles of Tetrahe-

Nara,

Nara,

drally bounded semiconductors, J. Phys. C:
Solid State Phys., 17, 3967-3974, 1984

Timms, D.N., Cooper, M.]., Holt, RS. et al.:
Compton Scattering Studies of the Valence
Electron Density Distribution in GaAs, J. Phys. :
Condens. Matter, 2, 10517-10528, 1990
Kobayasi, T. and Nara, H.: Core-Orthogonal-
ization Effect in Pseudopotential Theory of the
Charge Density Distribution of Valence Elec-
tron in Semiconductors with Comments on the
Effects in Momentum Space, Z. Naturforsch.,
48a, 193-197, 1993

Nara, H., Kobayasi, T., Takegahara, K. et al.:
Optimal Number of Directions in Reconstruct-
ing 3D Momentum Densities from Compton
Profiles of Semiconductors, Comp. Mat. Sci., 2,
366-374, 1994

Kobayasi, T. and Nara, H.: The Valence Elec-
tronic Charge Densities of Si and Ge and the
Effect of Core-Orthogonalization, Bull. Coll.
Med. Sci. Tohoku Univ., 1, 15-26, 1992
Kobayasi, T.: Fourier Inversion Formalism for
the Calculation of Angular Correlation of
Positron Annihilation Radiation of Semicon-
ductors, Bull. Coll. Med. Sci. Tohoku Univ., 3
(1), 11-22, 1994

Kobayasi, T.: Core-Orthogonalization Effect
on the Momentum Density Distribution of
Valence Electron-Positron Pairs in Semicon-
ductors, Bull. Coll. Med. Sci. Tohoku Univ., 4
(1), 17-28, 1995

Kobayasi, T. and Nara, H.: Improvement of
Theoretical ACAR of Semiconductors includ-
ing High Momentum Region, Positron Annihila-
tion (Material Science Forum, Vols. 175-178,
Part. 2), ed. by He, Y.-J., Cao, B.-S. and Jean,
Y.C., Trans. Tech. Pub., Aedermannsdorf, 1995,
pp. 903-908



15)

16)

17)

18)

Teiji KoBayasl, Hisashi NARA et al.

Pattison, P. and Williams, B.: Fermi Surface
Parameters from Fourier Analysis of Compton
Profiles, Solid State Commun., 20, 585-588, 1976
Mueller, F.M.: Anisotropic Momentum Den-
sities from Compton Profiles: Silicon, Phys.
Rev., B15, 3039-3044, 1977

Mueller, F.M. and Priestley, M.G. : Inversion of
Cubic de Haas-van Alphen Data, with an Appli-
cation to Palladium, Phys. Rev., 148 638-643,
1966

Nara, H. T.: Nonlocal
Pseudopotentials of Si and Ge, J. Phys. Soc.
Jpn., 41, 1429-1430, 1976

and Kobayasi,

19)

20)

21)

— 104 —

Kobayasi, T. and Nara,
Nonlocal Pseudopotentials of Si and Ge Opti-

H.: Properties of

mized under Full Interdependence among
Potential Parameters, Bull. Coll. Med. Sci.
Tohoku Univ., 2(1), 7-16, 1993

Chadi, D.J. and Cohen, M.L.: Special Points in
the Brillouin Zone, Phys. Rev., B8, 5747-5753,
1973

Clementi, E.: Tables of Atomic Functions,
Suppl. to the paper “Ab Initio Computations in
Atoms and Molecules”, IBM J. Research and
Develop., 9, 2-19, 1965



