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Abstract 

With the rapid increase in technologies to observe electric activity inside the 

brain, scientists have felt urged to create proper links between intracellular- and 

extracellular- based experimental approaches. Biophysical models at both physical 

scales have been formalized under assumptions that impede the natural creation of 

such links. In this work, we propose a novel theoretical framework to include the 

geometrical and electrotonic properties of neurons in a multi-compartment model 

that comprises four different devices, i.e. the integrator, the propagator, the 

3D-connector and the collector. A clear distinction in the resistivity profiles of both 

the intracellular and extracellular spaces is made for these devices. We deduced the 

general equations for the membrane potential at the compartments in each device. 

In particular, we applied this framework to model the geometrical aspects of 

pyramidal cell layer 5 (PCL5). Our model was able to reproduce the decay and delay 

curves of back propagating APs in this type of cell with a better agreement to 

experimental data. We used the voltage drops of the extracellular resistances at 

each compartment to approximate the local field potentials generated by a single 

PCL5 in close proximity to the microelectrodes arrays. From the voltage drops 

produced by back-propagating APs, we were able to estimate current multipolar 

moments generated by a single PCL5. By adding external current sources in 

parallel to the extracellular resistances, for the first time, we were able to create a 

context to stimulate any type of neurons from microelectrodes arrays in close 

proximity, which incorporates dynamic reactivity from these types of excitable cells. 

We used such an extended framework to evaluate the profile of extracellular 

current injection needed to stimulate the PCL5. In our model, the actual kinetics 

for PCL5 ionic currents and the geometrical properties of these cells were included. 

Key words: multi-compartment model, electrotonic, neuron, pyramidal cells, 

back-propagating APs 
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Introduction 

Neuronal activity at the cellular level has been investigated in the past using 

two electrophysiological approaches. In the first one, individual neurons in 

situ/vitro are targeted with glass-microelectrodes using a variety of recording and 

preparation protocols. The whole-cell voltage/current clamp is considered the most 

classical recording protocol, and it is usually performed on acute slice preparations 

(Neher, 1971; Sakmann & Neher, 1984; Stuart & Sakmann, 1995; Angelo et al., 

2007; Bar-Yehuda et al., 2008). The extracellular recordings in vivo using metal 

microelectrodes arrays (MEA) constitute the second and the earliest approach, 

dating from the works of Emil Heinrich du Bois-Reymonds who introduced the first 

non-polarizable electrodes and high-sensitivity multipliers in the middle of the 19th 

century (Pearce, 2001). Extracellular recordings via intracranial windows in 

experimental animals and human patients are today a daily practice in many 

institutes around the world (Brinkmann et al., 2009; Gnatkovsky et al., 2008; 

Wilent et al., 2011). In more modern times, this technique has been divided into two 

fields of study, one dedicated to the understanding of the postsynaptic potentials (i.e. 

the local field potential, LFP) (Buzsáki, 2006) and the other to the genesis of the 

neuronal spiking [i.e. the multi(single) unit activity, M(S)UA] (Stark & Abeles, 

2007; Wilson, 2010). 

The development of biophysical models, with the particulars for each technique, 

to explain the data has been an important issue in the history of both experimental 

approaches. The existence of incompatible specificities, together with the 

spontaneous segregation of the electrophysiologists into two independent research 

communities, has gradually created a gap between the theoretical frameworks 

underlying these approaches. The clearest one is the assumption of an extracellular 

space having a resistance negligible with respect to the resistance of the 

intracellular space when creating models for individual neurons from whole-cell 

voltage/current clamp data (Rall, 1957; 1959; 1960; 1964). Perhaps, this 

assumption originated from the fact that the intracellular space along dendritic 

branches always contains long and narrow domains, which give them a very large 

effective resistance compared to that of the extracellular space. Quite the opposite, 

the volume fraction of the extracellular and intracellular spaces is about 0.3 in most 

tissue preparations (Lehmenkühler et al., 1993), a fact that makes the extracellular 

resistance to be in the extreme case 1.3 times higher than that of the intracellular 
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(Appendix-1). From an experimental perspective, whole-cell voltage/current clamp 

are the result of observing either induced voltage differences or current flows 

between a glass-microelectrode, whose tip is inside some intracellular domain, and 

a far-away bath electrode. In contrast, extracellular recordings capture voltage 

differences in the extracellular space from metal microelectrodes that are in close 

proximity to the neurons. With the development of silicon-based technologies and 

the micro-electro-mechanic systems ―MEMS‖, MEAs are built everyday with more 

precision, which has triggered remarkable advances in modeling and data analysis. 

Performing current source density (CSD) analyses based on both models of cortical 

columns and the Poisson equation for the electric potentials constitutes one of the 

most standard techniques used nowadays to analyze the LFPs (Somogyvári et al., 

2005; Pettersen et al., 2006; Lindén et al., 2010; Gaute & Einevoll, 2010). Similarly, 

methods employed to detect and classify neuronal spiking are progressively 

founded on biophysical models of single neurons acting in a highly conductive 

medium. 

In modern times, several groups have established techniques to perform 

whole-cell current clamp recordings (or juxtacellular recordings) (Joshi & Hawken, 

2006; Pinault, 2008) in vivo. In more ambitious projects, these recordings have been 

observed simultaneously with LFPs and M(S)UA from MEA either in situ (Gloveli 

et al., 2005) or in vivo (Harris et al., 2000; Henze et al., 2000) situations. While each 

theoretical framework referred above has been always consistent with the 

respective experimental approach, they have to be carefully used to explain such 

type of concurrent data. The classical way to link intracellular and extracellular 

recording modalities, from a modeling viewpoint, is by solving the respective 

forward generative problems in a sequential strategy. In the first step of this 

strategy, multi-compartmental models, useful to describe the membrane potentials, 

are created with the particularities of each neuron. In a second step, primary and 

returning current sources across the entire membranes of the neurons are 

calculated using these models. The validity of such a source model lies beneath the 

assumption of a space-shunted extracellular space. Finally, the Poisson equation is 

used to calculate the distributions of electric potentials in the extracellular space 

created by the trans-membrane monopolar sources (Gold et al., 2006). The major 

contradiction in this strategy is the fact that the first step is performed under the 

assumption of a zero extracellular resistance while the last one is, by principle, 

based on the existence of an extracellular electric conductivity field (Goto et al., 
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2010). This strategy might be valid and useful in situations where the electrodes 

utilized to record the extracellular potentials are far away from the neuronal 

populations. However, in our opinion when these electrodes are immersed inside 

the neuronal populations, and are hence in very close proximity to the neurons 

generating the extracellular potentials, other theoretical frameworks may be more 

appropriate. Riera et al. (2006) proposed a multi-compartmental model for the 

pyramidal cells in the human visual cortex, which explicitly incorporates 

extracellular resistances at all compartments. The interactions between 

compartments were only electrotonic (no active ionic conductances) in this 

preliminary work and merely three representative compartments were considered 

to describe the soma as well as the apical-tuft and basal dendrites. The voltage 

differences along the extracellular resistances were used by these authors to models 

mesoscopic dipolar sources underlying the EEG recordings. 

In this paper, we created a new theoretical formalism to construct biophysical 

models for neurons which has been inspirited in the conceptual framework 

proposed by Riera et al. (2006). This formalism is based on four constitutive electric 

devices for most of the typical cellular structures: the collector (soma), the 

propagator (trunk), the integrator (dendritic branches) and the 3D-connector 

(dendritic bifurcations). The innovative aspect in these devices is the inclusion of 

multiple extracellular resistances that adequately can be used to absorb the 

geometrical aspects of each cellular structure. First, we created the theoretical 

equations and provided instructions on how to use the four devices to create 

neurons with dissimilar morphologies. Second, we developed the particulars for the 

layer 5 tufted pyramidal cells (PCL5). In order to study the effect of the 

extracellular resistances in the pyramidal cells on the action potential (AP) 

back-propagation, we surveyed literature on the kinetics and permeability profiles 

of the most important ionic channels in this particular cell type. Our model was 

able to accommodate experimental data about the amplitude decay and peak delay 

of back-propagating APs more precise than the same model when all extracellular 

resistances were set to zero. We defined in a direct way the extracellular potentials 

near a particular neuron as voltage drops in the extracellular resistances. We used 

such a construct to create individual CSDs for back-propagating APs and discussed 

our results together with experimental data reported in the literature 

(Bereshpolova et al., 2007). We could estimate close-field monopolar, dipolar and 

quadrupolar contributions to the CSD by a single pyramidal cell. We concluded that, 
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even for models based on the Kirchhoff ’s laws for circuit loops, monopolar and 

quadripolar sources emerge in the CSD analysis as a result of the mismatch 

between the physical assumptions made to solve the forward problems in these two 

tissue substrates, i.e. on one hand we assumed the electric fields were quasistatic 

(Poisson equation), and on the other hand we introduced highly dispersive elements 

(membrane capacitances). Finally, we extended our model of the pyramidal cells to 

include elemental current sources in parallel to the extracellular resistances for 

each compartment, which was very useful to mimic current stimulation by 

microelectrodes in close proximity to the neurons. Using this last model, we were 

able to evaluate the sensitivity of the PCL5 to the different stimulation locations 

along the cellular trunk. 

Materials and methods 

A general framework for modeling neuronal activity 

In the proposed theoretical formalism, neurons can be approximated by 

complex arrays of four elemental building blocks (Figure 1-A2 and B2), which are 

endowed with ionic channels. These building blocks, which are named the 

integrator (dendritic branches), propagator (dendritic trunks), 3D-connector 

(branch bifurcation points) and collector (somas), contain detailed information 

about neuron geometries in terms of the particular values of intracellular, 

extracellular and membrane electrotonic parameters (i.e. resistances and 

capacitances). For instance, the pyramidal neurons (Figure 1-A1) are approximated 

by a collecting-soma attached on one side to the basal integrating dendrites and on 

the other to a long propagating trunk (Figure 1-A2). The trunk ends on a bulk of 

apical integrating dendrites. We can also attach oblique integrating dendrites to the 

trunk by means of a 3D connector. However, the spiny stellate neurons (Figure 

1-B1) can be created by connecting integrators and a single collector in a spherical 

array (Figure 1-B2). 

As shown in Figure 1-A2 and B2, the integrator is defined as a device which 

contains two parts: the first part possesses many dendritic branches with 

heterogeneous impedances and it receives synaptic inputs, and the second part 

produces a single output voltage at the last compartment of the integrator which is 

used as an input in any other building block connected to it. The propagator refers 

to a device that propagates inputs over long distances separating two building 
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blocks. The propagator is composed of several compartments which can be 

non-uniform. By means of a 3D-connector, we can create links between three 

particular building blocks that simulate the points of electrotonic division (e.g. 

dendritic bifurcations). The collector represents a device that collects the outputs 

from specific arrays of building blocks and generates from them the final spiking 

state of the cell. 

The extracellular space (ECS) is composed of the cerebral spinal fluid that 

distributes along the narrow interstitial space between the neuronal processes. 

Nowadays, it is well established that the ECS occupies a volume fraction of between 

15% and 30% in normal adult brain tissue (Sykova & Nicholson, 2008). For general 

cases, the equivalent electrical circuits of the building blocks in the frequency domain 

are shown in Figure 2-A, B, C, and D for the integrator, propagator, 3D-connector, and 

collector, respectively. Every equivalent electrical circuit contains the resistance of 

both the intracellular space (ICS) and the ECS, as well as the membrane complex 

resistance. By using the Kirchhoff's laws for these circuits, we were able to obtain 

theoretical formulas for the changes in the membrane potentials for each building 

block (Appendix-2). 

An application: AP back-propagation in PCL5 

The morphological properties 

As an example, we will apply this model to study back-propagating APs in 

PCL5 (Figure 1-A1). In this model, the PCL5 is composed of three interconnected 

building blocks (Figure 3, left) embedded with ionic channels: integrator, 

propagator, and collector. 

For the case of stimulating a PCL5 through the injection of intracellular 

currents in the soma, the ionic channels rather than the synapses play a key role 

for back-propagating APs. Here, the oblique and basal dendrites were ignored. 

Therefore, this simple model of PCL5 contains an integrator with only one 

apical-tuft branch, a propagator with 10 compartments, and a collector with only 

one input coming from the propagator. However, the morphology of PCL5 can be 

non-uniform within compartments. For a precise result, we assumed that all 

compartments of the propagator can be divided into two equal parts in the electrical 

circuit (Figure 2-B): the upper and lower part. Note that the distal apical 

integrating dendrite is connected to the first compartment of the propagator and 
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the collecting soma is connected to the last compartment of the propagator. The 

entire model of AP back-propagation inside the PCL5 was programmed in MATLAB 

(i.e. this code is available by request). 

In our model, we assumed that the volume of the ECS in close proximity to the 

PCL5 was equal to 30% of the volume of its ICS, which determine the upper bound 

for the extracellular resistance. We used geometrical parameters to calculate the 

membrane resistances, and the resistance of the ICS and the ECS for every 

compartment of the integrator, the propagator and the collector in our model. The 

calculation of those resistances is shown in the Appendix-1.  

To estimate the geometrical properties (length, diameter, area, volume) of 

PCL5s, we performed whole-cell somatic patch-clamp experiments using 

somatosensory coronal slices (300 m) of young Wistar rats (P14-P16). The artificial 

cerebral spinal fluid solution contained (in mM): 125 NaCl, 25 NaHCO3, 25 glucose, 

2.5 KCl, 1.25 NaH2PO4H2O, 2CaCl22H2O and 1 MgCl26H2O. Recording electrodes 

(5–7.5 M) were loaded with  intracellular solution contained in (mM) 115 

potassium gluconate, 20 KCl, 2 Mg-ATP, 2 Na2-ATP, 10 sodium phosphocreatine, 0.3 

GTP, 10 HEPES, 0.05 Alexa fluor hydrizide 594.  Sixteen cells  were selected 

based on their firing patterns (regular spiking) and their image stacks recorded by 

the Two Photon Laser Scanning Microscopy were combined using a volume 

integration and alignment system (VIAS)  (Rodriguez et al., 2003). Geometrical 

properties of selected PCL5 were evaluated using the Neuron Studio software 

(Rodriguez et al., 2003): (1) As for the single branch of the integrator, its 

morphological properties were obtained from averaged data of three branches. The 

last compartment of the integrator which connects the propagator and integrator 

was approximated as a cylinder and its length and diameter measured; (2) The 

propagator was assumed as a cylinder and divided into 10 compartments (Figure 3, 

right A) whose lengths and diameter were determined (Figure 3, right B1). The 

collector was subjectively classified into three formats according to their different 

shapes (i.e. triangular, round and oval, Romand et al., 2011). Thus, collectors were 

approximated by a sphere whose diameters were measured (Figure 3, right B2). All 

animal procedures were reviewed and approved by the Tohoku University Animal 

Studies Committee. 

The resistance of membranes, ICS and ECS belonging to each of the building 

blocks are evaluated base upon the mean values of lengths and diameters gathered 
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from sixteen PCsL5 (Table 1). 

The voltage-gated ionic currents 

Three voltage-gated ionic channels are embedded in this model: sodium (Na), 

potassium fast (Kf), and potassium slow (Ks). The voltage-gates of these three ionic 

conductances were based on nucleated patched recordings from PCsL5 (Korngreen 

and Sakmann, 2000). All the conductances were modeled using Hodgkin-Huxley 

type of models (Hodgkin and Huxley, 1952). 

The kinetic equations were defined as follow (Keren et al., 2005): 
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The conductance profile of each of these three channels along the trunk of the 

PCL5 was based on data provided by Rhodes (2006). Since those data were obtained 

from 40 days/old Wister rats, the same profiles were kept, but scaled by a factor of 

0.3 to properly reproduce them as reported for juvenile rats (P14-P16), the 

conductance profile of (Na) sodium (Stuart & Sakmann, 1994) and (Kf & Ks) 

potassium (Schaefer et al., 2007) channels. 

The extracellular current sources generated by PCL5 

In contrast to previous studies, here we approximated the extracellular electric 

potentials at any position very close to the PCL5 by the voltage drop in the 

respective extracellular resistance at each compartment. In such an approach, the 

contributions to the LFP of the trans-membrane current sources of other 

compartments are neglected. This hypothesis is needed to simplify the theoretical 

analysis. In our case, the extracellular resistance constitutes an important element 

of the neuronal circuit as it has an impact on the final dynamics of the membrane 

potential. We used this framework to simulate the LFP from our PCL5 model. All 

LFP signals were referenced to a single reference electrode which was near the 

distal trunk in the extracellular space, other electrodes were in correspondence to 

the resistance of the ECS (Figure 4-A). In the Figure 4, e

iR  shows the i th 

resistance of the ECS which is in between the i th and i+1 th compartment, 
iU  

shows the voltage of e

iR . The details of the electric circuit are shown in Figure 4-B. 

The LFPs were calculated by the following equations (Appendix 3): 

1

i

i k

k

V U


  

Note that while calculating the LFP.the summation by the index k has to be 
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performed through all extracellular resistances of interest. To analyze the 

distribution of diminutive electric sources 
2s      produced by a particular 

neuron inside a mesoscopic region (i.e. a cortical column) from simulated LFPs 

 i ir V  ,  1, ,i N , at discrete recording sites ir  along the cortical lamina, 

we used the iCSD method (Pettersen et al., 2006; iCSDplotter software, version 

0.1.1). The parameters used in this analysis were: a) the disk diameter d for the 

sources, which was 0.5 mm, b) the standard deviation for the Gaussian filter, which 

was 50 μm, and c) the electric conductivity σ (homogenous media), which was 3 

mS/cm (Goto et al., 2010). The thickness l of the cortical columns was 2 mm. 

Assuming the cortical columns were perfect cylinders, their volumes 
2( / 2)V d l  

would be 0.39 mm3. We did not use boundary conditions (i.e. free electric potentials). 

The mathematical definition of monopoles m(t), dipoles d(t), and quadrupoles Q(t) 

from the volume sources s are given by the following equations (Riera et al., 2011): 
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The vector mr  indicates the center of gravity of the cortical column, and the 

value mz  stands for its respective laminar coordinate. The axis z is defined in the 

direction perpendicular to the neocortex with positive and negative values toward 

the supragranular and infragranular layers, respectively. 

Stimulating the PCL5 by extracellular current injection 

Due to the existence of a resistance of the ECS, we also were able to inject 

electric currents to the ECS to induce spiking in PCL5. In Figure 5, we show the 

original electric circuit which contains the resistance of the ECS (Figure 5-A) and 

the modified electric circuit to account for an extracellular current injection (Figure 

5-B and C). In our model, an injection of an electric current in the ECS close to a 

compartment of the neuron can be represented by an external current source in 
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parallel to the extracellular resistance of that compartment (Figure 5-B). By means 

of Norton's theorem, we can transform this parallel circuit into a serial circuit with 

an equivalent voltage source (Figure 5-C). Hence, we can directly add the voltage 

injection source to the equivalent electrical circuits of the building blocks in our 

multi-compartmental model. 

The equivalent equation is as follows: 

inje inje e

i i iE I R   

By using Kirchhoff's laws for these circuits, we can include these serial voltage 

sources in the original equivalent equations of the building blocks of the 

multi-compartmental model (Appendix-2). 

Results 

Intracellular stimulation of PCL5 

Figure 6 shows the propagation of an AP train from the soma to the distal 

trunk with both cases: a zero and a nonzero resistance for the ECS. The membrane 

potential was held at -70 mV and a square pulse current of 200 pA injected at the 

soma for 150 ms. In both cases, the peak amplitude of APs remains constant after a 

very short transitory period. There is a good concord between these results and 

those provided in a previous experiment (Chang & Luebke, 2007). From these 

simulations, it can be noticed that amplitude of back-propagating APs is not 

affected by the resistance of ECS. On the contrary, number of spikes is slightly 

reduced when Re is not zero. As a consequence of the uncertainty in determining 

current leakages in whole-cell voltage clamp experiments and the variability in the 

cell dimensions, the number of spikes does not constitute a suitable experimental 

criterion to precisely evaluate the impact of extracellular resistance in the cellular 

signaling. A more meticulous evaluation can be achieved by inspecting the shape of 

the back-propagating APs. 

We compared two single APs from these simulated data with equivalent 

initiation times (Figure 7). In order to quantify the differences of these two single 

APs, we used the amplitude decay and peak delay curves of the back-propagating 

APs (Figure 8). First, we chose the data of three previous studies reporting the APs 

decay and delay curves in PCL5 (i.e. Stuart & Sakmann, 1994; Gulledge & Stuart, 
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2003; Bar-Yehuda et al., 2008; data summarized in Figure 8-A). Second, in those 

common sites along the PCL5 trunk we averaged the decay and delay values 

reported in these previous studies. Finally, we compared the mean experimental 

curves with those obtained from our simulated back-propagating APs. The decay 

curves were similar in these previous studies. However, there were significant 

differences among these three studies in the estimated delays curves, i.e. about 2 

ms discrepancy at the distal apical dendrites. 

We compared the decay and delay information calculated from the 

back-propagating APs in our simulations with those obtained from averaging 

previous experimental data (Figure 8-B). We could not find an obvious difference in 

simulated amplitude-decays for the cases of zero and nonzero resistance of the ECS. 

The predictions in both cases were very similar to that mean amplitude-decay curve 

experimentally estimated (Figure 8-B, left). The estimation errors were slightly 

smaller for the case of nonzero resistance of the ECS (i.e. 4.56) compared to the case 

of zero resistance of the ECS (i.e. 4.92). Taking into consideration that we 

performed this simulations using the upper bound for the resistance of the ECS, we 

concluded that the existence of ECS resistance will never affect the 

amplitude-decay curve of back-propagating APs in the PCL5. However, we found 

that in the case of having a zero resistance of the ECS the APs propagate faster 

along the PCL5 trunk back to the apical dendrites (Figure 8-B, right), as quantified 

through the peak-delay curve. By comparing the simulated peak-delay curves with 

that mean curve experimentally estimated, we concluded that the estimation errors 

were significant larger in the case of having the ECS voltage-space clamped (i.e. 

0.68) compared to the case of a highly resistive ECS (i.e. 0.37). However, further 

experiments are required to verify this conclusion since the aforementioned 

discrepancies in the experimentally estimated peak-delay curves, in spite of having 

used equivalent species (Wistar rats), brain regions (neocortex) and animal ages. 

Using the strategy proposed in the material and methods, we simulated the 

LFP and calculated the respective CSD for the case of having an ECS with a 

nonzero resistance. In this particular case, for the cell to fire a single AP a current 

of 200 pA was injected for 5 ms (Figure 9). The calculated CSD spatiotemporal 

pattern was very close to that estimated from experimental data (Bereshpolova et 

al., 2007). Based on our calculated CSD, we determined the multipolar components 

generated by a single PCL5 while APs are back-propagating along its trunk. Note 

that our estimators are only valid if the microelectrodes are in close proximity to 
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the PCL5, e.g. a linear probe with electrodes arranged parallel to the PCL5 at a 

distance < 50 m from it. In contrast to the results obtained by Milstein & Koch 

(2008), we were able to distinguish monopolar and quadrupolar contributions to the 

LFP which were comparable in size to that of the dipolar source model. The 

strategy in Milstein & Koch (2008) was to solve the discrete cable equation 

assuming a zero resistance of the ECS and use the resulting trans-membrane 

currents (i.e. both primary and returning currents) to calculate the LFP through 

the Poisson equation. Therefore, their results originated from both the local dipolar 

character of the trans-membrane current sources and the instantaneous 

propagation of the electric field in pure resistive media (i.e. the quasistatic 

approach). In our case, the strategy used to calculate the LFP takes into account 

the dynamic changes in the extracellular potentials which are caused by the 

existence of polarization effects along the cellular membranes. 

Extracellular stimulation 

We used the proposed strategy to stimulate the PCL5 using extracellular 

current injection at the level of each compartment. We applied extracellular electric 

currents (i.e. square pulses: 50 ms – 250 ms) at different positions of the PCL5 to 

generate a train of APs in its soma. The amplitudes of the electric currents were 

adjusted to reproduce trains of AP with similar spike frequency/rate. Figure 10 

illustrates such a procedure for four particular positions (i.e. the soma, and a site in 

the proximal, middle and distal trunk). 

In Figure 11, we showed the relationship between the amplitudes of the 

injected electric current into the ECS and the distance from the soma. We found 

that the farer we are from the soma the higher the current have to be injected to 

equivalently stimulate the PCL5, and that it follow a exponential-like relationship. 

The estimated sensibility profile of the PCL5 to extracellular current injection will 

allow us to create in the near future strategies to selectively stimulate this 

particular cell type from specially designed MEAs. 

Discussion 

For establishing neuronal model for any types of neurons, we created a new 

theoretical formalism which contains the resistance of ECS. Comparing the number 

of APs in the ―Re is not zero‖ study and the ―Re is zero‖ study in the intracellular 
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stimulation results, we have shown that the APs could be generated more without 

the resistance of ECS. The result of decay showed that the resistance of 

extracellular space cannot affect the amplitude of neuronal APs in an obvious way. 

However, we could find an obvious difference of spread speed of APs from soma to 

distal trunk in delay result. We also created a new method for LFP and CSD 

simulation, these simulation results showed that our model can provide simulation 

data which was very close to the experimental data, and based on our CSD data, 

the monopoles, dipoles and quadrupoles results could be calculated precisely. Since 

our model included the ECS, we were able to stimulate neuron at ECS and evaluate 

the sensitivity of the neuron to the stimulation location along the cellular trunk. We 

showed the nonlinear relationship between the amplitude of the injected current in 

the ECS and the injected distance from soma in the extracellular stimulation 

results, we found that we needed more injected current to generate neuronal APs in 

the extracellular space. Based on the safe region for injection current in the ECS 

during the experiment, we were able to find the limit position which could inject the 

current up to 2μA. 

Riera et al. (2006) represented the electrotonic propagation of the membrane 

potentials in the PCL5 of the human visual cortex using a three-compartment 

model that included the apical dendrites, basal dendrites and the soma. These 

authors used such a model to estimate crucial physiological parameters in the 

cortical microcircuit from large-scale EEG data which were obtained from healthy 

subjects undergoing a flickering checkerboard visual stimulation paradigm (Riera 

et al., 2007). In then current study, we extended this previous model not only to 

include active ionic currents, but also to represent cells with other morphologies 

through the combination of four basic electrotonic devices: the integrator, the 

propagator, the 3D-connector and the collector. Each of these devices, which in 

principle could comprise multiple compartments, is able to connect to any other 

device by means of terminals (open circuits) having free voltage differences as the 

linking physical magnitudes. As in Riera et al. (2006), the extracellular electric 

potential was defined as the voltage drops in the resistances of the extracellular 

space for each compartment. Additionally, we obtained mathematical formulas for 

the case in which sources of electric currents were in parallel to the extracellular 

resistances. The last theoretical result allowed us to create a realistic profile of 

PCL5 sensitivity to external current stimulation by means of MEAs in close 

proximity to the cells, a subject of relevance in developing brain machine interfaces. 
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We provided a link between the intracellular (membrane potentials) and 

extracellular (LFP/MU(S)A) recordings without assumptions of both a charge 

balance along the cellular membrane and a quasistatic approach for the electric 

field. However, our theoretical model is only valid for recording sites in close 

proximity to the neurons of interest. We were able to reproduce similar 

spatiotemporal patterns in the extracellular CSD generated by back-propagating 

APs, such as those reported by Bereshpolova et al. (2007). Our model was also able 

to reproduce experimentally observed curves for the amplitude decay and peak 

delay of back-propagating APs. 

The decay/delay for back-propagating APs: The discrepancies 

To evaluate the impact of introducing an extracellular resistance in the 

multi-compartmental models of PCL5, in this study we used the decay and delay 

curves of back-propagating APs in these particular cell types obtained by different 

laboratories (Stuart & Sakmann, 1994; Gulledge & Stuart, 2003; Bar-Yehuda et al., 

2008). The first report dates from the early 90’s (Stuart & Sakmann, 1994). These 

authors performed patch-clamp recordings from dendrites of neocortical pyramidal 

cells using parasagittal neocortical brain slices from 2-week-old Wistar rats. Almost 

ten years later, Gulledge & Stuart (2003) obtained similar measurements from 

coronal brain slices containing the prelimbic prefrontal cortex from 3- to 5-week-old 

Wistar rats. In Stuart & Sakmann (1994)’s study, the decay curve was similar to 

that reported by Gulledge & Stuart (2003), but the delays were much larger, i.e. the 

APs reached a site about 500 m from the soma 2 ms slower than in Gulledge & 

Stuart (2003). Using sagittal slices from 5- to 7-week-old Wistar rats, more recently 

Bar-Yehuda et al. (2008) reported similar decay/delay curves to those found by 

Gulledge & Stuart (2003). We realized that there is a discrepancy in the delay curve 

reported in the initial works by Stuart & Sakmann (1994) and in those obtained in 

more contemporary studies (Gulledge & Stuart, 2003; Bar-Yehuda et al., 2008). 

These three studies all used Wistar rats. We opted to use averaged data from these 

three studies for both decay and delay curves. We believe further studies are 

required to verify whether these curves depend on either age, specie, brain region, 

or PCL5 subtype. Currently, we believe that the average data has the most valid 

curves possible. 

As is shown in Figure 8, a multi-compartment model for PCL5 that includes 

extracellular resistances different from zero generates APs propagating more 
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slowly toward the apical tuft. To explain this phenomenon, we use a simplified 

model of a membrane circuit (one single compartment) that includes not only 

membrane and intracellular resistances, but also a nonzero extracellular resistance. 

The membrane potential can be calculated by the equation: 

*

1
ext

dV
C V I

dt R
    

In this equation, 
*R  is an equivalent resistance that results from having a 

membrane resistance in parallel to a series of intracellular 
iR  and extracellular 

eR  resistances. The time constant for the circuit will be 
*R C  . Therefore, 

*

1 1 1 m ei

m ei m ei

R R

R R R R R


    

Where ei e iR R R  . 

As we mentioned earlier, 1.3e iR R . We compared the 
*R  in both cases: ―Re is 

not zero‖ and ―Re is zero‖. 

*

0

2.31

2.3
e

m ei m i

R m ei i m

R R R R

R R R R R

 
   

*

0

1

e

m i m i

R m i i m

R R R R

R R R R R

 
   

It can be easily demonstrated 

*

0

*

0

1e

e

R

R

R

R





 , which implies 0 0e eR R   . 

An alternative explanation for the AP retardation in the case of nonzero 

extracellular resistive originates from a thermodynamic viewpoint. For electrical 

circuits with more resistive elements, which are dissipative, the net production of 

heat in a given time window Q IRt  will be higher. Such an energy 

transformation process could underlie both larger delays in the propagation of APs. 

The charge-balanced hypothesis: The extracellular potential models 

From a classical approach, the connection between intracellular and 
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extracellular recordings is based on assuming the existence of microscopic current 

sources across the cellular membrane of the entire neurons. Therefore, the 

extracellular electric potentials are naturally calculated by using the Poisson 

equation for quasistatic electric fields. This strategy might be valid and useful in 

situations where the microelectrodes utilized to record the extracellular potentials 

are far away from the neuronal populations of interest. However, in situations 

where these microelectrodes are in close proximity to the neurons generating the 

extracellular potentials, such a classical approach may produce inaccurate results. 

On the other hand, such a source model implies a microscopic charge balance in the 

cellular membranes. Riera et al. (2011) provided recent evidence that refutes such a 

working hypothesis at the mesoscopic level. In the barrel cortex of Wistar rats 

undergoing a whisker stimulation protocol, these authors found important 

contributions from monopolar and quadrupolar current sources to the extracellular 

potentials at the mesoscopic level. The role of multipolar current sources in the 

genesis of LFP/MU(S)A has been evaluated in the past (Milstein & Koch, 2008), 

where dipolar components were suggested to be larger than other multipolar 

moments. Therefore, in order to clarify whether or not the dipolar moment is the 

only one contributing to the genesis of LFPs future evaluations are needed. 

Poisson equation vs. Kirchhoff circuit laws 

The major problem in previous strategies that attempted to link models for the 

intracellular and extracellular experimental approaches is the strong inconsistency 

in the underlying assumptions. On the one hand, researchers use the quasistatic 

approach for the electric field, which was initially introduced to describe the 

propagation of electric and magnetic fields inside the biological tissues (Plonsey & 

Heppner, 1967), to estimate the extracellular electric potential  r  everywhere 

from known microscopic current sources s  across the membrane of the neurons. 

For the electric field, this approach results in the well-known Poisson equation 

  s     . In the frequency range of observing electrophysiological phenomena 

( 100kHz ), dispersive effects in the tissues are ignored (i.e. pure resistive media). 

Under such a condition, the conductivity   reflects mostly the macroscopic 

conductivity which is determined by the characteristics of the cell suspension (i.e. 

volume fraction of the extracellular and intracellular spaces) and does not include 

any contribution originating from the existence of a highly dispersive membrane. 

Nowadays, we are familiar with the fact that such an approach is not valid even for 

the lowest frequency range ( 100Hz ) of the LFP (Gabriel et al., 1996a,1996b, 
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1996c, 2009; Bédard & Destexhe, 2009; Bédard et al., 2010). On the other hand, the 

differential equations used to describe the membrane potentials in neurons, by 

nature, originate from the fact that there is a capacitor separating the intracellular 

and the extracellular spaces. In such differential equations, the actual brain 

sources across the cellular membranes are incorporated following Kirchhoff ’s 

circuit laws. As demonstrated in this paper, we have to be careful when 

representing these actual current sources at a mesoscopic level with equivalent 

dipolar models that neglect the contribution of monopolar and high-order 

multipolar moments to the LFPs (Riera et al., 2011). 

Acknowledgements 

First, I would like to appreciate KAWASHIMA Lab NMD group to support me 

to do my master research, I thank Dr. Hervé and Dr. Takakuni to help to do so 

many experiments, and I especially really acknowledge Prof. KAWASHIMA and 

Associate Prof. REIRA gave me so many advices to help finish my master paper. I 

also would like to thank Prof. Juan Carlos Jimenez from the Institute of 

Cybernetics and Mathematics Applied to Physics for helping us to create suitable 

MATLAB code for integrating large stochastic differential equations. This work has 

been supported by the following grants: a) Japan-Canada Joint Health Research 

Program (JSPS) ―The neuroarchitectonic determinants of EEG recordings‖; b) 

Grant-in-Aid for Scientific Research (B) 23300149; c) JSPS Grant-in-Aid for Young 

Scientists (B) 23700492 

References 

Angelo K., London M., Christensen SR., & Häusser M. (2007). Local and global 

effects of I(h) distribution in dendrites of mammalian neurons. J Neurosci. 

27(32):8643-53. 

Bar-Yehuda D., Ben-Porat H., & Korngreen A. (2008). Dendritic excitability 

during increased synaptic activity in rat neocortical L5 pyramidal neurons. Eur J 

Neurosci. 28(11):2183-94. 

Bédard C., & Destexhe A. (2009). Macroscopic models of local field potentials 

and the apparent 1/f noise in brain activity. Biophys J. 96(7):2589-603. 



 

19 

 

Bédard C., Rodrigues S., Roy N., Contreras D., & Destexhe A. (2010). Evidence 

for frequency-dependent extracellular impedance from the transfer function 

between extracellular and intracellular potentials: intracellular-LFP transfer 

function. J Comput Neurosci. 29(3):389-403. 

Bereshpolova Y., Amitai Y., Gusev AG., Stoelzel CR., & Swadlow HA. (2007). 

Dendritic backpropagation and the state of the awake neocortex. J Neurosci. 

27(35):9392-9. 

Brinkmann BH., Bower Mr., Stengel KA., Worrell GA., & Stead M. (2009). 

Large-scale electrophysiology: acquisition, compression, encryption, and storage of 

big data. J Neurosci Methods. 180(1):185-92. 

Buzsáki G. (2006). Rhythms of the Brain. New York: Oxford Univ. Press. 

p.89–92. 

Chang YM., & Luebke JI. (2007). Electrophysiological diversity of layer 5 

pyramidal cells in the prefrontal cortex of the rhesus monkey: in vitro slice studies. 

J Neurophysiol. 98(5):2622-32. 

da Costa NM., & Martin KA. (2011). How thalamus connects to spiny stellate 

cells in the cat's visual cortex. J Neurosci. 31(8):2925-37. 

Einevoll GT. (2010). Modeling of extracellular potentials recorded with 

multicontact microelectrodes. 7th Int. Meeting on Substrate-Integrated 

Microelectrodes. 

Gabriel C., Gabriel S., & Corthout E. (1996). The dielectric properties of 

biological tissues: I. Literature survey. Phys Med Biol. 41(11):2231-49. 

Gabriel C., Peyman A, & Grant EH. (2009). Electrical conductivity of tissue at 

frequencies below 1 MHz. Phys Med Biol. 54(16):4863-78. 

Gabriel S., Lau RW., & Gabriel C. (1996). The dielectric properties of biological 

tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 

141(11):2251-69. 

Gabriel S., Lau RW., & Gabriel C. (1996). The dielectric properties of biological 

tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol. 

41(11):2271-93. 



 

20 

 

Gloveli T, Dugladze T, Rotstein HG, Traub RD, Monyer H, Heinemann U, 

Whittington MA, & Kopell NJ. (2005). Orthogonal arrangement of 

rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci U S A. 

102(37):13295-300. Epub 2005 Sep 2. 

Gnatkovsky V., Librizzi L., Trombin F., & de Curtis M. (2008). Fast activity at 

seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro. 

Ann Neurol. 64(6):674-86. 

Gold C., Henze DA., Koch C., & Buzsáki G. (2006). On the Origin of the 

Extracellular Action Potential Waveform: A Modeling Study. J Neurophysiol. 

95(5):3113-28. 

Gold C., Henze DA., & Koch C. (2007). Using extracellular action potential 

recordings to constrain compartmental models. J Comput Neurosci. 23(1):39-58. 

Goto T., Hatanaka R., Ogawa T., Sumiyoshi A., Riera J., & Kawashima R. 

(2010). An evaluation of the conductivity profile in the somatosensory barrel cortex 

of Wistar rats., J Neurophysiol. 104(6):3388-412. 

Gulledge AT., & Stuart GJ. (2003). Action potential initiation and propagation 

in layer 5 pyramidal neurons of the rat prefrontal cortex: absence of dopamine 

modulation. J Neurosci. 23(36):11363-72. 

Harris KD, Henze DA, Csicsvari J, Hirase H, & Buzsáki G. (2000). Accuracy of 

tetrode spike separation as determined by simultaneous intracellular and 

extracellular measurements. J Neurophysiol. 84(1):401-14. 

Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, & Buzsáki G. (2000). 

Intracellular features predicted by extracellular recordings in the hippocampus in 

vivo. J Neurophysiol. 84(1):390-400. 

Hodgkin A., & Huxley A. (1952). A quantitative description of membrane 

current and its application to conduction and excitation in nerve. J. Physiol. 

117:500–544. 

Joshi S., & Hawken MJ., (2006). Loose-patch–juxtacellular recording in 

vivo—A method for functional characterization and labeling of neurons in macaque 

V1. Journal of Neuroscience Methods 156 (1-2):37-49. 



 

21 

 

Keren N., Peled N., & Korngreen A. (2005). Constraining compartmental 

models using multiple voltage recordings and genetic algorithms. J Neurophysiol. 

94(6):3730-42. 

Korngreen A., & Sakmann B. (2000) Voltage-gated K+ channels in layer 5 

neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol. 

525 Pt 3:621-39. 

Larkman AU. (1991). Dendritic morphology of pyramidal neurones of the 

visual cortex of the rat: I. Branching patterns. J Comp Neurol. 306(2):307-19. 

Larkman AU. (1991). Dendritic morphology of pyramidal neurones of the 

visual cortex of the rat: II. Branching patterns. J Comp Neurol. 306(2):320-31. 

Larkman AU. (1991). Dendritic morphology of pyramidal neurones of the 

visual cortex of the rat: III. Branching patterns. J Comp Neurol. 306(2):332-43. 

Lehmenkühler A., Syková E., Svoboda J., Zilles K., & Nicholson C. (1993). 

Extracellular space parameters in the rat neocortex and subcortical white matter 

during postnatal development determined by diffusion analysis. Neuroscience. 

55(2):339-51. 

Lindén H., Pettersen KH., & Einevoll GT. (2010). Intrinsic dendritic filtering 

gives low-pass power spectra of local field potentials. J Comput Neurosci. 

29(3):423-44. 

Milstein JN., & Koch C. (2008). Dynamic moment analysis of the extracellular 

electric field of a biologically realistic spiking neuron. Neural Comput. 

20(8):2070-84. 

Neher E. (1971). Two fast transient current components during voltage clamp 

on snail neurons. J Gen Physiol. 158(1):36-53. 

Pearce JM. (2001). Emil Heinrich Du Bois-Reymond (1818-96). J Neurol 

Neurosurg Psychiatry. 71(5):620. 

Pettersen KH., Devor A., Ulbert I., Dale AM., & Einevoll GT. (2006). 

Current-source density estimation based on inversion of electrostatic forward 

solution: effects of finite extent of neuronal activity and conductivity discontinuities. 

J Neurosci Methods. 154(1-2):116-33. 



 

22 

 

Pinault D. (2008). The Juxtacellular Recording-Labeling Technique. Vol. 54, 

Neuromethods, PP 41-75. 

Plonsey R., & Heppner DB. (1967). Considerations of quasi-stationarity in 

electrophysiological systems. Bull Math Biophys. 29(4):657-64. 

Rall W. (1957). Membrane time constant of motoneurons. Science 126: 454. 

Rall W. (1959). Branching dendritic trees and motoneuron membrane 

resistivity. Exp. Neurol. 1: 491-527. 

Rall W. (1960). Membrane potential transients and membrane time constant of 

motoneurons. Exp. Neurol. 2: 503-532. 

Rall W. (1964). Theoretical significance of dendritic trees for neuronal 

input-output relations. In Neural Theory and Modeling, ed. R.F. Reiss. Stanford 

Univ. Press. 

Rhodes P. (2006). The properties and implications of NMDA spikes in 

neocortical pyramidal cells. J Neurosci. 26(25):6704-15. 

Riera J., Ogawa T., Goto T., Sumiyoshi A., Nonaka H., Evans A., Miyakawa H., 

& Kawashima R. (2011). Pitfalls in the dipolar model for the neocortical EEG 

sources. Journal of neurophysiology. (Revision). 

Riera JJ., Wan X., Jimenez JC., & Kawashima R. (2006). Nonlinear local 

electrovascular coupling. I: A theoretical model. Hum Brain Mapp. 27(11):896-914. 

Riera J., Jimenez JC., Wan X., Kawashima R., & Ozaki T. (2007). Nonlinear 

Local Electro-Vascular Coupling. Part II: From Data to Neural Masses. Human 

Brain Mapping, 28, 335-354. 

Rodriguez A., Ehlenberger D., Kelliher K., Einstein M., Henderson SC., 

Morison JH., Hof PR., & Wearne SL. (2003). Automated reconstruction of 

three-dimensional neuronal  morphology from laser scanning microscopy images. 

Methods 30:94-105. 

Romand S., Wang Y., Toledo-Rodriguez M., & Markram H. (2011). 

Morphological development of thick-tufted layer V pyramidal cells in the rat 

somatosensory cortex. Front Neuroanat. 5:5. 



 

23 

 

Sakmann B., & Neher E. (1984). Patch clamp techniques for studying ionic 

channels in excitable membranes. Annu Rev Physiol. 46:455-72. 

Schaefer AT., Helmstaedter M., Schmitt AC., Bar-Yehuda D., Almog M., 

Ben-Porat H., Sakmann B., & Korngreen A. (2007). Dendritic voltage-gated K+ 

conductance gradient in pyramidal neurons of neocortical layer 5B from rats.  J. 

Physiol 579 (3):737-752. 

Somogyvári Z., Zalányi L., Ulbert I., & Erdi P. (2005). Model-based source 

localization of extracellular action potentials. J Neurosci Methods. 147(2):126-37. 

Stark E., & Abeles M. (2007). Predicting movement from multiunit activity. J 

Neurosci. 27(31):8387-94. 

Stuart G., & Sakmann B. (1995). Amplification of EPSPs by axosomatic sodium 

channels in neocortical pyramidal neurons. Neuron. 15(5):1065-76. 

Stuart GJ., & Sakmann B. (1994). Active propagation of somatic action 

potentials into neocortical pyramidal cell dendrites. Nature. 367(6458):69-72. 

Syková E., & Nicholson C. (2008). Diffusion in brain extracellular space. 

Physiol Rev. 88(4):1277-340. 

Wilent WB., Oh MY., Buetefisch C., Bailes JE., Cantella D., Angle C., & 

Whiting DM. (2011). Mapping of microstimulation evoked responses and unit 

activity patterns in the lateral hypothalamic area recorded in awake humans. J 

Neurosurg. 

Wilson DA. (2010). Single-unit activity in piriform cortex during slow-wave 

state is shaped by recent odor experience. J Neurosci. 30(5):1760-5. 

 

 

 



 

24 

 

Appendices 

1. Calculation of resistances 

In every compartment, l is length, d is diameter, A is area, and V is volume. 

The parameters A and V of every compartment are calculated from the l and d 

values. The calculation of the membrane resistance (Rm) is given by the following 

equation: 

1.92

m
m

r
R

A


  

Here, the membrane resistivity (rm) is equal to 40000 (Ω×cm2). The factor 1.92 

is introduced to account for the dendritic spine areas (Rhodes et al., 2006). 

The calculation of the resistance of the ICS (Ri) is given by the following 

equation: 

i

i

i

r l
R

A




 

Here, the resistivity of the ICS (ri) is equal to 166 (Ω×cm). 

The calculation of the resistance of the ECS (Re) is given by the following 

equations: 

1.3e iR R   

Proof: 
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Here, the resistivity of the ECS (re) is equal to 63 (Ω×cm). We used the fact 

that the extracellular/intracellular volume fraction is approximately 0.3. 

2. Model of building blocks 

The cell’s membrane unit can be modeled as a RC  circuit and a primary current 

source, all in parallel (Figure 12). R  and C  stand for the membrane resistance and 

capacitance. In the frequency domain, an equivalent complex resistance of the circuit is 

defined as 
*

1

R
R

j



, where RC  represents the membrane time constant. 
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A: Model of the integrator 

The integrator (Figure 1-A2 and B2) represents a device that possesses many 

branches with heterogeneous impedances and that receives a huge amount of 

inputs and produces a single output (i.e. a voltage difference). The integrator is 

useful to represent dendritic branches. This output is used as input in another 

electrotonic device. According to actual morphometry of dendritic trees (Larkman, 

1991a, 1991b, 1991c), the integrator might comprise intermediate and terminal 

branches. We consider a model of the integrator composed mainly by a set of 

intermediate branches. 

In order to determine the dynamic equations for the membrane potentials in 

each branch of the integrator, as well as in its last compartment, we use the 

Kirchhoff's laws. The equivalent circuit for this electrotonic device is shown in 

Figure 2-A, and the following equations can be easily obtained: 

1 1 1 1 10 0ei e inje ei e inje

T T T A A A A AV R I R I R I R I V           (A:a1) 

2 2 2 2 20 0ei e inje ei e inje

T T T A A A A AV R I R I R I R I V          (A:a2) 
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Where 
ei e iR R R    ,  , kT A  . 

The supra indexes ―e‖ and ―i‖ hold for the extracellular and intracellular spaces. 

kA
I  stands for a current entering the k th branch of the integrator. 

k

inje

AI  stands for 

an extracellular injection current at the extracellular resistance of the k th branch 

of the integrator. 
inje

TI  stands for an extracellular injection current at the 

extracellular resistance of the last compartment of the integrator. 

The expression of current I  is obtained by dividing each A:ak th equation by 

k

ei

A
R  and summing all of them as follows: 

0

1 1 1 1
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   (A:b1) 

By plugging Eq. (A:b1) into the A:ak th equation enable us to determine the 

electric current flowing into a k th branch of the integrator as follows: 

0
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 (A:b2) 

Hence, coupling Eq. (A:b2) with the ones below: 

* *

k k k kA A A AV E R I         (A:b3) 

*

k k k

I

A A AE R I ,       (A:b4) 

enable us to obtain an equation to describe the change in the membrane 

potential in each of the branches of the integrator: 
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From Eqs. (A:aM+2) and (A:aM+4), the following expressions of the electric 

currents are obtained: 
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The equation describing the dynamics of the membrane potential in the last 

compartment of the integrator is obtained by inserting Eqs. (A:b7) and (A:b8) into 

Eq. (A:aM+3). Thus, we have: 
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B: Model of the propagator 

The propagator (Figure 1-A2) refers to an electrotonic device along which an 

AP can propagate. Since the morphometry happens to be non-uniform within a 

compartment of the propagator, we assume that all compartments can be divided 

into two sub-compartments (upper and lower parts). Thus, by applying the 

Kirchhoff ’s voltage law for all meshes of the propagator’s equivalent electrical 
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circuit (Figure 2-B), the following equations are obtained: 

1 1 1 1 1 1 10 0Ue Ue Ue inje Ui Ui

T T T T T T TV V R I R I R I          (B:a1) 

1 2 1 1 1 1 2 2 2 2 2 2
0Le Le Li Li Ue Ue Ue inje Ui Ui

T T T T T T T T T T T TV V R I R I R I R I R I          (B:a2) 

2 3 2 2 2 2 3 3 3 3 3 3
0Le Le Li Li Ue Ue Ue inje Ui Ui

T T T T T T T T T T T TV V R I R I R I R I R I          (B:a3) 

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

 

1 1 1 1 1
0

k k k k k k k k k k k k

Le Le Li Li Ue Ue Ue inje Ui Ui

T T T T T T T T T T T TV V R I R I R I R I R I
    

         (B:ak) 

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

 

1 1 1 1 1
0

N N N N N N N N N N N N

Le Le Li Li Ue Ue Ue inje Ui Ui

T T T T T T T T T T T TV V R I R I R I R I R I
    

         (B:aN-1) 

1
0

N N N N N N N N

Le Le Le inje Li Li

T T T T T T T TV V R I R I R I


          (B:aN) 

By applying Kirchhoff ’s current law, the following node equations [Eqs. (B:a1) – 

(B:aN)]: 

1k k

Li Ui

T TI I


         (B:aN+1) 

1k k

Le Ue

T TI I


         (B:aN+2) 

1 1

Ue Ui

T TI I         (B:aN+3) 

2 2

Ue Ui

T TI I         (B:aN+4) 

2 2 1 1

Ui Ue Ui

T T T TI I I I         (B:aN+5) 

3 3 1 1 2
( )Ui Ue Ui

T T T T TI I I I I          (B:aN+6) 

4 4 1 1 2 3
( )Ui Ue Ui

T T T T T TI I I I I I          (B:aN+7) 
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         (B:aN+8) 
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    ,     (B:aN+9) 

can be rewritten as follows: 

1 1 1 1 10( ) 0Uei Ui Ue inje

T T T T TV V R I R I          (B:b1) 

1 1
( ) ( ) 0

k k k k k k k

Uei Ui Ue inje

T T T T T T TV V R R I R I
 

          (B:b2) 

1
( ) 0

N N N N N N N N

Ui Lei Le inje

T T T T T T T TV V R I R I R I


         (B:b3) 

Where 
k k k

Xei Xe Xi

T T TR R R  ,  ,X L U . 

The supra indexes ―e‖ and ―i‖ hold for the extracellular and intracellular spaces. 

The supra indexes ―U‖ and ―L‖ hold for the upper part and lower part of every 

compartment of the propagator. 
k

inje

TI  stands for an extracellular injection current 

at the extracellular resistance of the T th compartment of the propagator. From the 

above equations, expressions of the currents flowing into particular resistances of 

the propagator are given as follows: 

1 1

1 1

1 1

0

Ue

T TUi inje

T TUei Uei

T T

V V R
I I

R R


        (B:b4) 

1 2 1 2 1

1 2 1

1 1 2 1 2 1

0

Ue Ue

T T T T Tinje inje

T T TUei Lei Uei Lei Uei Uei

T T T T T T

V V V V R R
I I I

R R R R R R
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1 1 1

1

1 1 1 1

k k k k k k

k k k

k k k k k k k k

Ue Ue

T T T T T Tinje inje

T T TLei Uei Lei Uei Lei Uei Lei Uei

T T T T T T T T

V V V V R R
I I I

R R R R R R R R
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1 1

1

1 1

N N N N N N

N N N

N N N N N N

Le Ue

T T T T T Tinje inje

T T TLei Uei Lei Lei Lei Uei

T T T T T T

V V V V R R
I I I

R R R R R R
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T T TLi inje
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I I

R R






       (B:b8) 

The expression of electric voltage through the membrane in the k th 

compartment is defined as follows: 

* *

k k k kT T T TV E R I         (B:b9) 

After some algebraic manipulations, Eqs. (B:b4) – (B:b9) enable us to find the 

final expressions for the membrane potentials at all compartments of the 

propagator: 

1 1 1 1 1

1 1 1 2 1

1 1 1 2 1 2

0

1
1

T T T T TI

T T T T EXTRAUei Uei Lei Uei Lei Uei

m T T T T T T

dV R R R R
R I V V V V

dt R R R R R R

  
        

     

  (B:b10) 

2 1

1 1 2 1

1 2 1

Ue Ue

T Tinje inje

EXTRA T T TLei Uei Uei

T T T

R R
V R I I

R R R
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1 1

1 1 1 1

1
1k k k k k

k k k k kk

k k k k k k k k

T T T T TI

T T T T T EXTRALei Uei Lei Uei Lei Uei Lei Uei

m T T T T T T T T

dV R R R R
R I V V V V

dt R R R R R R R R  
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k k k k

Ue Ue

T Tinje inje

EXTRA T T TLei Uei Lei Uei

T T T T

R R
V R I I
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2 1k N     

1 1
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1
1N N N N N

N N N N N N

N N N N N N

T T T T TI

T T T T T EXTRALei Uei Lei Uei Lei Lei
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R I V V V V

dt R R R R R R  
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Le Ue
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EXTRA T T TLei Lei Uei

T T T
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C: Model of the 3D-connector 

The 3D-connector (Figure 1-A1) refers to an electrotonic device that links three 

particular building blocks to simulate a point of branch bifurcations. Every branch of 

the 3D-connector receives and generates both input and output electric potentials. 

Without losing generality, we will assume that the 3D-connector contains two inputs 

and one single output. By applying the Kirchhoff ’s laws within all meshes of the 

3D-connector’s equivalent electrical circuit (Figure 2-C), the following equations are 

obtained: 

1 1 1 1 1 0I ei I e inje

MV R I R I V           (C:a1) 

2 2 2 2 2 0I ei I e inje

MV R I R I V           (C:a2) 

0O ei I e inje

O O O O MV R I R I V           (C:a3) 

1 2

I I I

M OI I I I          (C:a4) 

* * 0M M M MV R I E           (C:a5) 

* * I

M M ME R I         (C:a6) 

Where 
ei e iR R R    ,  0,1,2  . 

The supra indexes ―e‖ and ―i‖ hold for the extracellular and intracellular spaces. 

II  stands for a current entering the three branches of the integrator. 
injeI  stands 

for an extracellular injection current at the extracellular resistance of the three 

branches of the 3D-connector. From the above equations, expressions of currents 

flowing into the extra/intra cellular resistances of the 3D connector are given as 

follows: 

1 1 1
1

1

I e inje
I M

ei

V V R I
I

R

 
        (C:a7) 

2 2 2
2

2

I e inje
I M

ei

V V R I
I

R

 
        (C:a8) 
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O e inje
I M O O
O ei

O

V V R I
I

R

 
        (C:a9) 

From the above equations, we obtained an equation which describes the changes 

in the membrane potential in the 3D-connector: 

1 2

1 2 1 2

1
(1 )I I I OM M M M M M M

M M M EXTRAei ei ei ei ei ei

m O O

dV R R R R R R
R I V V V V V

dt R R R R R R

 
         

 
 (C:b1) 

1 1 2 2

1 2

e inje e inje e injeM M M
EXTRA O Oei ei ei

O

R R R
V R I R I R I

R R R
        (C:b2) 

D: Model of the collector 

The collector (Figure 1-A2 and B2) represents an electrotonic device that 

collects many inputs coming from other devices. Based on its equivalent electrical 

circuit, represented in the Figure 2-D, we were able to obtain the following 

equations: 

1 1 1 1 1
0ei e inje ei e inje

S S S S S S S S SV R I R I R I R I V          (D:a1) 

2 2 2 2 2
0ei e inje ei e inje

S S S S S S S S SV R I R I R I R I V          (D:a2) 

. . . . .

. . . . .

. . . . .

 

0
k k k k k

ei e inje ei e inje

S S S S S S S S SV R I R I R I R I V          (D:ak) 

. . . . .

. . . . .

. . . . .

 

0
M M M M M

ei e inje ei e inje

S S S S S S S S SV R I R I R I R I V         (D:aM) 

1
k

M

S

k

I I


         (D:aM+1) 

* * 0S S SV E R I          (D:aM+2) 
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* * 0
k k kS S k SV R I E         (D:aM+3) 

0
k k k k k

e e e inje i i

S T k T k T k TV R I R I R I V         (D:aM+4) 

k

e i

S k k k kI I I I I          (D:aM+5) 

Where ei e i

S S S
R R R  . 

kS
I  represents currents that flow into a branch of the collector. The supra 

indexes ―e‖ and ―i‖ hold for the extracellular and intracellular spaces. 
k

inje

SI  stands 

for an extracellular injection current at the extracellular resistance of the k th 

branch of the collector. 
inje

SI  stands for an extracellular injection current at the 

extracellular resistance of the soma compartment of the collector. After dividing 

each k th equation by 
k

ei

S
R  and summing up all equations, the following expression 

of the electric current could be obtained: 

1 1 1 1

1

1 1

1
1
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k k k k
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inje eM M M M
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S S Sei ei ei ei
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   (D:b1) 

From Eqs. (D:aM+2) and (D:b1), the dynamics of the membrane potential in 

the collector are governed by the equation below: 
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The following expressions of currents are obtained from Eqs. (D:aM+2), 

(D:aM+3), (D:aM+4), (D:aM+5) and (D:ak): 

*

*

k k k k

k

k

e inje

S S T S T k

S ei

S T

E V V V R I
I

R R

  
       (D:b4) 

After inserting Eq. (D:b4) into the D:bk th equation and some algebraic 

calculations, the dynamics of membrane potential at the k th entrance of the 

collector is governed by the following equation: 

1

1 1

1
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1 1
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Here, 
k k k

I S i

S S S
I I I   represents the sum of the synaptic and ionic currents. 

3. Model of the LFP 

The equivalent equations for every electrotonic device have already been 

obtained in the ―Model of building blocks‖ part (appendix 2); therefore, we only used 

henceforth the ―B: Model of the propagator‖ to exemplify how to create a model of 

LFP. A similar analysis can be applied to obtain the LFP generated by other types of 

electrotonic devices. The LFP are defined for the situation of a zero extracellular 

stimulation; hence, the injection current at the ECS in the equations of propagator 

were ignored. 

In the Figure 4, e

iR  shows the i th resistance of the ECS which is in between 

the i th and i+1 th compartment, 
iU  shows the voltage difference at the resistance 

e

iR . The LFP is calculated by the equation e

i i iU R I . Therefore, we just need to 

deduct the equations of extracellular currents 
iI . In the case of the propagator, the 

extracellular currents 
iI  along the compartment are defined by the Eqs. (B:aN+1) 

– (B:aN+9). Eqs. (B:b4) – (B:b8) defined the membrane currents in the 

compartments, so we can get the extracellular currents 
iI  at the compartment by 

the following equations: 
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Therefore, the LFP can be defined from the extracellular potentials: 

 
1k k k k

Ue Ue Le Ue

T T T TU I R R
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Figure and table legends 

Figure 1. The general multi-compartmental model for neurons 

A1 – The morphometry of a PCL5 neuron. A2 – The devices of the model of PCL5 

neurons. B1 – The morphometry of a spiny stellate neuron. B2 – The devices of the 

model of spiny stellate neurons. In A2 and B2, the letters I, P, 3D and C denote 

integrator, propagator, 3D-connector, and collector, respectively. The integrator is 

defined as a device that possesses many tuft branches with heterogeneous impedances, 

receives a huge amount of input voltages, and produces a single output voltage in the 

last compartment of the integrator which is used as the input into another building 

block. The propagator refers to a device which propagates APs. The propagator is 

composed of several compartments which are, in principle, non-uniform. 3D-connector is 

useful to connect three other different electrotonic devices. The collector represents the 

device that collects different inputs. Figure 1-B1 has been modified from da Costa & 

Martin (2011). 

Figure 2. The equivalent electrical circuits of the general multi-compartmental model 

The equivalent electrical circuits for A: the integrator, B: the propagator, C: the 

3D-connector, and D: the collector. The French grey rectangle shows the resistance of 

the ICS, the Oxford grey rectangle shows the resistance of the ECS and the dark black 

rectangle shows the membrane resistance. The electromotive forces are caused by the 

ionic currents across the membrane. A – The electrical circuit of integrator contains two 

parts: the first part possesses many tufted branches with heterogeneous impedances 

and receives a huge amount of inputs, and the second part produces a single output 

voltage in the last compartment of the integrator to be used as input in another device. 

B – The electrical circuit of the propagator. The two inputs to this device can come from 

any other electrotonic devices. The electrical circuit of the propagator is composed of 

several compartments and all compartments have been divided into two parts: the 

upper part and the lower part. C – The electrical circuit of the 3D-connector, a device 

that serve to connect three other electrotonic devices. D – The electrical circuit of the 

collector, a device that collects several inputs which results from the outputs of other 

electrotonic devices. The mathematics equations that describe the dynamics of electric 

potentials in these devices are shown in Appendix-2 (integrator – A, propagator –B, 

3D-connector – C, and D – collector). 
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Figure 3. A simple model for AP back-propagation in PCL5 

Left: A simple model of PCL5 comprising an integrator with a single branch, a 

propagator made of ten compartments, and a collector which has a single input from the 

propagator. Right: A – The propagator of the PCL5 neuron has ten regions of interest 

(ROI), named compartments. B1 – Every compartment of the propagator was 

approximated by a slender body with a particular diameter and length. B2 – The 

collector was approximated by a sphere with a particular diameter. 

Figure 4. The LFP generated by the PCL5 

A –The strategy used to simulate the LFP for our PCL5 model. LFP signals were 

represented as the electric potential differences respect to a common reference electrode 

near the distal trunk in the ECS. The voltage drops on the ECS resistances were used to 

represent the LFP at each electrode. e

iR  stands for the i th resistance of the ECS, 

which is between the i th and i+1 th compartment, 
iU  stands for the voltage across 

resistance e

iR . B – A detailed diagram of the equivalent electric circuit. 

Figure 5. A model for the extracellular current injection 

A – The original electric circuit containing the resistances of the ECS. B – An 

extracellular current injection source in parallel with resistance of the ECS. C – The 

equivalent circuit in the frequency domain. 

Figure 6. A train of APs from a somatic intracellular stimulation 

The propagation of an AP train from the soma to the distal trunk is shown for the cases 

of zero (top) and nonzero (bottom) ECS resistance. We injected a 200 pA current into the 

soma from 0 ms to 150 ms. The amplitude of the first AP in both panels was larger than 

the amplitude of any other subsequent APs. The amplitudes of APs in both cases, i.e. 

zero and nonzero ECS resistance, are almost the same. The frequency/rate of APs were 

large in the case of zero ECS resistance. 

Figure 7. The effects of the ECS resistance on a back-propagating AP 

Two singles APs recorded during the same time window but under different situations 

(i.e. zero and nonzero ECS resistance) are compared. 

Figure 8. The amplitude decay and peak delay curves for back-propagating APs 

A – The experimental data of decay and delay curves for PCL5 APs, which were 
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digitalized from the original figures in three previous studies (Stuart and Sakmann, 

1994; Gulledge and Stuart, 2003; Bar-Yehuda et al., 2008). We averaged the data to 

obtain the most likelihood values for the decay and delays curves (continuous lines). In 

order to obtain values for distant sites from the soma, we extended that averaged data 

by a lineal interpolation method (dashed lines). B – A comparison of the decay and delay 

curves for the two simulated APs with the averaged data. 

Figure 9. The LFP and CSD analysis 

The back-propagating membrane potentials through all compartment of the propagator 

of the PCL5 are shown on the top-left panel. The particular injection protocol (square 

pulse current of 200 pA into the soma for a duration of 5 ms) caused this neuron type to 

generate a single AP. The LFP generated by such a back-propagating AP (top-right). A 

color panel with the spatiotemporal CSD pattern (bottom-left), which was calculated 

from the LFPs using the iCSD method. This pattern was very close to those observed 

experimentally by Bereshpolova et al. (2007). The time series with the multipolar 

moments are shown on the bottom-right, i.e. the monopoles, the dipoles and the 

quadrupoles. 

Figure 10. The membrane potentials caused by the current injection in the ECS 

Four positions (soma and proximal/middle/distal trunk) were chosen to illustrate the 

neuronal response to current injection in the ECS. The amplitude of the injected current 

was adjusted at all four locations to keep a similar firing frequency/rate. 

Figure 11. The spatial profile for the current injection 

The exponential-like relationship between the required amplitudes for the current 

injection to produce a same output pattern in this type of neuron along the PCL5 trunk. 

Figure 12. The RC circuit 

The original electric circuit (left) for the cell’s membrane is shown on the left, it is 

constituted by a RC circuit in parallel with a membrane current source. The symbols 

mR  and C  stand for the membrane resistance and capacitance, respectively. In the 

frequency domain configuration, an equivalent complex resistance of the circuit is 

defined as 
*

1

m
m

R
R

j



, where mR C   represents the membrane time constant. In 

the frequency domain, such an electric circuit is equivalent to a parallel circuit with a 
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current source and a complex resistance (middle). By means of the Thevenin equivalent 

theorem, the parallel circuit with a current source and a resistance can be transformed 

into a serial circuit with a electromotive force and a resistance (right). 

Table 1. The geometrical parameters of the PCL5 

The statistics were performed from sixteen PCsL5 with different lengths and diameters. 

The mean values and standard deviations (SD) of the geometrical parameters for all 

compartments of the integrator, propagator, and collector are shown. 
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Figure 1 
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Figure 2-A 
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Figure 2-B 
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Figure 2-C 
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Figure 2-D 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 7 
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Figure 8 
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Figure 10 
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Figure 11 
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Figure 12 
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Table 1 

Integrator 
Length 

MEAN±SD(μm) 
Diameter 

MEAN±SD(μm) 
Branch 1 205.89±25.00 1.26±0.05 

Last Compartment 2.48±0.61 2.48±0.61 

Propagator 
Length 

MEAN±SD(μm) 
Diameter 

MEAN±SD(μm) 
Compartment 10 79.64±4.99 2.76±0.25 
Compartment 9 60.47±7.68 2.69±0.55 
Compartment 8 62.05±5.71 2.80±0.48 
Compartment 7 61.66±8.69 2.71±0.38 
Compartment 6 63.29±7.01 2.91±0.47 
Compartment 5 62.51±7.44 3.01±0.79 
Compartment 4 61.43±8.69 2.99±0.45 
Compartment 3 61.93±6.68 3.05±0.45 
Compartment 2 61.47±5.12 3.33±0.20 
Compartment 1 60.66±9.06 4.34±0.46 

  
Diameter 

MEAN±SD(μm) 

Collector  13.40±1.40 

 

 

 


