

Study of (e, e') Reaction on ^9Be(I. Nuclear Physics)

著者	Asano Y., Tamae T., Kimura R., Konno O.,
	Hirota K., Maeda K., Miyase H., Nishikawa
	I., Terasawa T., Tsubota H., Yamazaki H.
journal or	核理研研究報告
publication title	
volume	34
page range	5-10
year	2001-11
URL	http://hdl.handle.net/10097/30987

Study of (e,e' \alpha) Reaction on ⁹Be

Y. Asano¹, T. Tamae¹, R. Kimura², O. Konno^{1*}, K. Hirota¹, K. Maeda², H. Miyase², I. Nishikawa, T. Terasawa¹, H. Tsubota² and H. Yamazaki¹

¹Laboratory of Nuclear Science, Tohoku University, Mikamine, Taihaku-ku, Sendai 982-0826 ²Physics Department, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-0845

The (e,e' α) cross section has been measured at energy transfers from 10.0 to 28.4 MeV and a momentum transfer of 99 MeV/c, using a 197 MeV continuous electron beam. The cross section rapidly increases with decreasing energy at angles smaller than 25°, while it appears flat at larger angles. The forward-peaked angular distribution was observed below 18 MeV, and the forward peak shrinks at higher energies. An amount of α particles from decay of ⁵He is estimated.

§ 1. Introduction

There has been a growing interest in the study of neutron-halo and neutron-skin structure. Very recently, the RI Beam Factory project has started at RIKEN to explore this subject. The nucleus ¹¹Be is known as a neutron-halo nucleus [1], and there are several microscopic and macroscopic attempts at describing Be isotopes in a unified framework of two α particles and extra neutrons. The ⁹Be nucleus is the simplest isotope, which has one extra neutron, and is known to have a typical $\alpha + \alpha + n$ cluster structure. Therefore the nucleus has already been investigated in various models.

The photo-disintegration of 9 Be is categorized in three separate mechanisms: (1) threshold to 5 MeV, where sharp resonances correspond to direct excitations of the unpaired neutron; (2) 5-18 MeV, where weak coupling of the unbound neutron to 8 Be dominates; (3) above 18 MeV, where a core is excited. The photo-nuclear reaction has been investigated in the (γ, n) [2-5], (γ, p) [6], (γ, d) [6], (γ, t) [6] and $(\gamma, {}^{3}$ He) [6] channels. However, no (γ, α) cross section has been measured, presumably because the decayed α particles of 5 He that partly overlap on the spectrum make the analysis difficult. The threshold of the (γ, α) reaction is 2.53 MeV; this is the only charged-particle emission channel below 16 MeV. The cross section is expected to be large enough for measurement.

The residual nucleus 5 He of the 9 Be (e,e' α) reaction is same as the 6 Li (e,e'p) reaction, which we investigated several years ago [7]. However, the missing energy spectra of both reactions may be different from each other, because they reflect their reaction mechanisms. We measured 9 Be (e,e' α) cross section at eleven angles at transferred energies between 10.0 and 28.4 MeV as a test experiment.

§ 2. Experimental procedure

The experiment was performed using a 197 MeV continuous electron beam from a stretcher-

^{*}Department of Electrical Engineering, Ichinoseki National College of Technology, Hagiso, Ichinoseki 021-8511

booster ring (STB). Electrons scattered with a 1.8 mg/cm² thick natural beryllium foil were analyzed with a magnetic spectrometer (LDM) at 30°. Missing energies were set at two energies: phase 1 (10.0 \sim 21.0 MeV), phase 2 (17.6 \sim 28.4 MeV). Corresponding momentum transfers are 98.60 MeV/c for phase 1 and 99.10 MeV/c for phase 2. Ejected α particles were measured with eleven SSD counter telescopes composed of two surface-barrier type SSD's (one 50 μ m SSD + one 1 mm SSD at eight angles, and two 1 mm SSD's at three angles), out-of the scattering plane ($\phi_{\alpha} = 90^{\circ}$). The solid angle of the telescopes is 4.8 msr. Due to insufficient machine time, no measurement between 90° and 180° was made in this run.

§ 3. Results and Discussion

Figure 1 shows missing energy spectra at the momentum transfer direction; a peak at 2.5 MeV corresponds to α particle emission leaving the residual nucleus at the ground state of ⁵He. A tail toward higher missing energies is observed in the spectrum for the lower energy transfer region; more structures can be seen in the spectrum for the higher energy transfer region. Considering a resolution of the experiment, events below $E_{\rm m}=7$ MeV were treated as α_0 events.

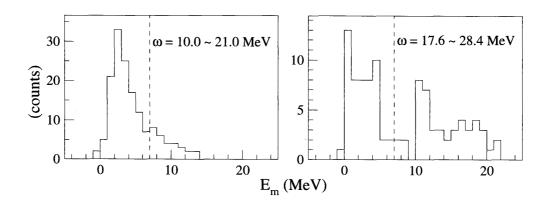


Fig.1. Missing energy spectra at 0° . A peak at 2.5 MeV corresponds to (e,e' α_0) reaction.

A transferred energy dependence of the differential (e,e' α_0) cross sections is shown in Fig.2. At forward angles, the cross section becomes larger as the energy decreases; while no such rise can be seen at backward angles. angular dependence of the differential cross section is shown in Fig.3. At low energies, a strong forward peaking is observed; data at backward angles are lacking because energies of the α particles are lower than the threshold energy of the detectors there.

In the (e,e' α) ⁵He reaction, the residual nucleus ⁵He decays into n + α ; this α particles partly overlap on the α particles of the (e,e' α) ⁵He reaction. Simulated missing energy spectra of both α particles are demonstrated in Fig.4. In this calculation several assumptions were made:

(1) The angular distribution of the ⁹Be (e,e' α) ⁵He reaction has a forward-backward symmetry in the center of mass system; Legendre parameters has been obtained by fitting the measured angular

distributions with even-order Legendre functions up to l=4.

(2) The angular distribution of the α particle due to $\alpha + \alpha + n$ decay of ⁵He is isotropic in the center of mass system.

The lowest peak in Fig.4 corresponds to α particles from the ${}^9\text{Be}$ (e,e' α) ${}^5\text{He}$ reaction; the higher missing-energy part of two-peaked structure corresponds to decay products of ${}^5\text{He}$. Alpha-particles emitted toward the detector direction make the lower peak, while those to the opposite direction do the higher peak. The structure changes slowly at other angles. The two-peaked structure shifts toward higher missing-energies as the transferred energy ω increases. The missing energy spectra folded in the regime of the measurements are shown in Fig.5, where the structure is smeared in resolution (1 MeV FWHM). A tail in higher energy part for $\omega = 10 \sim 21$ MeV in Fig.1 is reproduced in this

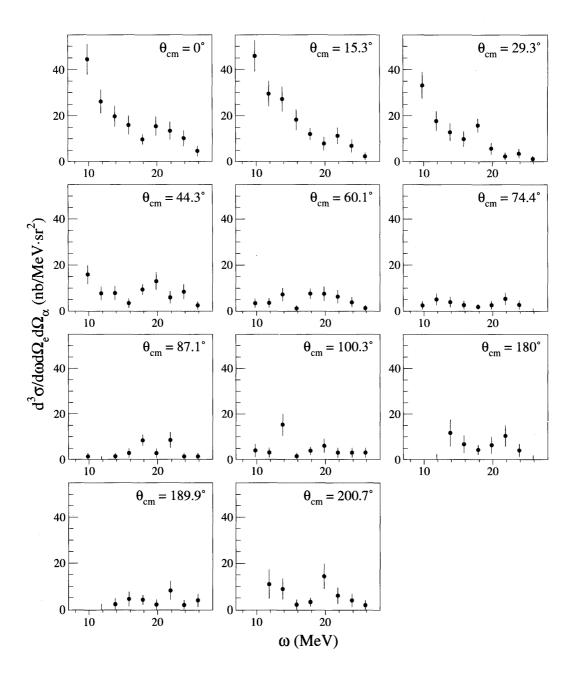


Fig.2. The 9 Be (e, e' α_{0}) differential cross sections.

simulation. In case $\omega=17.6\sim28.4$ MeV, the part $E_{\rm m}>10$ MeV cannot be reproduced in the simulation although the measured spectrum has large statistical errors. It may be a contribution of α particles from the ${}^9{\rm Be}$ (e,e'n) ${}^8{\rm Be}$ (16.6 MeV) $\rightarrow 2~\alpha$.

We wish to thank the accelerator group and the computer group for their assistance during the measurements.

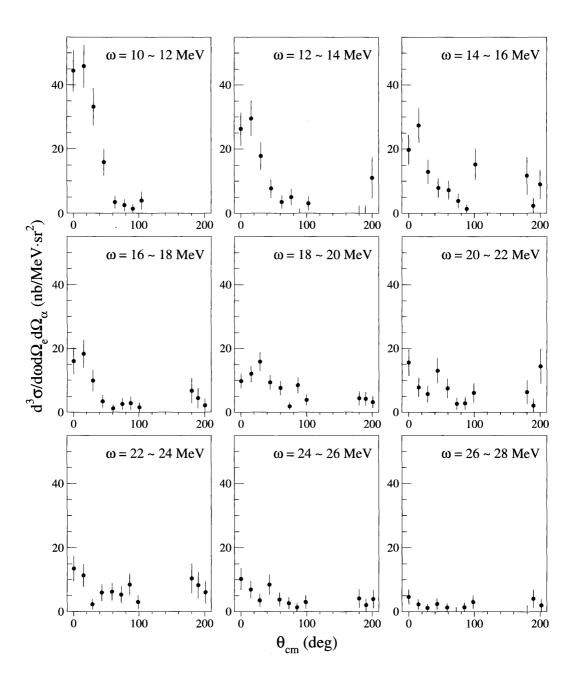


Fig.3. Angular distributions of the ${}^9\mathrm{Be}$ (e, e' α_0) reaction.

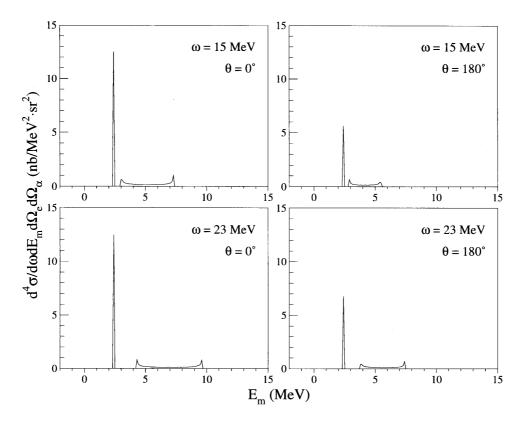


Fig.4. Simulated missing energy spectra of the 9 Be (e, e' α_0) reaction (a peak at $E_{\rm m}=2.5$ MeV) and the α emission from 5 He (two-peaked part at higher missing energies).

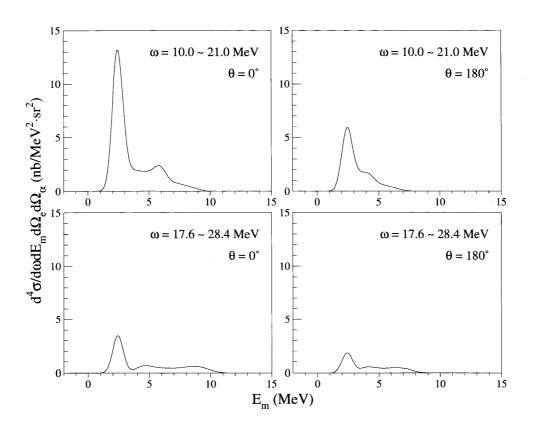


Fig.5. Simulated missing energy spectra folded in the regime of the measurements, which are smeared with a resolution of 1 MeV FWHM.

References

- [1] Tanihata et al.: Phys. Rep. B 206 (1988) 592.
- [2] R. J. Hughes, R. H. Sambell, E. G. Muirhead, and R. M. Spicer: Nucl. Phys. A238 (1975) 189.
- [3] U. Kneissl, G. Kuhl, K.-H. Leister, and A. Weller: Nucl. Phys. A247 (1975) 91.
- [4] A. Buchnea, R. G. Johnson, and K. G. McNeill: Can. J. Phys. 55 (1977) 364.
- [5] H. Utsunomiya et al.: Phys. Rev. C63 (2000) 018801.
- [6] K. Shoda and T. Tanaka: Phys. Rev. C59 (1999) 239.
- [7] T. Hotta et al.: Nucl. Phys. A645 (1999) 492.