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Spike sequences recorded from four cortical areas of an awake behav-
ing monkey were examined to explore characteristics that vary among
neurons. We found that a measure of the local variation of interspike
intervals, LV , is nearly the same for every spike sequence for any given
neuron, while it varies significantly among neurons. The distributions of
LV values for neuron ensembles in three of the four areas were found to
be distinctly bimodal. Two groups of neurons classified according to the
spiking irregularity exhibit different responses to the same stimulus. This
suggests that neurons in each area can be classified into different groups
possessing unique spiking statistics and corresponding functional prop-
erties.

1 Introduction

The basic problem of understanding the mechanisms that govern the work-
ing of the brain will ultimately be solved by elucidating the causal rela-
tion between anatomical circuitry and physiological function. In addition
to general information regarding the nature of a neuron’s temporal activity,
more specific information that identifies the type and location of the neuron
would be useful in elucidating this relation.

With the idea of obtaining such specific information, we can consider the
information provided by a recorded spike sequence to be of three types.
The first type of information is represented by the gross spike rate. It is
known that the firing rate of an interneuron is significantly higher than that
of a pyramidal neuron (Ranck, 1973; Buzsaki, Leung, & Vanderwolf, 1983).
The second type is constituted by the fine waveform of the action potential.
It has been found that there is a significant difference between the action
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potential waveforms of interneurons and pyramidal neurons (Csicsvari,
Hirase, Czurko, & Buzsaki, 1998; Constantinidis, Williams, & Goldman-
Rakic, 2002). The third type consists of the spiking patterns contained in the
set of consecutive interspike intervals (ISIs). We suggest in this letter that a
more detailed classification of neurons can be realized through a statistical
analysis of neuronal spiking characteristics.

In a previous study, we computed the coefficient of variation, CV , the
skewness coefficient, and the correlation coefficient of consecutive inter-
vals of spike sequences and found that their distributions depend strongly
on the recording site (Shinomoto, Sakai, & Funahashi, 1999; Sakai, Fu-
nahashi, & Shinomoto, 1999; Shinomoto, Shima, & Tanji, 2002). Even for
spike rates differing by as much as a factor of three, the distributions of
these dimensionless coefficients derived from data recorded from the same
area (of different monkeys in different laboratories) exhibit strong simi-
larities. It is thus seen that the distribution of these statistical coefficients
is determined by the recording site. But the values of these coefficients
observed for a single neuron were found to vary significantly in time.
For this reason, these coefficients are not useful for the classification of
individual neurons.

Here, we introduce another measure, the local variation of interspike
intervals, LV , which reflects the spiking characteristics intrinsic to individual
neurons. It is found that different groups of neurons classified according to
LV values exhibit different characteristic responses, which we term tonic and
phasic, to the same stimulus, with a distinct time difference between their
response latencies. This kind of classification scheme should provide useful
information concerning the type and the intra-areal location of neurons.

2 Statistical Measures CV and LV

Neuronal spike sequences recorded from the presupplementary motor area
(pre-SMA: area 6), the supplementary motor area (SMA: area 6), the rostral
cingulate motor area (CMAr: area 24), and the prefrontal cortical area (PF:
area 46) of a monkey performing a waiting period task designed by Shima,
Sawamura and Tanji (2001) were examined to determine if we can identify
statistical characteristics useful in the classification of neurons. The details
of the waiting period task are summarized in appendix A.

From each spike sequence recorded from a neuron, 100 consecutive ISIs
were selected, and from these, values of the CV and the measure of local
variation of the interspike intervals, LV , were computed. The conventional
CV is defined as

CV =
√√√√ 1

n − 1

n∑
i=1

(Ti − T)2

/
T , (2.1)
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where Ti is the duration of the ith ISI, n is the number of ISIs (in this study
n = 100), and T = 1

n

∑n
i=1 Ti is the mean ISI.

The measure of local variation we introduce here is defined as

LV = 1
n − 1

n−1∑
i=1

3(Ti − Ti+1)
2

(Ti + Ti+1)2 , (2.2)

in which the summand is proportional to the square of the individual terms
of CV2, which was introduced by Holt, Softky, Koch, and Douglas (1996)
for the purpose of comparing the temporal ISI randomness of neurons in
vitro and in vivo. The factor 3 is taken so that for the Poisson (random) ISI
sequence, the expectation value of LV becomes 1. The expectation values
of LV and CV for the more general gamma processes are summarized in
appendix B.

Both CV and LV vanish for a regular ISI sequence in which Ti is constant,
and both are expected to be near 1 for a sufficiently long Poisson ISI se-
quence. The LV measure reflects the stepwise variability of a spike sequence
and is expected to effectively extract the spiking characteristics intrinsic
to individual neurons, even for cases in which the spike rate is externally
modulated. For a spike sequence that is locally quasi-regular but globally
modulated, LV assumes a small value, while CV assumes a large value. The
simple correlation between consecutive ISIs is not as efficient as LV for the
purpose of extracting intrinsic characteristics. The mean value of CV2 has
properties similar to those of LV . However, here we employ LV because we
found that it elucidates differences among the degrees of intrinsic spiking
randomness of neurons more effectively than the other measures.

We also applied those statistical measures to the doubly stochastic pro-
cesses in which the spike rate of the Poisson process is temporally mod-
ulated according to the Ornstein-Uhlenbeck process (see, e.g., Shinomoto
& Tsubo, 2001) and confirmed that LV does not undergo a large change,
while CV undergoes a significant change according to the spike rate mod-
ulation. Tiesinga, Fellous, & Sejnowski (2002) showed that in vitro neurons
and leaky integrate-and-fire model neurons driven by fluctuating stimuli
do not produce Poisson spike trains; rather, the ISIs are correlated. The ex-
haustive examination of how such structures reflect to the LV values would
constitute another theoretical study. We would like to confine ourselves in
this study to the demonstration of the effectiveness of LV in classifying in
vivo neurons.

3 Classification of Neurons According to LV Values

The histograms of the CV and LV values obtained for the spike sequences
recorded from the four areas under consideration are plotted in Figure 1. It
is seen that each CV distribution has a long tail extending to the right and
possesses only a single peak. By contrast, the LV distributions are compact,
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Figure 1: Normalized histograms of the values of CV and LV for the four corti-
cal areas considered. While the CV distributions each exhibit only single peaks,
the LV histograms for the pre-SMA, SMA, and CMAr areas exhibit two dis-
tinct peaks. The dashed curves that overlay the LV histograms represent the
two-component gaussian mixture distributions fitted to the data. The centers
of the two components of the distribution determined by using the maximum
likelihood method in the pre-SMA, SMA, CMAr, and PF areas are, respectively,
{0.38, 0.78}, {0.37, 0.74}, {0.38, 0.89}, and {0.58, 0.83}.

and those for three of the four areas possess two distinct peaks. We fit
two-component gaussian mixture distributions to these LV data sets (see
appendix C). For the resulting fitted distributions, the peaks centered at
the larger value of LV for all four are positioned closely, while the peaks
centered at the smaller value of LV for three (those for the pre-SMA, SMA,
and CMAr) are positioned closely. In the pre-SMA, SMA, and CMAr of the
medial frontal cortex, the two peaks obtained in this fit are distinct and well
separated. This result suggests that the neurons in these areas can largely
be classified into two types: type A neurons, which generate irregular spike
sequences (with large values of LV), and type B neurons, which generate
quasi-regular spike sequences (with small values of LV).

In the classification scheme we employ, we use this two-component gaus-
sian fit, and with it we determine a cutoff value of LV that defines the clas-
sification boundary: all neurons for which the measured value is above and
below this boundary are classified, respectively, as type A and type B. Be-
cause of the qualitative difference in the data for the PF in comparison with
the other three areas, we consider these two cases separately. First, we con-
sider the pre-SMA, SMA, and CMAr in the medial frontal cortex (indicated
by MF in the figures). For simplicity, we use the same classification cutoff
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value of LV for each of these three areas, and for this reason, we combined
the data for all three and carried out the two-component gaussian fit (see
Figure 2A). The two components of the distribution obtained in this fit are
centered at 0.81 and 0.38, with weights 0.43 and 0.57, and have standard de-
viations 0.16 and 0.13. We assume that classification cutoff value θ is given
so as to minimize the total areas of the two gaussian tails that are on the
“wrong” sides, referenced to the cutoff θ . This is mathematically identical to
seeking the value of LV at which the two component distributions balance.
In our case, θ = 0.59, and with this value, the misclassification percentage
is 6.9% (see Figure 2B). This optimal cutoff determined through a compli-
cated procedure is very close to the simple midpoint of the centers of the
two components, (0.81 + 0.38)/2 = 0.60. It should be noted that the cut-
off value does not change greatly even if we determine it independently
for each of the three areas in the MF (in which case, θ = 0.58 for the pre-
SMA, 0.52 for the SMA, and 0.66 for the CMAr), and all the results given
below are altered very little in response to small changes of the cutoff value.
We evaluated the values of LV of 3506 sequences of 100 ISIs recorded from
83 neurons in these three areas of the medial frontal cortex. We define the
“true” value of LV for a given neuron by the average of LV obtained from
sequences recorded from the neuron. If the LV of an individual sequence
lies on the same side of the neuron’s mean LV as the “true” value, refer-
enced to the cutoff θ , this sequence is regarded as having yielded a correct
classification; if it lies on the opposite side, it is regarded as having yielded
an incorrect classification (see Figure 2C). The empirical misclassification
percentage evaluated in this manner was 9.7%. This means that the neurons
in these medial frontal cortical areas could be correctly classified into the
two types from spike sequences containing only 100 ISIs with a reliability
of greater than 90%.

Although the distribution of LV values for the PF area is not distinctly
bimodal, for the sake of comparison, we carried out the same procedure to
determine the classification boundary θ ′ for the PF data (see Figure 2D). In
this case, two components of the gaussian mixture distributions are centered
at 0.83 and 0.58, with weights 0.73 and 0.27 and standard deviations 0.14
and 0.09. The optimal cutoff value was found to be θ ′ = 0.66, and with
this, the misclassification percentage was 12.3% (see Figure 2E). For the PF
data, the optimal cutoff was slightly smaller than the simple midpoint of
the centers of the two components, (0.83 + 0.58)/2 = 0.71. However, the
results obtained from the cutoff classification were found to be insensitive
to this amount of change of the cutoff. With the cutoff value θ ′ = 0.66, we
counted the number of empirically defined misclassified sequences among
1672 sequences of 100 ISIs recorded from 28 neurons in the PF. The empirical
misclassification percentage for the PF data was 16.8%, larger than that for
the medial frontal cortex.

Individual components of these data-fitted mixture distributions have
standard deviations ranging from 0.09 to 0.16 (see Figure 2). In order to
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examine whether this amount of standard deviation could arise naturally
across different realizations of 100 ISIs, we performed a numerical simu-
lation to estimate the standard deviations of the LV values for the Poisson
process in which n event intervals are independently drawn from exponen-
tial distribution. The standard deviation of the LV values is found to scale
as 1/

√
n. In the case n = 100, the standard deviation is about 0.10. There is

some room to find the finer categorization scheme from the LV distribution
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Figure 2: Facing page. Categorization of ISI sequences. (A) Normalized histogram
of the values of LV for all 3506 sequences recorded from the pre-SMA, SMA, and
CMAr. (B) The two components of the gaussian mixture fit to the data are cen-
tered at 0.38 and 0.80. The classification cutoff θ = 0.59 minimizes the total area
of gaussian tails that are on the “wrong” side, and with it the misclassification
percentage is 6.9%. (C) Histograms of data classified according to neurons’ mean
values of LV . The empirical percentage of misclassified sequences (in which case,
a neuron’s mean value of LV is greater than θ , while the value of LV for individ-
ual sequence considered is less than θ , or vice versa) is 9.7% for θ = 0.59. (D)
Normalized histogram of the values of LV for 1672 sequences recorded from the
PF. (E) The two components of the gaussian mixture fit to the data are centered
at 0.58 and 0.83. The classification cutoff θ = 0.66 minimizes the total areas of
gaussian tails that are on the “wrong” side, and in this case, the misclassifica-
tion percentage is 12.3%. (F) Histograms of data classified according to neurons’
mean values of LV . The empirical percentage of misclassification is 16.8% for
θ = 0.66.

if much longer spike sequences are used, but for the 100 ISIs, the component
resolution level (0.09–0.16) we obtained is evaluated to be nearly optimal.

4 Correlation Between CV and LV

Here we wish to elucidate the relation between the CV and LV values com-
puted for a single sequence of 100 ISIs. The scattergrams of (CV, LV) values
computed for the three areas in the medial frontal cortex (MF) and for the
prefrontal cortex (PF) are depicted in Figures 3A and 3B. The correlation
coefficients for the MF and PF data are, respectively, r = 0.53 and r = −0.22,
both of which are statistically insignificant: knowledge of the CV value of a
sequence does not provide significant information concerning the LV value
of the same sequence. In Figures 3A and 3B, (CV, LV) points obtained from
sequences generated by the two types of neurons have different colors. It
is seen from these figures that the classical CV measure is ineffective for
the present cell-type classification. Typical spike sequences sampled from
type A and type B neurons in the MF and type A′ and type B′ neurons in the

Figure 3: Facing page. Scattergrams of (CV, LV) values each computed for single
sequences recorded from (A) the three areas in the medial frontal cortex, MF, and
(B) the prefrontal cortex, PF. The correlation coefficients of the distributions are,
respectively, r = 0.53 and r = −0.22, both statistically insignificant. The (CV, LV)

points for the sequences generated from type A (A′) and type B (B′) neurons are,
respectively, colored blue and red. Raster diagrams of 50 ISIs sampled from type
A (A′) and B (B′) neurons are also shown.
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PF are also depicted as raster diagrams for 50 ISIs in Figure 3. Note that 50
ISIs were used for the purpose of demonstration only, while all the analyses
were carried using 100 consecutive ISIs.

Any measure that does not vary significantly over the different spike
sequence taken from any given neuron in comparison with the variations
among the sequences taken from different neurons could be regarded as rep-
resenting a certain intrinsic property of the individual neurons. The stan-
dard deviations of the CV and LV values computed for all ISI sequences
recorded from all neurons are, respectively, 0.34 and 0.26, and the mean
standard deviations measured for individual neurons are, respectively, 0.20
and 0.10. The small deviations of LV values for individual neurons imply
that this measure is intrinsic to individual neurons.

To see the amount by which the measures CV and LV vary over time,
we plotted the scattergrams for a pair of CV values and a pair of LV values
evaluated for two spike sequences selected randomly from a single neuron
(see Figure 4). We find that the corresponding correlation coefficients r com-
puted for the four areas are also displayed in those figures. The values of CV
exhibit weak correlation (r = 0.49−0.59) for the pre-SMA, SMA, and CMAr
and very weak correlation (r = 0.27) for the PF. In contrasting, the values of
LV exhibit strong correlation (r = 0.78 − 0.85) for the pre-SMA, SMA, and
CMAr and moderate correlation for the PF (r = 0.59). Those strong corre-
lations of the LV values also indicate that the characteristic represented by
the value of LV is intrinsic to individual neurons.
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Figure 4: Scattergrams of the values of CV and the values of LV for two sequences
of 100 ISIs, each generated by the same neuron. The correlation coefficient is
denoted by r. Large r values of the LV scattergrams imply that the neuron always
exhibits similar values of LV .
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5 Event-Related Activity of Two Groups of Neurons

In the next step, we considered the possibility that neurons belonging to
type A and type B may exhibit different properties of activity in response
to external stimuli. For this reason, we examined neuronal responses to a
visual signal (a light-emitting diode, LED) used as an instruction signal in
the waiting period task considered here. As confirmed above, we were able
to carry out the classification with high reliability using only 100 ISIs, and
in this way, individual spike sequences were categorized as type A and
type B. In order to increase the reliability further, we also classified each
neuron according to the mean value of LV . Figure 5 represents the peri-
event population histograms aligned at the onset of the LED signal for the
classified groups of neurons in the four areas (see appendix D).

We first consider the pre-SMA (see Figure 5A). Among the four areas
studied, the pre-SMA is known to contain the largest concentration of neu-
rons that exhibit different levels of cue period activity strongly correlated
to the length of the waiting period (Shima et al., 2001). In the peri-event
population histogram of Figure 5A, neurons in the pre-SMA exhibit clear
and distinct responses to the cue LED. The group of type A neurons in
this area reach the activity level of tonic firing within 200 to 300 msec after
the light is turned on and sustain this activity throughout 2000 msec and
even after the light is turned off at 2000 msec. By contrast, the mean activity
of type B neurons in this area is (relatively) phasic, reaching a maximum
within 150 to 200 msec after the light is turned on and then beginning to
relax after 500 to 600 msec while the light remains on. It is notable that there
is a significant time difference between the latencies of the responses of the
two groups. We fitted piecewise linear functions to the type A and type B
data by means of the maximum likelihood method to determine the transi-
tion times over which the spike rate starts to change (see appendix E). With
these, the time difference of the response latencies was determined to be 88
msec (see Figure 6A). It is also seen from Figures 6B through 6E that the
response latencies of type A and type B neurons do not change owing to
the choice of the waiting period. It may not be possible to account for this
large time difference between the latencies in terms of the characteristics of
single neurons, and therefore it may be the case that these two groups of
neurons are receiving different signals.

We next consider the SMA (see Figure 5B) and CMAr (see Figure 5C).
Though the LV distributions of the SMA and CMAr are in some sense sim-
ilar to that of the pre-SMA, they are functionally different. For the waiting
period task, Shima et al. (2001) observed that few neurons in these areas ex-
hibit statistically significant dependence of cue period activity on the length
of the waiting period. As seen in the peri-event population histograms, nei-
ther the SMA nor CMAr exhibits prominent responses to the cue LED. It is
interesting that in the SMA, type A and type B groups exhibit distinctly dif-
ferent time evolutions. This also suggests that these two groups of neurons
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Figure 5: Population histograms aligned at the onset of the visual stimulus
(LED). (A) Neurons in the pre-SMA exhibit a prominent response to the cue
LED. Type A neurons gradually approach the tonic level and sustain this activity
even 2000 msec after the LED is turned off. By contrast, the mean activity of type
B neurons is relatively quickly appearing and phasic (gradually decaying). The
time difference between the latencies of type B and type A neurons implies that
they receive different signals and have different functional roles. (B, C) Neurons
in the SMA and CMAr do not exhibit prominent responses to the LED stimulus
for the task. (D) In the PF, although the LV distribution is not distinctly bimodal,
type A′ and type B′ neurons exhibit distinctly different types of time evolution.
Some type A′ neurons exhibit quickly appearing and quickly decaying responses
to the onset of the light signal. After this transient response has ceased, type A′

neurons maintain tonic levels of firing even after the LED is turned off. By
contrast, the mean activity of type B′ neurons is phasic.

act in different ways. However, the role of this area in the waiting pe-
riod task is unknown. In the CMAr, the two groups exhibit different mean
spike rates, but neither exhibits a prominent response in task considered
here. The functional difference between type A and type B neurons can-
not be investigated in the absence of prominent temporal change. In other
words, these areas are irrelevant to the task considered here. It is there-
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Figure 6: (A) Piecewise linear functions fitted to the time evolutions of the spike
rates of type A and type B groups of neurons in the pre-SMA. In this figure, peri-
event time histograms are plotted with a bin size of 20 msec. The transition times
over which the spike rates start to change are estimated as 131 ± 14 msec and
43 ± 14 msec at a significance level of 0.05 for type A and type B groups of
neurons, respectively. (B–E) Type A and type B data subclassified according to
the waiting period 8 and 4 sec. The transition times are estimated as 46 ± 15
msec for the type B sequences with the waiting period of 8 sec, 40 ± 27 msec for
type B of 4 sec, 134±22 msec for type A of 8 sec, and 120±31 msec for type A of
4 sec. The latencies do not change according to the choice of the waiting period,
while those of type A data and type B data are kept mutually distinguishable.

fore desirable to study other tasks in which the areas exhibit prominent
responses.

Finally, we consider the PF (see Figure 5D). Few neurons in this area
exhibit statistically significant dependence of cue period mean activity on
the length of the waiting period. However, the neurons in the PF are found to
exhibit clear and distinct responses to the cue LED. We classified neurons for
which the mean value of LV is greater than θ = 0.59 as type A′ and otherwise
as type B′. The qualitative features of the following results obtained using
θ ′ = 0.66 are essentially the same as those obtained using θ ′ = 0.71, which
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is the simple midpoint of the positions of the two subdistributions. We
found that some type A′ neurons exhibit a quickly appearing and quickly
decaying transient in response to the onset of the light signal, with a latency
of about 50 msec. However, other than this transient response of some type
A′ neurons , the qualitative features of all type A′ and type B′ neurons in
the PF are similar to those of type A and type B neurons, respectively, in
the pre-SMA. Type A′ neurons sustain tonic activity throughout 2000 msec
and even after the light is turned off, and type B′ neurons exhibit phasic
response, and the activity begins to relax (after 200–300 msec in this case)
while the LED remains on. The increment of the mean spike rate of the type
A′ neurons, which is tonically sustained in the waiting period, is about 4 to
5 spikes per second, which is comparable to that of the type A neurons in
the pre-SMA.

Though the LV distributions in the pre-SMA and PF differ significantly,
neurons classified into groups according to whether LV > θ (or θ ′) or LV ≤ θ

(or θ ′) have common characteristics: type A and type A′ neurons (with large
LV) exhibit tonic activity, while type B and type B′ neurons (with small
LV) exhibit phasic responses. It is worthwhile to examine whether these
correspondences are observed in other areas also.

The time difference between the response latencies of the type A and
type B neurons in the pre-SMA and the difference between temporal ac-
tivity changes of type A′ and type B′ neurons in the PF suggest that the
classification scheme according to the LV measure is effective for detect-
ing the intra-areal information flow. It should be noted that the latencies
of the two or more groups of neurons could depend on the area, because
the response latencies are determined by the signal transmission channels
specific to each area. The distributions of LV values for the SMA and CMAr
are distinctly bimodal, but the neurons in those areas exhibit no prominent
responses to the waiting period task. They may exhibit prominent responses
in the other kind of tasks. Functional differences between groups of neurons
could be determined for the cases in which neurons are responsive.

6 Discussion

We have verified that the local variation, LV , represents a good measure for
categorizing neurons. In particular, the classification of neurons according
to their values of LV succeeds in separating them into groups possessing
distinct functional natures, as evidenced by our finding that neurons in
different groups exhibit different responses to external stimuli. Once the
cutoff value of LV is determined, the classification can be carried out as a
simple on-line process, in which the type of a neuron, type A or type B
(or type A′ or type B′), is determined from a single sequence of ISIs. We
propose that physiologists reexamine their experimental data with the use
of statistical quantities characterizing spike sequences, like LV , to classify
neuron types as a step toward opening a new avenue of investigation.
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The problem we now face is to determine how the spiking categories
correspond to neuroanatomical categories of the neurons. The most fun-
damental neuroanatomical categories are those of pyramidal neurons and
interneurons. One may therefore guess that these correspond to our types
A and B (or A′ and B′). However the type A and type B neurons we have
identified do not exhibit such large differences in spike rates as would be
expected for these neurons (except in the cases of the CMAr, in which there
was a certain difference). Presumably, the standard single glass-insulated
microelectrode rarely detects the depolarization signals of small interneu-
rons. Our types A and B may represent subclasses of the pyramidal neurons.
It is equally likely that the differences in the ISI characteristics are due to
the statistical characteristics of the input signals to the neurons.

By fitting two-component gaussian distributions to the LV data sets, we
found that the data obtained from the pre-SMA, SMA, and CMAr in the
medial frontal cortex MF are similar, and those obtained from the PF differ
significantly. It is interesting that the categorization of these areas according
to the shape of the LV distribution is the same as their cytoarchitectural clas-
sification, according to which the PF is called a “granular region,” while the
pre-SMA, SMA, and CMAr are called the “agranular regions” (Garey, 1999;
Parent, 1996). These cytoarchitectural terms are derived from the presence
and absence of a thick granular layer IV. It is unlikely, however, that the
spiking signals of granule cells play a major role in determining the shape
of the LV distribution, because for the LV distributions, the three agranu-
lar regions that do not contain many granule cells possess distinct peaks
centered at small values of LV ≈ 0.4, while that for the granular region PF,
which contains many granule cells, does not possess a distinct peak near the
same position. The neurons studied using the recording method are most
likely pyramidal neurons, which are mainly located in layers II, III and V. It
may be that the present classification into type A and type B for the MF (the
pre-SMA, SMA, and CMAr) and type A′ and type B′ for the PF corresponds
to different layer of neurons. It is desirable to examine this conjecture using
different kinds of experiments.

Appendix A: Waiting Period Task of Shima et al. (2001)

Here we review the waiting period task designed by Shima et al. (2001),
for which our analysis was applied. The task was performed by a monkey
(Macaca fuscata), which was cared for according to the NIH Guidelines for
the Care and Use of Laboratory Animals. This task consists of consecutive
blocks of five to seven repeated trials. Each trial starts when the monkey
presses a key. After the monkey has pressed the key for 1 to 2 sec, one of three
colored LEDs illuminates for 2 sec. In order to complete a trial successfully,
the monkey is required to continue pressing the key for an interval longer
than some predetermined period of 2, 4, or 8 sec (including the time that
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the LED is on). This predetermined period is the same for all trials within
a given block and is uniquely determined by the combination of the color
of the LED illuminated for 2 sec at the beginning of each trial in question
(which is the same for all the trials in the same block) and whether there was
simultaneous illumination of three LEDs at the beginning of the block of
trials. The monkey is rewarded with a drop of juice after every successfully
completed trial. If the monkey fails (it releases the key before the end of
the assigned period), it is not rewarded, and the same trial is repeated. The
minimum number of trials repeated in each block is five, but in certain cases,
the number of trials became six or seven due to the monkey’s failure. The
entire experiment consists of repeated blocks of five to seven trials, with the
waiting time for each block chosen randomly.

Neuronal activity was recorded from the pre-SMA, SMA, CMAr, and
PF areas while the animal was performing the trained task (Shima & Tanji,
2000). Extracellular recordings of single-cell discharges were made using a
standard technique of transdural recording (Evarts, 1968). Glass-insulated
Elgiloy-alloy microelectrodes, with impedances of 1.5 to 3 M� (measured
at 1 KHz) were used. Single-cell discharges were collected using a window
discriminator that produced a pulse for each valid spike that met both am-
plitude and time constraints (Bak & Scmidt, 1977). Extreme care was taken
to sort out spikes belonging to a single cell, avoiding spurious contamina-
tion of spikes from other cells. This was confirmed by real-time, high-speed
monitoring of neuronal spikes on a computer display, which were triggered
by each sorted pulses.

The pre-SMA, SMA, and CMAr are higher-order motor areas in the me-
dial frontal cortex involved in guiding motor behavior (Tanji, 1996), while
the PF is believed to play a major role in behavioral supervision, problem
solving, and short-term memory (Fuster, 1997). A number of neurons in each
of the areas studied were found to continue to display high levels of activ-
ity during waiting periods. In computing statistical measures, we set the
standard for the number of ISIs as 100; sequences containing fewer than 100
spikes were dismissed. In the analysis, we ignored all data taken from trials
with a 2 sec waiting period, in which 100 ISIs were rarely found. For each 4 or
8 sec waiting period considered, if the total number of spikes exceeded 100,
we selected the centrally located 100 consecutive ISIs to compute the statis-
tical measures of interest. The numbers of independent neurons recorded
in the pre-SMA, SMA, CMAr, and PF are, respectively, 42, 36, 35, and 28,
and the numbers of sequences of 100 consecutive ISIs obtained in total for
each of these areas are, respectively, 1485, 1132, 889, and 1672.

Appendix B: Expectation Values of LV and CV for the Gamma Processes

We first show that the LV defined in equation 2.2 is expected to be 1 for the
Poisson ISI sequence, in which Ti and Ti+1 are drawn independently from
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the exponential distribution function,

p(T) = a exp(−aT). (B.1)

The expectation value of

3
(Ti − Ti+1)

2

(Ti + Ti+1)2 (B.2)

for the Poisson process is given as∫ ∞

0
dt1

∫ ∞

0
dt2 3

(t1 − t2)
2

(t1 + t2)2 exp(−t1 − t2) . (B.3)

This integration can be carried out with the transformation from {t1, t2} to
{x, y} = {(t1 + t2)/2, (t1 − t2)} as∫ ∞

0
dx

∫ 2x

−2x
dy 3

y2

(2x)2 exp(−2x) = 1. (B.4)

Next, we would like to compute the expectation values of LV and CV for
a more general renewal process such as represented by the gamma distri-
bution of ISIs,

pz(T) = azTz−1 exp(−aT)/	(z), (B.5)

where 	(z) is the gamma function,

	(z) =
∫ ∞

0
dt tz−1 exp(−t). (B.6)

The gamma distribution for the natural number z corresponds to the
accumulated Poisson process, in which the neuron generates spikes when
the number of incoming Poisson (random) inputs reaches z. The original
Poisson process corresponds to z = 1. The expectation value of LV for the
gamma distribution of the general order z can also be obtained analytically
by means of the same transformation,

〈LV〉 = 3
2z + 1

, (B.7)

where < . . . > represents the average operation with respect to the given
distribution. The expectation value of CV is easily computed for the gamma
distribution,

〈CV〉 = 1√
z
. (B.8)

We summarize in Figure 7 how the expectation values of CV and LV
change according to the order z of the gamma distribution functions.
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z=1
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1

0
0

CV

LV

z=2

z=3
z=4
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(Poisson)

Figure 7: The expectation values of LV and CV for the gamma processes repre-
sented by the family of distribution functions pz(T) = azTz−1 exp(−aT)/	(z).

Appendix C: Gaussian Mixture Distribution

We fit two-component gaussian mixture distributions to the LV values of
the data sets for each area to determine the distribution characteristics. The
m-component gaussian mixture distribution is defined as

p(x) =
m∑

k=1

wkN(x|µk, σ
2
k ), (C.1)

where N(x|µ, σ 2) is the gaussian (normal) distribution of mean µ and vari-
ance σ 2, and wk(> 0) is the weight of the kth component distribution, with∑m

k=1 wk = 1. This distribution is fitted to a data set {x1, x2, · · · , xP} by locally
maximizing the log likelihood,

 =
P∑

j=1

ln p(xj), (C.2)

with respect to all wk, µk, and σ 2
k . The theoretical reason that we used two-

component distributions (m = 2) is explained in the following.
If we wish to compare distribution functions with different numbers

of parameters, the goodness of the fit represented by the log-likelihood
 is not sufficient. In the standard model selection criterion, the Akaike
Information Criterion, a model distribution is penalized according to the
number of parameters p it possesses (Akaike, 1974). More precisely, a model
that maximizes the value

AIC = 2 − 2p (C.3)
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is considered to best represent the statistical structure of the data. However,
it was found that this powerful criterion is not directly applicable to the
mixture model cluster analysis due to the structural degeneracy existing in
the parameter space of the mixture distribution (Lindsay, 1995; Bozdogan
& Sclove, 1984). It has been proposed that the AIC should be modified by
multiplying the penalty by a factor of 3/2, and therefore considering the
quantity

AIC′ = 2 − 3p, (C.4)

whose effectiveness has been tested for several examples (Bozdogan, 1992;
Banfield & Raftery, 1993). This modified rule may provide an appropriate
method of comparing mixture models with different numbers of compo-
nents. In the one-dimensional multicomponent gaussian distributions, a
distribution with m components would be considered superior to a distri-
bution of m − 1 components only if its log likelihood is larger by at least
3 × 3/2 = 4.5, because adding one more component implies adding three
parameters {wk, µk, σ

2
k }.

We fitted gaussian mixture distributions to the LV distributions of the
four areas. We found that the log likelihood of the two-component gaussian
mixture distribution is greater than that obtained with the one-component
gaussian distribution by 128.6, 63.2, 126.3, and 24.3, respectively, for the
pre-SMA, SMA, CMAr, and PF. These differences are much greater than 4.5,
and hence we conclude that in each case, the two-component distribution
is superior.

In changing from two components to three components, the log-likeli-
hood values increase by 19.7, 18.5, 25.5, and 0.2, respectively. According to
our criterion, this implies that for the first three areas, the three-component
distribution is superior. However, the data (approximately 1000 datum
points in total) are not completely independent, because they are taken
from a group of about 30 neurons, and for any given neuron, the spike se-
quences it generates all tend to have similar values of LV . In such a situation,
increasing the number of components may increase the sensitivity to the se-
lection of the actual neurons studied. In accord with this observation, we
found that the centers of the three components obtained for the fitted three-
component gaussian distribution differ significantly among three areas. For
this reason and because a single two-component distribution is able to fit
the data for the pre-SMA, SMA, and CMAr simultaneously, we employed
the two-component distribution.

Appendix D: Peri-Event Population Histograms

To study the possibility that neurons belonging to type A and type B (or type
A′ and type B′) may exhibit different types of activity in response to external
stimuli, we constructed peri-event population histograms separately for
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these two groups of neurons in each area (see Figure 5). For each spike
sequence obtained, if the number of spikes (in the waiting period) exceeds
100, we select the centrally located 100 consecutive ISIs to compute the value
of LV . If the mean value of LV for all the sequences generated from a neuron
is greater than θ = 0.59 (θ ′ = 0.66), this neuron (as are all the sequences
generated from it) is classified as type A (A′), and otherwise as type B (B′).

The bin size for the peristimulus histograms in Figure 5 was taken as
50 msec. The possible deviation from the temporal spike rate obtained for
each bin of the population histograms is estimated as follows. The total
number of spike sequences satisfying the above-mentioned conditions was
about 1000 for each area, and the numbers of type A sequences and type B
sequences selected accordingly were approximately the same: nearly equal
to 500. Because the mean spike rate was about 30 spikes per sec, the num-
ber of spikes accumulated in each bin was about 30 × 0.05 × 500 = 750.
The two-sided possible deviation at a significance level of 0.05 is estimated
as 1.96 times the standard deviation (which is 7501/2 ≈ 27 in the present
case). The possible deviation at a significance level of 0.05 measured in
units of the spike rate is therefore estimated as 30×27/750×1.96 ≈ 2 spikes
per sec.

It is, of course, desirable to measure the evolution of individual neuronal
activity to determine the response latency of each neuron. Because the typi-
cal number of spike sequences obtained from a single neuron is about 40 in
the experiment, the statistical deviation estimated in the manner described
above is about 8 spikes per sec, which is too large to allow for the detection
of any systematic tendency. If we wish to decrease the statistical deviation
of these data to the level of 2 spikes per sec, the bin size of the peri-event
histogram should be enlarged to 0.6 sec, which is too coarse to determine
the latency period. For these reasons, the histograms were constructed for
spike sequences over ensembles of neurons.

Appendix E: Determination of Latencies

The spike rates of the two groups of neurons in the pre-SMA change in
response to the stimulus LED. In order to determine the corresponding
transition time, we fit the piecewise linear function,

f (t) =
{

c, for t < a
c + b(t − a), for t ≥ a,

(E.1)

to the set of spiking data (or to peristimulus histograms with a small time
bin). The least square fit of f (t) to the data corresponds to the maximum
likelihood estimate with the assumption of gaussian distribution around the
fitting function. With this maximum likelihood method, we can estimate the
most probable parameter values and the range of possible deviation with a
given significance level.
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We fitted f (t) to type A data on the interval −250 < t < 300 msec and
to type B data on the interval −250 < t < 250 msec for the pre-SMA (see
Figure 6A), as these data do not exhibit saturation in these periods. With
a least-square fit, the transition times were determined to be a = 131 msec
and a = 43 msec, respectively, for type A and type B groups. From the
log-likelihood values, the possible statistical deviations of these values of
a are both estimated to be about ±14 msec at a significance level of 0.05
and about ±20 msec at a significance level of 0.01. Therefore, the presence
of time difference between the two peristimulus responses is statistically
significant.

We also fitted f (t) to the type A and type B data, which are subclassified
further according the waiting period 8 and 4 sec (see Figures 6B–6E). The
transition times are estimated as 46±15 msec for the type B sequences with
the waiting period of 8 sec, 40 ± 27 msec for type B of 4 sec, 134 ± 22 msec
for type A of 8 sec, and 120 ± 31 msec for type A of 4 sec. The statistical
deviations, estimated at a significance level of 0.05, increased from those
of the original data, as the data are reduced by the subdivision. In the task
considered here, the latencies do not change according to the choice of the
waiting period, while those of type A data and type B data are kept mutually
distinguishable.
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