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A theoretical aspect of quantum mechanical probabilities is studied. In particular,
it is investigated whether quantum mechanical probabilities can be defined for alter-
natives which are not restricted to a moment of time. Firstly the meaning and the
status of this investigation in quantum mechanics are explained. Secondly a general
framework is constructed within which we make the investigation. Thirdly a necessary
mathematical tool is reviewed and extended. Lastly the general framework is applied to
concrete examples with the help of the mathematical tool. Examples of alternatives are
found which are not restricted to a moment of time and for which quantum mechanical
probabilities can be defined with clear measurement theoretical meanings if an initial
condition of the particle belongs to a specific class. (This is the doctoral thesis of the
author.)
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Abstract

Chap. 1. Introduction

The standard quantum theory viewed as a probability theory has a special property.
That is, probabilities are defined only for alternatives at a single moment of time. Then
the following question arises: Is it possible to define quantum mechanical probabilities
for alternatives not restricted to a single moment of time? This is the theme of this
thesis. In this chapter we explain the aim and the background of this thesis and give
an outline of the construction of it.

Chap. II. General I'ramework

A general framework is constructed which judges whether or not quantum mechanical
probabilitics can be defined for a given IS (Event Space). The framework provides two
conditions: the classifiability condition (C-1) and the no-interference condition (C-2).
C-1 requires that the propagator for the particle is decomposable into “components”
each of which is associated with each alternative of the ES. C-2 is the consistency con-
dition between the superposition principle for amplitudes and the sum rule for proba-
bilities; it requires vanishing of interference between diflerent components.

Chap. TII. Euclidean Lattice Method

Iluclidean lattice method is a mathematical technique which gives a new definition to
sum over paths, a definition which may be wider than that of Feynman’s path integral
in configuration space. In Feynman’s path integral, time is skeletonized but space is
continuous. By contrast in Euclidean lattice method, we go over to FEuclidean time
and skeletonize not only time but also space, making Euclidean spacetime lattice. A
random walk is defined on the lattice; a discrete sum over paths is introduced which
sums up random-walk probabilities over discrete paths of the walk. The sum over paths
in configuration space is then defined by Wick-rotating the “diffusion limit” of the
discrete sum over paths. This technique was developed by Hartle for a free particle. This
chapter reviews and extends it to the case of a nonzero potential. Some formulae are
also provided for later use. The Fuclidean lattice method makes the general framework
developed in the previous chapter applicable to concrete examples of ES.

Chap. IV. Application of General I'ramework to Concrete Examples (I)

General framework is applied to ESI~III with the help of the Euclidean lattice method.
Negative results are obtained. For ESI and I, it is proved that C-1 (the path-classifiability
condition) does not hold. For ESIII, C-1 holds but C-2 (the no-interference condition)
is not satisfied. Therefore quantum mechanical probabilities cannot be defined for these
three ES. It is discussed that whether C:1 holds or fails is governed by two factors: the
non-differentiable property of virtual paths and the “coarseness” of alternatives.

Chap. V. Application of General FFramework to Concrete Examples (II)
General framework is applied to ESIV and V with the help of the Euclidean lattice
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method. Positive results are obtained. As predicted in the previous chapter, C-1 holds
for ESIV and V. In each case it is shown that there exists a specific class of initial
amplitudes for which the interference vanishes between different alternatives. Therefore
(-2 holds and probabilities can be defined if an initial amplitude belongs to the specific
class. Values of probabilities are calculated. It is argued that, owing to the restriction
of an initial amplitude, resultant probabilities are interpretable within the familiar
measurement theory and they gain clear measurement theoretical meanings which are
becoming to the values of the probabilities.
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Chap. I. Introduction

§1. Introduction
1.1 Posing a problem

Quantum theory describes physical world with probabilities. The theory consists of
a mathematical framework and physical interpretation. The mathematical framework
provides a formulation which constructs positive quantities from complex valued am-
plitudes in such a way that they fulfill axioms for probabilities. Physical interpretation
rcads the positive quantities as physical probabilities and associates them with a set
of outcomes of an experiment. We are interested in a probability-theoretical aspect of
quantum theory. Quantum theory viewed as a probability theory has a special prop-
erty. That is, probabilities are defined only for a specific class of sample spaces whose
alternatives are all associated with a single moment of time. By a sample space, we
mean a set of alternatives. An alternative is a member of the sample space. Physically
an alternative is an occurrence or an event (in the sense of probability theory) of an
experiment. Let us confine ourselves to nonrelativistic quantum mechanics (NRQM)
for a particle and explain more about the special property.

We shall write a sample space as ES. (Read it as exhaustive set of alternatives or
event space.) Since all measurements can eventually be reduced to position measure-

ments (spacetime picture),l) we shall work with alternatives in Newtonian spacetime.
Alternatives, for example, in momentum space (with time) are therefore not studied
here. In spacetime picture, the following probability for position is the only probability
in quantum mechanics:

P(AX,T)=/ dX|lI!(X,T)|2, (I-1-1)
AX _
which is normalized to
o0
Y P(AX;,T)=1, ie, / dX|U(X,T)*=1. (I-1-2)

J

where U(X,T) is Schrédinger’s wave function. Probability (I-1-1) is assigned to the
alternative (occurrence) that a particle is found in a certain spatial domain AX at a
moment of time 7. The sample space for (I-1-1) is the set of non-overlapping domains
{AX;} on St, that is, a hypersurface of constant time 7" in Newtonian spacetime. We
shall call this sample space EST. EST lies on St in the sense that all the alternatives
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of EST are associated with domains AX; on St. Since (I-1-1) is, up to now, the only
probability in spacetime picture, we can say that a probability-definable ES in quantum
mechanics is restricted to EST. However this is not always the case in probability theory.
In Brownian motion for instance, there exist probabilities whose sample space is not
EST. An example is the probability for the first hitting time. A particle starting from
(X,0) and undergoing a Brownian motion crosses the spatial origin X = 0 many times
(we consider (1+1)-dimensional case). The first time T' € AT at which the particle
hits (crosses or touches) the origin is a random variable. The probability that the first
hitting time T lies in AT is given by

2 1/2 ‘X'Z '
P(AT, X) = /AT iT (W) exp (— QT) , (1-1-3)
normalized to

/oodTP(T,X)zl. (1-1-4)
0

These should be compared with Eqs. (I-1-1) and (I-1-2). The sample space for
(I-1-3) is a countable set {AT;} of non-overlapping temporal domains. All these
domains lie on a single surface Sx, a surface of constant X (= 0). The sample space
therefore lies on S x. Of course in Brownian motion, there also exist probabilities whose
sample space is EST. They are probabilitics for position at a moment of time. In this
way, in Brownian motion, probabilities whose sample space lies on S x coexist with
probabilities whose sample space lies on ST, namely, probability-definable ES is not
restricted to IEST.

On the basis of the above observation, we pose the following problem which is the
theme of this thesis:

Is it possible to define quantum mechanical probabilities

I-1-5
for ES other than EST? ( )

To put the question more concretely,2) let us consider a general surface § and two
surfaces S, and ST, of constant time which are arranged as in Fig. 1. Suppose that we
prepare a particle at a spacetime point A = (X4,T4), and consider particle’s motion
from A to another spacetime point B = (Xp,Tp) (T4 < Tp). A classical particle
traveling from A to B intersects S a certain number of times at certain places. (In
the presence of a potential, the particle intersects & more than once in general.) In
Fig. 1, the number of intersection is three and the places of intersection are A=A,
Xy and A3, where X is a suitably introduced coordinate on §. The definiteness of the
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number and the places of intersection is of course due to the uniqueness of the classical
path. In quantum mechanics however, the particle is associated with no unique path
as illustrated clearly in the sum-over-paths (i.e., the path-integral) formulation . The
number and the places of intersection of the particle with S are then expected not to
be unique, since the number and the places of intersection of virtual paths with § vary
from a virtual path to another (see Fig. 2). If the number and the places of intersection
are actually ‘observed’ on a fixed S, a single ‘observation’ will yield a definite result. For
instance one will find that the particle has ‘intersected’ S three times at \ = A1, A2 and
Az. Another ‘observation’ will yield another definite result. The possible description of
such variable outcomes must be a probabilistic one. In this circumstance, we consider
an IS which is the set of all possible numbers and places for the particle to intersect S.
An alternative of this IES is an occurrence that the particle intersects S a certain number
of times at certain places. This ES we name ESI. Since all the alternatives of ESI are
associated with ‘measurements on &’, This kind of ES we shall call ES on S. An ES
on & is an example of ES which is not EST. Of course, when S is S, ES on S reduces
to EST. For IiSI, the problem (I-1-5) asks, “Can quantum mechanical probabilities
be defined which predict the number of times and places the particle intersects S?” We
can think of other examples of ES on S. The set of all possible places where the particle
is first found on § is such an example, which we shall name ESIII. There are also other
kinds of IXS. which are not EST and are not ES on S. Consider a spacetime domain {2
as shown in Fig. 3. Then we can think of two alternatives “Yes” and “No”. “Yes” is
the occurrence that a particle which started at time T4 is ‘found’ in £2 and ‘No’ is the
complement to ‘Yes’. The set {Yes,No} is an ES which is neither EST nor ES on S,
which we shall name IESV. For ESV, we ask “Can quantum mechanical probabilities be
defined which predict whether the particle is ‘found’ in € or not?”

1.2 The aim of this thesis

In the above paragraph, we used single quotes ¢ ’ for terms which are more or less
measurement theoretical. One must be careful about such terms. Measurement theoret-
ical meanings are not self evident for them, because the familiar measurement theory
of quantum mechanics deals with only an instantaneous measurement or a sequence
of instantaneous measurements. As a matter of fact, problem (I-1-5) has not been
well-posed yet because ‘ES other than EST’ has not been given a definite measurement
theoretical meaning. It seems difficult to pose problem (I-1-5) in such a way that
the meaning of ES is clear from the beginning, because such an ES is new to quantum
mechanics. In view of this, this thesis has two aims: First, it aims to present problem
(I-1-5)in such a way that it is well-posed at least mathematically, so that the setting
itself of the problem does not suffer from measurement theoretical issues; it also aims
to construct a general framework which can answer to problem (I-1-5) when an ES is
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given. The second aim is to apply the general framework to particular ES to give an
answer to (I-1-5) within the framework. Here we shall briefly see how the problem
(I-1-5) becomes well-posed, taking ESV as an example of IS other than EST. Taking
spacetime points A and B respectively in the past and in the future of the spacetime
domain f2, we first introduce two amplitudes

O(B;Yes; A)= > 5, ®(B;NojA) = s, (I-1-6)
B—N+—A Beoutside 2—A

where the sums are respectively over paths which pass through 2 and over paths which
never pass through it on the way from A to B (see Fig. 3). These amplitudes are
purely mathematical objects. We then construct positive quantities ’(Yes), P(No) and
P(Yes or No) from these amplitudes by generalizing the rules of calculating constant-
time probabilities in the sum-over-paths formulation, rules which correctly work in
calculating probability (I-1-1) from an amplitude. Exploring the possibility that the
positive quantities thus constructed fulfill axioms for probabilities, we formulate two
conditions for amplitudes (I-1-6) under which the positive quantities fulfill the ax-
ioms. It then follows that, when the two conditions are satisfied, the positive quantities
are, at least mathematically, probabilities. The argument so far has nothing to do
with measurements. Measurement theoretical issues arise when the two conditions are
satisfied, namely, probabilities are defined. We expect that the resultant probabilities
are not only mathematical ones but also associated with physical meanings, since the
probabilities are constructed from amplitudes (I -1 -6) defined by the behavior of paths
with respect to f2. I'or example, we expect

P(Yes) = the probability of finding the particle in f2. (I-1-7)

This is to be understood as a trial of giving a definite measurement theoretical meaning
to the phrase on the right-hand side, phrase whose meaning is not self-evident in the
familiar quantum mechanics in which only an instantaneous measurement is considered.
Investigations for other ES are also made in this way. For ESIII for example, we consider
amplitudes ®(B; A; A), each of which is the sum of 'S over paths which connect A and
B and whose first hitting (i.e., crossing or touching) of a given surface S lies in a domain
A. Using these amplitudes instead of (I-1-6), we construct positive quantities P(A)
according to the generalized rules of constructing a probability from an amplitude in the
sum-over-paths formulation. We explore whether these positive quantities fulfill axioms
for probabilities. When they are fulfilled, the positive quantities become probabilities
and we raise the problem of interpretation: Can the probability P(A) constructed from
®(B; A; A) be interpréted as the probability that the first place where the particle is
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found on § lies in A7 These are what we actually investigate in this thesis in answer
to (I-1-5). The meaning of an ES which was intuitively introduced as an exhaustive
set of alternatives is precisely a distinct set of amplitudes defined by the behavior of
paths with respect to a given domain. (I-1-6) is an example of such a set. An ES is
specified by two elements: a domain (surface, spacetime domain and so on) and what
behavior of paths we pay attention to. Different ES can be considered with respect to
the same domain. For example, with respect to one surface §, we consider ESI by paying
attention to how may times and at what locations each path intersects S and consider
ESIIT by paying attention only to the first location each path hits S. This we simply
say that ESI is the set of possible numbers of times and locations the particle intersects
S and ESIII is the set of possible first locations the particle hits S, pretending that a
path in the sum-over-paths quantum mechanics is an observable, which is of course not
actually so. Thus we re-present problem (I-1-5) as the set of following questions:

Q1: For a given ES, are probability axioms fulfilled by positive quantities

constructed from the set of amplitudes according to the generalized

[-1-8
rules of constructing probabilities from amplitudes in the sum-over- ( )
paths formulation?

Q2: When the axioms are fulfilled, are the probabilities associated with
measurement theoretical meaning becoming to the values of the proba-  (T-1-9)

bilities?

When these two questions are positively answered, the way of saying is allowed that
ESIII is the set of possible locations where the particle is first found S. Keeping all
these in mind, we shall use this way of saying at any stage of investigations of the two
questions, just for simplicity. For instance, when the first question Q1 is negatively
answered for ESIII, we say that quantum mechanical probabilities cannot be defined
for the first place where the particle is found on S.

1.3 Background

Our problem was motivated by the work of Hartle in Ref. 3). He argued that the
role of time in the sum-over-paths formulation of NRQM is not so central as that in
the ITamiltonian formulation is. In the argument he investigated a definability of “wave
function on §”, which is an extension of Schrédinger’s wave function on Sy. The wave
function was considered in the sum-over-paths formulation and was essentially of the
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form of

> e, (I-1-10)

XA

where S is the action for a nonrelativistic particle; )= (A1, A2, ) stands for a suitable
set of places on S and the sum is over paths which connect A and X and which lie
only in the past of S. The absolute square of this wave function was expected to give
probabilities for finding a particle on S at places X. (Although Hartle did not mention
the probabilistic interpretation of this wave function, the way he tried to construct it
suggests this probabilistic interpretation.) What he proved was that the wave function
does not exist in quantum mechanics. This conclusion is quite natural if one takes
account of the above-mentioned interpretation of the wave function. If such a wave
function was to exist, then its classical limit, which should describe classical motion
of the particle, would make a definite prediction as to the number and the places the
particle is found on S; this definite prediction is made from the information only about
the past of §, because in the sum (I - 1-10) paths to be summed over lie only in the past
of S. This is clearly impossible. Places where a classical particle is fund on § cannot be
determined from the information only about the past of &, simply because a classical
path is not confined in the past of §. In this way, existence of wave function which
predicts how one finds a particle on S from the information only about the past of §
manifestly conflicts with causality, as clearly understood in the classical limit. What
we would like to emphasize here is that what he disproved is the existence of a wave
function on S but not the existence (i.e., definability) of probabilities concerning how
one finds a particle on S. These considerations motivated us to investigate the existence
of such probabilities, which led us to (I-1-5).

1.4 Qutline

Tn this thesis we investigate the problem posed as (I-1-5) within nonrelativistic
quantum mechanics for a particle. We make the problem well-posed, construct a gen-
eral framework, apply it to concrete examples of ES and obtain interesting results. The
outline of this paper is as follows. In Chap. II, making problem (I-1- 5) well-posed,
we construct a general framework which judges whether or not quantum mechanical
probabilities can be defined for a given ES. The framework is constructed in the sum-
over-paths formulation of quantum mechanics. For a general IS, we first provide the
rule of assigning a probability amplitude to an individual alternative. Next we propose
a particular way of constructing positive quantities from probability amplitudes, quan-
tities which we want to interpret as probabilities. We then formulate two conditions
under which the positive quantities fulfill axioms for probabilities. The two conditions
shall be called the classifiability condition (C-1) and the no-interference condition (C-2).
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In this way, the problem of probability-definability for a general ES is reduced to the
problem of whether the two conditions hold or not for the ES. As we shall discuss,
C-2 is the consistency condition between the superposition principle for amplitudes and
the sum rule for probabilities. In Chap. III we make a mathematical preparation for
calculations of sums over paths such as (I-1-6). The Euclidean lattice method is re-
viewed and extended which gives a rigorous definition to such a sum over paths. This
seems wider than Feynman’s path integral. This method skeletonizes not only time
(Euclidean) but also space. A sum over paths is defined on this Euclidean lattice as a
discrete sum of a random-walk probabilities. In Chap. IV and V we apply the general
framework to concrete examples of ES with the help of Euclidean lattice method. We
investigate following five ES in (141)-dimensions as typical examples of ES other than
EST:

IEST : the set of possible numbers of times and possible locations a particle intersects

2)

a steplike surface in the spacetime,

[ESIT : the set of possible numbers of times and possible locations a particle is found

2)

on a steplike surface,

1)

ISSTIT @ the set of possible locations a particle is first found on a steplike surface,

[ESIV : the set {Yes, No}, where “Yes” is to find a particle in a temporal domain AT

1)

at constant X and “No” is the complement to “Yes”,

[ESV : the set {Yes,No}, where “Yes” is to find a particle in a spacetime domain
Q=AX x AT and “No” is the complement to “Yeg”,®)

Chap. IV deals with ESI~ESIII. For ESI and II, C-1 does not hold. For ESIII,
C-1 holds but C-2 fails. Thus probabilities cannot be defined for these three ES. We
argue that whether C-1 holds or fails is governed by two factors: the non-differentiable
property of paths and the “coarseness” of alternatives. Chap. V deal with ESIV and
V. For each ES, C-1 holds. It is concluded in each case that C-2 holds and therefore
probabilities can be defined if an initial amplitude for the particle belongs to a specific
class. Owing to the restriction of an initial amplitude, resultant probabilities are well
understood within the familiar measurement theory and hence they gain clear measure-
ment theoretical meanings which are becoming to the values of the probabilities. In
Chap. VI, we first summarize this study and then discuss several issues and questions
which may arise. We also pose remaining problems. Appendices and references are
given in the end.



189
Norifumi YAMADA

Chap. II. General Framework

We construct a general framework for the investigation of definability of QP (quan-
tum mechanical probabilities) for ES unrestricted to a moment of time. We proceed as
follows:

§1 We rewrite Iiq. (I-1-1) into sum-over-paths fashion and observe how QP for
EST are constructed from relevant amplitudes in the sum-over-paths formulation.

§2 We generalize the sum-over-paths rules of constructing QP from relevant am-
plitudes to a general ES. Requiring the consistency of this generalization with
mathematical axioms for probabilities and adding other observations as well, we
formulate two conditions under which QP can be defined for the ES. Whether QP
can be defined or not for a given ES is judged by these two conditions. If both of
them hold, then QP can be defined.

§1. Sum-over-paths reconstruction of QP for EST

We take spacetime points A = (X 4,74) and B = (Xp,Tp) as shown in Fig. 1.

0:8) the quantum mechanical propagator ®(B; A)
which describes particle’s motion from A to B is defined by

A) = Z e's

B—A

N-—-
(X X) X + X
—N/2 k+1 k k+1 k
_E%H/ dX;(2mie) / exp[ Z—:{ (—3——)}} ,

(I1-1-1)
where Xg = X4, Xy = Xp and €N = Tp — Ty4; the sum is over all the paths which
move forward in time to connect A and B, whose exact definition is given by the last

In the sum-over-paths formulation,

right-hand side. This is the propagator of Schrodinger’s wave function UX,T):
¥(B) = / X 4 0(B; A)U(A), (I1-1-2)
where U(A) = U(X4,T4) and so on. Let ¥(A) be an initial amplitude. Probability

(I-1-1) can be rewritten as follows:

2

P(AX,T) = / X5 / dX40(B; AX,T; A)U(A) (I1-1-3)
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with

O(B;AX,T;4)= Y €
B—AX—A

(IT-1-4)
- / dX®(B; X, T)O(X,T; A),
AX
where the sum is over (virtual) paths which start from A, move forward in time to cross
St in the interval AX at time T and then arrive at B; this sum over paths can be
factored into two sums over paths and one integration: the sum over paths from A to
(X,T) such that X € AX, that from (X,T) to B, and the integration over all possible
values X of crossing of S. Because of the very definition of Feynman’s path integral,
the two sums over paths yield propagators ®(X,T; A) and ®(B; X, T); this explains the
last equality in Eq. (IL-1-4). Equivalence of expression (II-1-3) to (I-1-1) can be
seen by substituting Eq. (II-1-4) into Eq. (IT-1-3) and performing the integration
over X p by use of the following well-known property of the propagator

/dXB:‘I)'(B'; XBI,TB)(I)(B'; Xp2,TB) = 5(X31 — XB2) . (H -1- 5)

Probabilities P(AX;,T) of course satisfy axioms for probabilities:

0< P(AX,T)< 1 (I1-1-6)
P(AX;UAXy,T) = P(AX;,T) + P(AX.,T) (5 #k) (I1-1-7)
Y P(AX;,T) =1, (II-1-8)

i

where AX; (j = 1,2,---) are non-overlapping spatial domains at time T" covering St
as J exhausts all integers; for j # k, P(AX; U AX},T) is the probability to find the
particle in AX; orin AX} at time T. From the wave-function expression (I-1-1),itis
trivial that these axioms are satisfied. Axioms (II-1-6) and (II-1-8) is obvious from
the positivity and the normalization of the right-hand side of (I-1-1), which follows
from the normalization of the initial amplitude

/w dX4|V(A)E =1, (II-1-9)

—00

which we always assume. Axiom (IT-1-7) is also trivial from the additivity of the
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integration

/ dX=/ dX+/ dX (j #k). - (I1-1-10)
AX;UAX; AX; AX,

Next let us see how these axioms are satisfied by the sum over paths expression (II - 1 - 3).
The positivity P > 0 is trivial from (II-1-3). To see how the sum rule (I1-1-7) is
satisfied, we note that the sum-over-paths formulation constructs the probability for a
union of alternatives as follows:

2

P(AX; UAX,T)
- /dXB /(IXA(Q(B;AX,-,T;A) +<I>(B;AX,C,T;A))\IJ(A)} (G # k).
(IT-1-11)

Note that, according to the superposition principle, the amplitude to pass through AX;
and that through AX} are added before absolutely squared. Expanding the right-hand

side, we once have
P(AX;UAX,T)=P(AX;,T) + P(AX:,T) + 2ReD[AX;; AX}] (IT-1-12)

with

D[AXj; AX}]

IT-1-13
= /dXB // dX 4dX 4 ®*(B;AX;,T; A)(DB; AXg, T ANYT*(A)T(A"). ( )

The cross term ReD (2ReD in the strict sense) expresses the quantum mechanical
interference between the two alternatives: to find the particle in AXj; at time T and
to find it in AXj at the time. Of course there should be no interference between the
two alternatives; otherwise the sum rule fails. Vanishing of the cross term is proved by
using Eq. (IL-1-4) and performing the integration over Xp on the rlght -hand side of
(I - 1 - 13); the integral vanishes owing to Eq. (IT-1-5) to give

DIAX;;AXx] =0 (j #k). (IL-1-14)

In this way, vanishing of interference (to be called no-interference, for brevity) between
different alternatives makes Eq. (II-1-11) consistent with Eq. (II-1-7). In other
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words, because of no-interference between different alternatives, the superposition prin-
ciple for amplitudes consists with the sum rule for probabilities. Normalization (IT-1-8)
is proved as follows:

2

/dXA<I>(B;AX,-,T;A)\I/(A)

Y P(AX;,T) = Z/dXB

:/dXB /dXAZ(D(B;AX,-,T;A)‘I’(A)
i ) (TI1-1-15)
_ / X5 / X 48(B; A)T(A)

- / 4X 4 |U(4)]
=1

2

where the second equality is guaranteed by the vanishing of interferences, the third
equality by

> O(B;AX;,T; A) = /chb(_B; X, T)®(X,T; A)
: (I1-1-16)

= ®(B; A),

and the fourth equality by Eq. (II-1-5). Since we always assume that the initial
amplitude is normalized, we have the last equality in Eq. (IT-1-15). The first axiom
(IT-1-6) is now obvious from (IT-1-15) and the positivity of P. By the way Eq.
(IT-1-16) shows that the amplitudes for passing through AX; on the way from A to
B are summed up to recover the total amplitude, namely the propagator connecting
A and B. Hence we call the amplitude ®(B;AX;,T; A) the “component” of ®(B; A)
associated with the alternative that one finds a particle in AX; at time T. Since a
component is associated with an alternative, we shall often say “interference between
different components” instead of “interference between different alternatives”. Equation
(IT-1-16) is understood in the context of “path classification” as illustrated in Fig.
4. The (virtual) paths which define the propagator ®(B;A) by Eq. (II-1- 1) are
classifiable into distinct classes of paths; the paths belonging to the class specified by
AX; are all the paths which pass through AX; at time T on the way from A to B.

From the above observation, we learn two things.

(1) Exclusiveness and no-interference.
It is an empirical fact that to find a particle in AX; and to find it in AXjy
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(j # k) at a moment of time are mutually exclusive. In the sum-over-paths
formulation, this fact is guaranteed by no-interference between the two compo-
nents ®(B; AX;,T; A) and ®(B; AXy,T; A), where the interference is given by
ReD with D defined by Eq. (IT-1-13). In short, exclusiveness is guaranteed by
no-interference. '

(2) Normalization.
Normalization (IT - 1 - 8) is derived from the normalization of an initial amplitude.
In the sum-over-paths formulation, as seen from Fq. (IT-1-15), this derivation
is based on the no-interference between different alternatives and on the path-
classification relation (II-1 - 16).

To summarize: Because the propagator ®(; A) is decomposable into components as
Eq. (I 1-16) and because there is no interference between different components, QP
can be defined for EST with values given by Eq. (IT-1-3).

§2. General Framework
2.1 Construction

Our problem is to construct a general framework which judges whether or not QP
can be defined for a given ES. We concentrate on (I-1-8) in this subsection, so that
measurement theoretical issues are not discussed here. Understanding QP for EST as
in §1, we get a clue to the construction of the framework. By introducing the notion of
decomposition of propagator for a general ES, we can define the interference between
“different components in the same way as Eq. (II-1-13); if thus defined interference
vanishes, then QP can be defined for the ES with values given by expressions similar

to Bq. (IT-1-3).

We shall formulate this idea. Consider a general ES={0;}. First we introduce
the notion of component of propagator. As discussed in Chap. I, an Oj represents a
possible way of finding a particle in a suitable domain in Newtonian spacetime. Let
the suitable domain be bounded by two surfaces S, and ST, of constant time 74 and
Ty, respectively, such that —oo < Ty < T < oo. (This is always possible because
outcomes of a physical experiment are always obtained within a finite time interval.)
As a straightforward generalization of Eq. (II-1-4), we define a component of the
propagator ®(B; A):

O(B;0;;4)= Y €7, (I[-2-1)

B—0Oj—A

where the sum is over paths specified by O; on the way from A to I. To be specific, we
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give some examples. If the ES is ESI, then szA(fj) and the paths specified by O; are
‘all the paths which intersect the surface S at j-places A(l-;) on the way from A to B; the
sum of e*S over all such paths defines the component ®(B; A(l;-); A) which is associated
with the alternative 0,-=A(l_;-). If the ES is ESV, which consists of two alternatives
Op =“Yes” and O; =“No”, the paths specified by Oy are all the paths which pass
through the spacetime domain {2 on the way from A to B; the paths specified by O,
are all the paths never crossing 2. The sum of ' over the paths specified by “Yes”
defines ®(B; £2; A), the component associated with “Yes”. The component associated
with “No” is defined in a similar way. Intuitively, one might expect for an arbitrary ES
that the sum of all the components gives the propagator ®(B; A). However, as will be
discussed later, this is not always the case. For such an ill ES, we cannot define QP.
Hence we pose the following equation as the first condition to be satisfied by the ES:

C-1 : ®B;4)=) ®B;0;;A). (I1-2-2)

J

Condition C-1 requires that the virtual paths which define the propagator by Eq. (I - 1 - 1)
are classifiable into distinct classes of paths, where each class is specified by an 0;.
Hence we call C-1 the “classifiability condition”. When C-1 holds for a given ES, we
construct positive quantities from the components as follows:

2
P(o,-)s/dXB l/dXAQJ(B;O,-;A)\II(A) , (I1-2-3)

which we want to interpret as QP of the occurrence of O;. The initial amplitude ¥(A)
is the same as that in Eq. (I - 1-3); it is Schrodinger’s wave function at an initial time
T4. The positive quantity which we want to interpret as QP for the union of O; and

Ok (j #k) is

-

2

P(OjU(’)k)E/dXB , (I-2-4)

/ aX4(B(B; 05 4) + B(B; 04 4)) U(4)

in which, according to the superposition principle, two components (amplitudes) are
added before absolutely squared. Positive quantities (IT-2 - 3) and (II - 2 - 4) are straight-
forward generalizations of (II-1-3) and (IT-1-11), respectively. Expanding the right-
hand side of (II - 2-4), we have

P(O;UO) = P(O;) + P(O) 4+ 2ReD[0}; O] (IT-2.5)
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with
D[Oj;Ok]E/dXB//dXAdXA@*(B;Oj;A)(I)(B;Ok;A')\II‘(A)\II(A’). (I1-2-6)

In order for this to be consistent with the sum rule for probabilities, the cross term
must vanish. We thus require the second condition

c-2 ReD[Oj;Ok] o 6jk- (11-2-7)

Real part of D may be interpreted to be the interference between the two alternatives
O; and O. The condition C-2 requires that every.interference between different al-
ternatives vanishes so that the superposition principle consists with the sum rule. The
quantity D[O;; O] is essentially what has been called the “decoherence functional” for

pairs (0};0r) of alternatives by Gell-Mann and Hartle.” They define a decoherence
functional for a more general initial state, that is, a mixed state. The word decoherence
is used by them, while we use the word no-interference, both of which are the same
thing.

It is easy to see that, if both C-1 and C-2 hold, then axioms for probabilities are
satisfied which are, for a general ES,

0< PO <1, (IT-2-8)

P(O;U0) = P(O;)+ P(Oy) for  j#k, (I1-2-9)

and

> P(0;) =1. (I1-2-10)
i

The proof is completely parallel to that for EST. The sum rule (II - 2 - 9) readily follows
from C-2. Normalization (II -2 - 10) is proved as follows:

> P(0j) = Z/dXB
j j

=/dXB /dXAZQ(B;@j;A)‘I’(A)
j

2

/dXA(D(B;O,-;A)\I!(A)

2

, (I1-2-11)

=deB /dXA<I.>(B;A,)\IJ(A)

= [axapuay
= 1,
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where the second equality is guaranteed by C-2, the third equality by C-1 and the
fourth by Eq. (II-1-5). The first axiom (II-2-8) is obvious from the positivity and
the normalization of P.

Now we have achieved the following framework:
Stepl. Given an ES, we calculate components ®(B; O;; A) according to (II-2-1).

Step2. We investigate whether or not the components satisfy the classifiability condition
C-1, namely Eq. (II-2-2). If they do not, we conclude, at this stage, that QP
cannot be defined for the ES.

Step3. When C-1 is satisfied, we evaluate the decoherence functional (IT-2-6). If C-2
holds for any pairs (O};O4) of alternatives (j # k), we conclude that QP can be
defined for the ES with values (I -2 - 3). Otherwise QP cannot be defined.

2.2  Favorable features of the framework

Here we stress favorable features of our framework.
(1)No violation of causality:
Remember Ilartle’s wave function on § discussed in Chap. I. There we argued that
~construction of QP for an ES on § from such a wave function manifestly conflicts with
causality. The reason was because in the sum-over-paths definition of the wave function
e'S was summed over those paths which lie in the past of S. By contrast, as seen from
3q. (IL-2- 1), our amplitudes ®(B; Oj; A) are defined by summing e over paths which
pass through the domains relevant to the ES. When the ES is an ES on a surface S ,
paths to be summed over intersect the surface §; paths are therefore not confined in the
past of S. By constructing (II - 2 - 3) from such amplitudes, we do not violate causality.
(2)QP’s independence of a final surface: ‘
A necessary condition for QP is that it must not depend on the choice of a final surface
ST, so long as it lies in the future of the domains relevant to the ES. Our construction
of (I - 2 - 3) satisfies this. This is easy to check. Take St,,, a surface of constant time
Tg:, in the future of St, (T < Tpr) which is assumed to be in the future of the
domains. If St,, is used instead of St,, then [dXp and ®(B;0j; A) in Eq. (I1-2-3)
are respectively replaced by [ dXp: and

(B 0554)= Y €. (IT-2-12)
B'—0j—A

The sum on the right-hand side can be decomposed into three parts: the sum over all
the paths specified by O; on the way from A to B, the sum over all the paths from
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B to B', and the integration over all possible values of Xp where paths intersect St,.
Therefore

B(B'; 05 A) = /dXB<I>(B’; B)®(B; 0}; A). (I1-2-13)

Replacing ®(B; Oj; A) in Eq. (I-2-3) by the above, we perform the integration over
Xpg in Eq. (II-2-3) by use of Eq. (II-1-5). The result is identical to the original
version of Eq. (IT-2 - 3) and the proof is completed. For the same reason, Eq. (IT-2-4)
and the decoherence functional (I -2 6) are also independent of St.
(3)“Automatic” normalization:

In our framework the normalization of QP is not made in such an artificial way that

P(0;)

Pnormaliled(oj) = m

(IT- 2 - 14)

If Eq. (II-2-4) is not employed in constructing the general framework, then (II - 2-14)
will be the only way of normalizing (II - 2 - 3). ITowever we must not dispense with Eq.
(IT- 2 - 4) because quantum mechanics cannot dispense with superposition principle. In
our framework, as seen from Eq. (II -2 - 11), probabilities are automatically normalized
as a consequence of no-interference (ReD = 0), the path-classification relation (I -2 - 2)
and of the normalization of an initial amplitude. This is indeed satisfactory, because
the unity of the sum of all the probabilities, namely normalization of probabilities, has
to be the direct consequence of the existence of a particle and of the exhaustiveness and
exclusiveness of the alternatives. In our framework, existence of a particle is gunaranteed
since it exists at an initial time, or equivalently since an initial amplitude is normalized;
exhaustiveness and exclusiveness are taken into account by Eqs. (IT-2-2)and (IT-2-7).

2.3 Do C1 and C-2 hold?

For EST, each component ®(B; AX,T; A) is directly related to ®(B; A) by Eq.
(II-1-4), which makes C-1 and C-2 hold. For a general ES, the relationship between
each component ®(B; O;; A) and the propagator is not self-evident. Is there a possibility
that both of them hold for a general ES?

In order for C-1 to hold for a given ES={0;}, paths contributing to the sum
(IT- 1 - 1) have to be classified with respect to the label O;. Paths dominantly contribut-
ing to (IT-1-1) are known to be everywhere non-differentiable with respect to time.
Such paths cannot be classified by an arbitrary label. For example, non-differentiable
" paths intersect a general surface an infinite number of times. Then it is suspected that
paths cannot be classified according to how many times they intersect the surface. This
is indeed the case as we will experience in Chap. IV (ESI and II). The number of times
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of intersection is an inadequate label for path-classification. Whether C-1 holds for an
ES depends on whether non-differentiable paths can be classified with respect to O;j of
the ES.

One cannot expect C-2 to hold for every ES for which C-1 holds. The decoherence
functional (IT - 2 - 6) depends on (i) components ®(B; O;; A) and (ii) an initial amplitude
W(A). Whether C-2 holds or not depends on these two elements. The remarkable
feature of EST is that D vanishes identically, that is, it vanishes for an arbitrary initial
amplitude because of the special form (II -1 -4) of the components. For a general ES
this mechanism of vanishing of interference may not be expected. However it can be
possible that C-2 holds for a suitable class of initial amplitudes. In fact in Chap.
V, we will experience such cases (IXSIV and V). There, by calculating components
and substituting them into the decoherence functional, we find that only a specific
combination of the initial amplitude contributes to the decoherence functional and that
there exists a class of initi#l amplitudes for which the specific combination vanishes. In
this way, dependence of D on the initial amplitude gives a chance for C-2 to hold. Of
course, such a luck does not happen for all ES. As also shown in Chap. IV, C-2 for
ESIIT does not hold for any initial amplitudes.

When C-2 holds for an ES under a specific class of initial amplitudes, our conclusion
is as follows: QP can be defined for the ES only when an initial amplitude belongs to
the specific class. One may think it strange to restrict initial amplitudes in defining
probabilities. However it is not strange at all. In Chap. V, we discuss in concrete
examples (ESIV and V) why it is not strange. There we will understand that restriction
of initial amplitudes plays an essential role in the interpretability of QP within the
familiar measurement theory, that is, the measurement theory for an observation made
at a moment of time.

2.4 Measurement

IFrom a measurement-theoretical point of view, one may ask (1) the mecaning of an
XS other than EST and (2) the meaning of QP for a given ES which is judged to be
definable by our framework.

(1) As seen from the end of §2.1, the application of our framework begins with
giving an ES = {O;}. For example, ESV is specified to be the set of two alternatives
“Yes” and “No”: “Yes” is to find a particle in a spacetime domain {2 and “No” is not to
find it in the domain. At this very first stage, the meaning of “(not) to find a particle
in 2”7 is not stated. This cannot be helped because the familiar measurement theory
of quantum mechanics describes only an instantaneous measurement or a sequence of
instantaneous measurements. Once one starts talking about an IS other than EST,
one faces the absence of its measurement-theoretical meaning. This is not an obstacle
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in carrying out calculations, because an ES is mathematically well-defined. It is defined
by the behavior of virtual paths with respect to a suitable domain in spacetime. For
example, “(not) to find a particle in §2” is defined by virtual paths which do (not)
cross 2. This mathematical definition is enough to calculate components (IT-2-1) and
thus enough to investigate C-1 and C-2. Our framework runs without a measurement
theoretical meaning of the ES and judges the definability of QP for the ES.

(2) One may then ask, “What on earth is the measurement theoretical meaning of
QP for an ES when the framework concludes the existence of QP?” This is perhaps
the kind of question which is not answered by the framework itself. In this thesis,
this is not completely answered in general terms. However an important clue to this
question is obtained by applying our framework to concrete examples. In Chap. V we
conclude that QP can be defined for ESIV and V when an initial amplitude belongs to
a specific class. As a remarkable consequence of the restriction of the initial amplitude,
values of QP turns out to be closely related to values of constant-time probabilities
|¥(X,T)|? in the domain relevant to the ES in question, which is a temporal domain
AT for ESIV and a spacetime domain {2 for ESV. This fact, when combined with the
fact that the measurement theoretical meaning of constant-time probabilities is clear in
the familiar measurement theory, enables us to interpret the QP for the ES within the
familiar measurement theory. For example, we can give a clear measurement theoretical
meaning to “QP to find a particle in £2” within the familiar measurement theory.

(1)&(2). Meaning of “QP to find a particle in §2” in turn clarifies the meaning of
“to find a particle in £2” itself. In this way, measurement theoretical meanings of ESTV
and V turn out to be clear within the familiar measurement theory. Whether this is
deep-rooted or accidental is an interesting problem worthy of further study, which is
however beyond the scope of this thesis. Anyway, whether or not QP can be defined
for a given ES is judged by our framework making no reference to measurements. In
QP-definable cases, as far as we have investigated, physical meanings of QP and that of
ES turn out to be clear within the familiar measurement theory. This in turn convinces
us that our framework is correctly constructed.

We have constructed a general framework in this chapter. In the application, our
first task is to calculate the sum over paths (IT-2-1). The next chapter provides the
“Fuclidean lattice method” which gives the precise definition of the sum.
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Chap. III. Euclidean Lattice Method

§1. Need of new definition

Taking ESI as an example, we explain the need of a new definition of sum over
paths. ESI is a set of possible numbers of times and places where a particle intersects
S. We shall simplify surface S to steplike surface Ssiep as shown in Fig. 5, as we will
do so in Chap. IV. Then in the investigation of C-1 for ESI, we have to calculate a sum
over paths of the following type

Z !SIX(T)] (TI1-1-1)

where the sum is over paths which link A to B and intersect the vertical part of Sstep

n times and no more with intersections A(7,) = ATy x --- x AT, as shown in Fig. 6.
Here we should note that the usual sum over paths is of the following form:

Z HSX (T (II1-1-2)
Be—AX.—A

where AX, = AX; X AXyX---X AXy. The sum is over paths which start from A, move
forward in time to intersect S, at AXy, S1, at AXy, -+, and St, at AX,, in this order
and arrive at B. For an infinite number n of time slicing, sum (III- 1 - 2) is given by the
last right-hand side of Eq. (II-1-1) with [°._dX; replaced by fAX,» dX;. (Notation: n

here is N —1in Eq. (II-1-1).) The set of spatial intervals AX, is called a cylindrical

set or quasi-intervals.n The case n = 3 is shown in Fig. 7. As (III-1-2) shows, in the
usnal “time slicing” definition of sum over paths, paths which can be summed up are
restricted to those paths that are expressible as a cylindrical set. By contrast, paths to
be summed up in (IIT-1-1) are specified by the set of temporal intervals A(T}); this
set is not a cylindrical set. Therefore the usual definition cannot calculate (IIT-1 -1).
Generally speaking, for an ES other than EST, we must evaluate a sum over paths
which are not expressible as a cylindrical set. To get over this difficulty, we need a
more flexible definition of sum over paths in which paths that can be summed up are
not restricted to those expressible as a cylindrical set. The definition must of course be
consistent with the usual definition for a cylindrical set. Such a flexible definition has

3
already been noted and used by Hartle )
The definition is based on a random-walk representation of Feynman’s path integration.

in his investigation of “wave function on 8.”

In the next section, we review this definition, partially quoting Iartle’s work.
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§2. Euclidean Lattice Method
2.1 Definition

Consider a spacetime lattice with integer-valued coordinates [z,t] as shown in Tig.
8. We introduce a random-walk on this lattice: A ‘particle’ moves forward in ‘time’ ¢ on
the lattice. At each point [z,1], the ‘particle’ can move to [z+1,t+1] with a ‘probability’
of 1/2 or to [z —1,t+1] with the same ‘probability’. By iterating this step, the ‘particle’
performs a random-walk, leaving a discrete ‘path’ (a sequence of points) on the lattice.
This random-walk is symmetric in the sense that the ‘probability’ to move to the right
and that to the left take the same value. A priori this random walk has no direct
relation to the real particle’s motion on the real spacetime (X,T'), motion which is
described by the propagator ®. We shall use single quotes ¢ ’ for what are relevant to
this random-walk to distinguish them from usages for a real particle. We also use the
notation that a point on the lattice and that on the real spacetime are denoted by a
lowercase italic and by an uppercase italic letter, respectively, such as a = [a,ta) and

A= (XA, TA).

Starting from an initial point a, the ‘probability’ u[b; a] that a ‘particle’ arrives at
a point b (t, < t) is calculated by the following discrete sum over ‘paths’> We first
associate each ‘path’ from a to b with the weight (1/2)? where p is the number of the
steps of the ‘path’ and is equal to ?y — t4, because ‘paths’ move forward in ‘time’. The
‘probability’ is then obtained by summing each weight over all possible ‘paths’. If the
walk is restricted to a certain region by additional boundary conditions, then the sum
is restricted accordingly. When there is no such restriction, we have

afbra = 3 (%)p

b;a (IM1-2-1)
)
(4

with

p=t=ty —ta, T=Tp— Ta, (T111-2-2)

where the sum is over all possible ‘paths’ which move forward in ‘time’ to connect a and
b; the last equality in Eq. (IIL-2-1) is obtained by counting the number of the ‘paths’
since p is common to all the paths (see Appendix A). When  + ¢ is odd, the binomial
coefficient is defined to be zero in accordance with the fact that no ‘path’ connects the
end points in such a case. This fact we call “odd-even asymmetry”.
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This discrete sum over ‘paths’ can be related to the usual sum over paths, namely
Feynman’s path integral. In particular, the quantum mechanical propagator ®(B; A)
for a free particle can be derived from the ‘probability’ u[b; a]. Let us set up a Euclidean
spacetime (X, T) corresponding to the real spacetime (X, T') and relate the spacetime
lattice [z,!] to the real spacetime via this Euclidean spacetime. We lay the lattice on
the Euclidean spacetime with spatial spacing m; and temporal spacing 7, so that

r=X/m,t=1[m. (I11-2-3)

A point [z,t] on the lattice is identified with the point (n1z,n2t) on the Euclidean
spacetime; conversely (X,7) is identified with [X/ny,7/m2]. Let us denote a point on
the Euclidean spacetime by a lowercase Greek letter such as a@ = (Xq4,74). In what
follows, a point on the lattice denoted by a lowercase italic is identified with the point on
the Euclidean spacetime denoted by the corresponding lowercase Greek. For example,
a = [q,ts) is identified with a@ = (X4, Ta), where coordinate values are related with
each other according to Eq. (III-2 - 3), so that

T = Xa/M, ta = Ta/M2. (I1- 2 - 4)

We write this simply as
a=aln. (I11-2-5)

Now let us consider the quantity u/2m;. This is a spatial ‘probability’ density on
the Ifuclidean spacetime, where the factor is not n; but 2nm; to take account of odd-
even asymmetry. (We also use single quotes for what are relevant to the Euclidean
spacetime.) We introduce the following continuum limit

Lim : 71 — 0 keeping X, T and ny/n? fixed such that n;/n? = const = m. (III-2-6)

This limit gives (see Appendix A)
. ulbja] L _ [m mX?
Lim -—5771‘— = (I)E(ﬁ, O!) = %exp (-— or ) (III -2 7)

X=Xg—Xa, T=78—Tq. (II1-2-8)

with

In taking the limit, we used Eqs. (III-2-1), (IIT-2-4), (IIT-2-6) and Stirling’s for-
mula. The quantity ®g is the well-known ‘probability’ density of Brownian motion (on
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the Euclidean spacetime). (The ‘probability’ that a ‘particle’, starting from « and un-
dergoing a Brownian motion with a diffusion constant 1/2m, arrives in a small interval
AX around Xg at ‘time’ 7g is given by ®g(8;a«)AX. The continuum limit (TI1 - 2-6)
we call the diffusion limit.) What was shown here is nothing but a constructive method
of defining a Brownian motion, starting from a random-walk and using the diffusion
limit in which n2/n? = const (diffusion limit) plays an essential role. Now, by the Wick
rotation

7 =iT,(Xa = Xa,X3 = XB), (III-2-9)

the density ®g is converted into the quantum mechanical propagator with the unit
h=1: '

. . mX?
®p(Xp,iTp; X4a,1T4) = \lé—g—fexp (zn;T ) = ®(B;A) (111 - 2 - 10)

with

X_:_XB—XA,TETB—TA. (HIQll)

At this stage m is identified with the mass of the real particle (m/h in the ordinary
unit). Having started from a random-walk on the Euclidean spacetime lattice, we have .
now arrived at the quantum mechanical propagator. In this way, the sum over paths
(IT-1-1) is the corresponding sum over ‘paths’ (III-2-1) on the Euclidean lattice
combined with the diffusion limit (III-2-6) and the Wick rotation to real time. This
is summarized as follows:

2
Z exp(1S) = Wick rotation{Lim Z (%) } . (II1-2-12)

pathseW ‘paths’€w

In the case we have just studied, paths and ‘paths’ are not restricted at all, that is,
W = (T, T4) x R with R being the whole space X € (—00,00) and w = [tp,1s] X 7 with
r being the whole space = € [—00,00] on the lattice, except that end points are fixed at
A and B for paths and at a and b for ‘paths’. Equation (III- 2 -12) also works to derive
the path-classification relation (II-1-16) from the corresponding ‘path’-classification
relation

ufb; a] = Zu[b; dulc;a] (ta < te < tp). (II1-2-13)

Te

(This is obtained by classifying ‘paths’ from a to b according to the location z. they
cross the ‘surface’ sqe of constant ‘time’ t.. See Fig. 9.) Let us divide both sides by 2n;
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and take the diffusion limit. Noting Eq. (III-2-7) and that ), (2n;) becomes [ dX,
in the limit, we have

Pp(B;a) = /dX—, Pp(8;7)PE(v;a). (IIT-2-14)

By the Wick rotation, we have
®(B;A) = /dXC O(B;CYP(C; A). (ITI- 2 - 15)

Integrations over X, and X¢ range from —oo to co. We should note that the summand
and the integrands on the right-hand sides of Eqs. (ITII-2-13) ~ (III- 2-15) obey the
scheme (IIT-2-12) with W and w shrinking to X¢ at time Te and z. at ‘time’ ¢,
respectively. Here we make the following observation:

(i) The time slicing definition (II - 1 - 1) of a sum over paths results from Eq. (ITI- 2 - 15).
(i1) Equation (III-2-15) results from Eq. (IIT-2-12).

From these two, it follows that the sum over paths defined by Feynman’s path integral
is, at least, included in the sum over paths defined by Eq. (III-2-12). Furthermore we
note the following fact:

(iii) The right-hand side of (II1 - 2 - 12) is well-defined for arbitrary w because the sum
on the side is merely a discrete sum; for instance, we can carry out the discrete
sum which corresponds to (III - 1-1), as will be shown in the next chapter.

In view of these circumstances, we define a sum over paths for an arbitrary W by
the right-hand-side of Eq. (II1-2-12) with the rule (III-2-6). This definition of a
sum over paths is named the Euclidean lattice method by Hartle who first proposed
this definition. He calculated particular sums over paths by use of this method in his
investigation of “wave function on a general surface”.

Defining a sum over paths by Eq. (III-2-12) with (III-2-6), we make the right-
hand side of Eq. (IT-2-1) well-defined. This enables us to apply our framework con-
structed in Chap. II to concrete examples of ES. In the next subsection, we calculate
necessary sums over paths in advance.
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2.2 Application and useful formulae

We begin with a combinatorial problem. Let us evaluate the following sum over
4 9
paths’:

flz, 1] = £[0,¢;2,0]

5 (%)‘ ~ (III-2-16)

[0,t]«e-[,0]

where the sum is over ‘paths’ which connect [z,0] and [0,t] and which are restricted to
the half space £ > 0 as shown in Fig. 10. (The symbol <o is to stress that ‘paths’ are
restricted to the half space z > 0.) Note that ‘paths’ are allowed to touch z = 0 on the
way. Consider the ‘probability’ (IIT-2-1) with a = [,0] and b = [0, ]:

ul0,t;z,0] = Z (%)t

[0,¢]—[2,0] (II1-2-17)
1/ t
=)
2

Here and in what follows, the symbol | | is to make formulae valid for £ < 0. The sum
(IIT -2 - 17) is contributed from the ‘paths’ invading the region = < 0 which is forbidden
in (IIT -2 - 16). By subtracting this contribution from (IIT-2-17), we can evaluate the
sum (11 - 2 - 16). To do this, we introduce a random-walk which connect [—2 — 2sgne, 0
and [0,]. The starting point [—z — 2sgnz,0] is the spatial mirror image of [z, 0] with
respect to = —sgnz. The ‘probability’ for this walk is given by

¢
ul0,t; —z — 2sgnz, 0] = Z (%)

[0,¢] —[—2—2sgn=,0] (II1-2-18)
1 ¢
—or\lel g )

As understood from Fig. 11, there is one-to-one correspondence between ‘path’ to be
subtracted from (ITI-2-17) and a ‘path’ which contributes to (III - 2- 18); furthermore
they have the same weight (1/2)!. It thus follows that (see Appendix A)

flz,1] = u[0,t;2,0] — u[0,t; —z — 2sgnz, O]
_lzl+1f t+1 ) (TIT-2-19)
Tt \EH L)
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We first apply the Euclidean lattice method to

> €f, (111 - 2 - 20)

(0,T)«(X,0)

where X > 0 for simplicity and the sum is over paths which link (X,0) to (0,7") and
which do not invade the region X < 0 until the end time T. The sum over ‘paths’
corresponding to (IIT- 2 -20) is then

flz,t] = f[0,t; z, 0]

. (%)‘ (I - 2- 21)

[0,¢]¢e-[2,0]

where the sum is over ‘paths’ which connect [z, 0] and [0, ¢] never hitting = 0 before
‘time’ ¢ (see Fig. 12). This is essentially the same as (III -2 - 16) except that ‘paths’ do
not touch z = 0 on the way. (The symbol « here should be read accordingly.) Let us
divide the ‘paths’ into two parts, ‘paths’ from [z, 0] to [1,t—1] and a ‘path’ from [1,t—1]
to [0,¢]; the sum (III-2-21) is decomposed accordingly. Since the former ‘paths’ are
of the type which contributes to (IIT -2 - 16) with an absorbing barrier placed at z = 1
instead of £ = 0 and the latter is merely one step, we obtain

flz,1] =%Xf[0,t—l;:v—1,0]

el [ ¢ (I - 2 22)
~5e ().

We shall give some comments on this, for this is the starting point of all formulae we
derive below. In the theory of random walk, it is well known that a ‘particle’ starting
from a point £ # 0 cannot stay only in the half space x > 0 or £ < 0 and thus crosses
z = 0 without fail. The first ‘time’ ¢ at which the ‘particle’ hits £ = 0 becomes a random
variable. (ITI-2 -22) is nothing but the ‘probability’ for this first hitting time. All the
‘paths’ whose first hitting of = 0 occurs at ‘time’ ¢t contribute to the sum (III- 2. 21)
to give (IT1- 2 - 22). ‘Probabilities’ (IIT - 2 - 22) are, as it must be, normalized to

iﬂw,t]ﬂ- (111 - 2 - 23)
t=||

The proof is given in Appendix A. By the way, the difference between “to intersect”
and “to hit (i.e., intersect or touch)” is clear on the lattice, as we have just experi-
enced in calculating sums (III-2-16) and (III-2-21). This is one of the advantages
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which the Euclidean lattice method has. So long as we use Feynman’s path integral
(in configuration space), it seems difficult to clarify such a difference because of the
continuity of paths. Since the difference between ESI and ESII lies in the contribution
from paths which touch the surface §, the Euclidean lattice method plays an essential
role in defining ESI and II.

Returning to our main concern, we take the diffusion limit of (III-2-22). We
write lattice coordinates of (III -2 -22) in terms of Euclidean coordinates according to
(IIT - 2 - 3), divide (ITI-2-22) by 27, and then let ; — 0 obeying the rule (III - 2 - 6).
The result is (see Appendix A)

f /2 2
. fIX[m, T[] _ _ (mXx\' mX
Lim o =F(X,7)= 53 exp | — 5 ) (I11- 2 24)

By Wick-rotating this result according to (III-2-9), we complete the calculation of
(TIT- 2 - 20) to have

> € = F(X,iT)

(0,T)+(X,0)
(11T - 2 - 25)
mx? 1'/* mX?
B [%(iT)J or (’ 2T ) |
Next we apply the Euclidean lattice method to
> €f, (T11 - 2 - 26)
B—(0,T)«A
TeAT

where the sum is over paths which link A to B and whose first hitting time of X = 0
lies in AT. For simplicity we put A = (X4,0) and X4 > 0. The corresponding sum
over ‘paths’ is

> (%)u , (IT1- 2 27)

be[0,t]0a
teAt
where the sum is over ‘paths’ which link a = (z,,0) (z, > 0) to b and whose first hitting
‘time’ of x = 0 lies in At. Defining ¢ = (0,¢) for t € At, we divide the ‘paths’ into two
parts, ‘paths’ from a to ¢ and ‘paths’ from ¢ to b. The former ‘paths’ are restricted to
the half space * > 0 and the latter are not restricted at all. The sum (III-2-27) can
be decomposed accordingly, giving
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> (3)"-x{

> () {z6)}

«—[0,t]+e-a At \be—c
= reat (111 - 2- 28)
= Z u[b; c] fle; a] -
teAt

The sum over paths (III-2-26) is obtained from (III-2-28) by taking the diffusion
limit and Wick rotating to real time. We divide the last right-hand side of (III- 2 - 28)
by 2n;, rewrite lattice coordinates in terms of Euclidean coordinates and take the limit

(IT1- 2 - 6). Noting f[c;a] = f[2a,t] and using Eqs. (III-2-7) and (I11 - 2 - 24), we have

1 _
Lim% teZA:tu[b; ¢ fle;al = AT dr®g(8;0,7)F(Xa,T), (III - 2 - 29)

where ®g and F' are defined by Eqs. (IIT-2-7) and (III-2 - 24), respectively. This is
Wick rotated (7 = 1T, Xq = X4, Xg = Xp) to give

T S / d(iT)®(B:0,T)F(X 4,iT). (IIT - 2. 30)
B—(0,T)we(X4,0) AT
TeAT

Although we have assumed X 4 > 0, this is also correct for X4 < 0. This is physically
because we are dealing with a free particle and is mathematically because the sum over
‘paths’ from @ to ¢ appearing on the first right-hand side of Eq. (III-2-28) remains
unchanged if we take r, < 0 and restrict ‘paths’ in the region * < 0. When AT is equal
to the time difference between the end points, the integral on the right-hand side of Eq.
(IIT - 2 - 30) can be carried out analytically by use of the formula

Tl
/ dT(T' = 7)™ 2732 exp (— G __ &>
0

-7 T

SNy (2 4 il (ITT- 2 31)
:-(CzT'> e Y !
giving
. TB
> 'S = / d(iT)®(B;0,T)F(X 4,iT) (I1T-2-32)
B—(0,T)(X4,0) 0
0<T<Tp

®(B; X4,0) for XgX4 <0, (IIT- 2 - 33)
®(B; ~X4,0) for XpX4 > 0. (I - 2- 34)
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The meaning of this formula is clear. When XpX4 < 0, every paths contributing to
(I1T - 2 - 30) hits the spatial origin X = 0 at least once. Thus the sum (III - 2-30) with
AT = Tg is over all the paths which connect A and I and therefore gives the propagator
connecting the end points; this explains Eq. (ITI-2-33). When X5 X4 > 0, some paths
hit the origin but others do not. In this case, note that the sum (III - 2-30) remains
unchanged by the replacement X 4 — — X4 because of F'(—X4,1T) = F(X4,:T), which
follows from (IIT-2-25). Thus the paths to be summed over in (IIT-2-30) can be
replaced by the paths which connect (—X4,0) and B, which are on the opposite sides
of X = 0. Since the replaced paths hit the origin at least once, the sum (III-2 - 30)
with AT = Ty gives the propagator which connect (—X4,0) and Bj; this explains Eq.
(IIT - 2 - 34).

Lastyly we show that

3> €5 = ®(B; X4,0) - ®(B;—X4,0) for XpX,>0, (11T -2 - 35)
B(-O-(XA,O)

where the sum is over paths which connect A = (X4,0) and B and which never hit
the origin X = 0 on the way. This can, of course, be proved from the corresponding
sum over ‘paths’. However we can shorten the proof by using Eqs. (IIT-2-33) and
(II1- 2 - 34). Since A and B are on the same side of the origin, some paths hit it and
others do not. The contribution from paths which hit the origin at least once is given
by (II1- 2 -34). Subtracting this from the contribution from all the paths, we have Eq.
(ITT - 2 - 35).

§3. Extension to the case of a nonzero potential
3.1 Generality

The role of the Euclidean lattice method is that it gives a precise definition to
~ the sum over paths on the right hand side of (II-2-1), thereby making the general
framework applicable to concrete examples of ES, or equivalently, making the question
(I-1-8) well-posed. We have reviewed the method and applied it to a free particle. Al-
though this is essentially enough for investigations in later chapters, whether the method
is extendible or not to the case of a nonzero potential is a fundamental question. This
question must be answered affirmatively to make sure that the question (I-1-8) itself
is well-posed even in the presence of a potential, which is one of our basic standpoints.
In the following we show that the method is extendible to such a case, clarifying how
the scheme (III - 2 - 12) have to be modified when a potential exists. This issue has not
been discussed by Hartle.
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The Euclidean lattice method summarized as (III-2-12) is made up of two ele-
ments:
(i) The diffusion limit which converts a random-walk ‘probability’ into a ‘probability’
density of Brownian motion.
(i) The Wick rotation which converts the ‘probability’ density into the quantum me-
chanical amplitude of interest.
The first element (i) is a constructive definition of Brownian motion from random walk.
The second element (ii) is understood as the correspondence between the Schrodinger
cquation for a free particle and the diffusion equation. In other words, for a free parti-
cle, the Euclidean lattice method finds its ground in the fact that the free Schrédinger
cquation Wick rotated to imaginary time describes a continuous stochastic process
(Brownian motion) and the continuous process is constructed from a discrete stochastic
process (random walk) in the diffusion limit (III - 2-6). In the presence of a nonzero
potential, the Wick rotated Schrodinger equation does not describe a stochastic process
any more as discussed below. In extending the Fuclidean lattice method, we wish to
keep the point that a sum over paths is constructed from a sum over ‘paths’ of ran-
dom walk. Hence we shall proceed as follows: First we relate the Schrodinger equation
having a potential term to a Fokker-Planck equation describing a continuous stochastic
process. Next we construct the continuous process from a discrete stochastic process,
which turns out to be a non-symmetric random walk, that is, a random-walk in which
‘probability’ to move to the right and that to the left are not the same.

Consider the Schrodinger equation

ié\l!(X, T)  18°¥(X,T)

9T 2 8Xx? +V(X)¥(X,T), (II1-3-1)

where we have considered a time-independent potential V(X). Wick rotating this equa-
tion according to 7 = T, we have

OVEg(X,T) _ laz\IIE(X,T)

o 5 T Hx2 - V(X)¥g(X,1), (III- 3-2)

where U g(X,7) = U(X, —ir). This does not describe a stochastic process in the sense
that ¥ g cannot be a ‘probability’ density because

(f_T dXUg(X,7)#£0  for V(X) #0. (11 - 3-3)

However ¥ g is decomposable into a ‘probability’ density and a function defined by the
potential as demonstrated below. We introduce a function U(X) and a constant E and
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write

Vp(X,7) =exp(U(X) — ET)p(X,T).

Substituting this into Eq. (III-3-2), we have

op _p(dg | - -
or = 2 (335*9 —AV -8
_o( 10
X 20x )"
where
_ _ _dU(x)

Let us choose g so that it satisfies

dg 2 _
IX:-*—Q —Q(V—E)—-—O.

Then Eq. (III - 3 - 5) becomes a Fokker-Planck equation

O __ 98 ( 10
or X 20x )"

Function p(X,7) satisfies the conservation law

0

(111 -

(T11 -

(I11 -

(I11 -

(T11 -

(11T -

211

3.9)

We can interpret p as a ‘probability’ density of a continuous stochastic process described
by (III-3-8). Let us consider the Kernel for the time evolution of p, which we shall
write p(B;a) = p(Xg,78; Xa,Ta) (78 > Ta). This kernel is the solution to the Fokker-

Planck equation (III - 3 - 8) satisfying the initial condition

lim p(B; ) = 6(Xg — Xa).

T3 Ta

Define

Xp |
Pp(B;a) = exp (— /X 9(X)dX — E(7g - Ta)) p(B; ).

(1T - 3 - 10)

(I11-3-11)

Since g(X) has been chosen to be a solution to (IIT-3-7), function ®g(8;a) thus
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defined is the solution to Eq. (III- 3 - 2) satisfying the initial condition

lim ®5(8;a) = 86(Xs — Xa). (I - 3-12)

T8 Ta

That is, @ g(5; ) is the Euclidean propagator. Wick rotating ® g(3; a) back to real time
according to 7 =T, we recover the quantum mechanical propagator ®(B; A) which is
the solution to the Schrodinger equation (III - 3 - 1) satisfying the initial condition

lim ®(B;A) =6(Xp— Xyu). (IT- 3-13)

'5—Ta

Let us summarize the discussion so far. Given a time-independent potential V(X),
we choose the function g(X') as a solution to Riccati’s differential equation (III-3- 7).
Then the propagator ®(B; A) in the presence of a potential V(X) can be constructed
from a probability density p(f; «) of a continuous stochastic process described by the
Fokker-Planck equation (III- 3 - 8).

Comments: Up to now, the constant F is arbitrary so long as it is finite (this is necessary
to make the transformation (III-3-4) well defined). Given a constant E, the solution
to Eq. (IIT-3.7) is not unique. Any solution is acceptable at this stage so long as
U(X) is finite. The succeeding discussion uniquely determines the value of E and the
function g(X).

We turn to find such a discrete stochastic process whose diffusion limit gives the
continuous stochastic process described by Eq. (IIT- 3 - 8). Consider a random walk on
the Euclidean lattice [z,t] whose walk to the left and that to the right are associated
with site-dependent probabilities {[z] and r[z], respectively, such that

lz] +rlz] =1, 0 < ![z], 0 < 7lz]. (IIT- 3 - 14)
(The case l[z] = r[z] = 1/2 was already studied.) Let u[b;a] be the ‘probability’ that

a ‘particle’ starting from a = [z4,,] arrives at [xp,3]. ‘Probability’ u[b;a] obeys the
difference equation

ulb;al = rlzy — Lulzy — 1,6 — 1;a] + oy + ulzg + 1,4 — 1; d] (III - 3 - 15)

and satisfies the initial condition

ula; a] = 1. (IIT- 3 - 16)

Solving this difference equation step by step, we obtain the sum-over-‘paths’
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expression for u

ulb; a] = Z p(‘path’), (I1-3-17)

be—a

where p(‘path’) is the weight associated with each ‘path’ connecting a and b; it is
a product of I’s and r’s. For example, consider a ‘path’ which starts from a and
walk to the left [z, — 1,%4 + 1], next to the right [za,ts + 2], ---, and finally comes
into b from its left [zy — 1,t, — 1]; the weight associated with this ‘path’ is given by
i =rl[ey — 1]+ -r[za — 1)l[za]. The right-hand side of (III - 3 - 17) is the sum of weights
over all the ‘paths’ connecting the end points. Let us organize this random walk in such
a way that it reproduces the continuous stochastic process described by (III-3-8) in
the diffusion limit (III-2-6). This is accomplished by identifying the diffusion limit of
the difference equation (III - 3 - 15) with the Fokker-Planck equation (III - 3 - 8). Rewrit-
ing the difference equation in terms of continuous coordinates X and 7 according to
(TT1- 2 - 3), we have

wlB/n;a/n] =r[Xg/m — u[Xg/m — 1,78/n2 — 1; /7] (111-3- 18)
+U[Xg/m + u[Xg/m + 1,78/m2 — 1; /7], '

where the notation (ITT-2-5) is used. Divide both sides by 2m; and take the diffusion
limit according to the rule (III - 2 - 6). Here we assume that the following limits exist:

p(8; ) = Lim—ul8/n; /1, (I11-3-19)
m
R(X) = lim r(X/m] _1/2, L(X) = lim X m) = 12 (I - 3 - 20)
m—0 m m—0 m

Quantities on the right-hand sides of (IIT - 3 - 19) and (III - 3 - 20) are, before limits are
taken, spatial ‘probability’ densities on the lattice; what have been assumed is that these
densities become quantities which are fully written in terms of continuous coordinates
of the Euclidean spacetime in the limit so that they can be interpreted as ‘probability’
densities on the Euclidean spacetime. This was the case when there was no potential;
we expect that it is also the case even in the presence of a potential. The limit on
the right-hand side of (III - 3 - 19) will later be identified with p(8; a) which has already
been introduced, so that we have denoted the limit accordingly. Assuming the existence
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of these limits, we have

. 1
p(B; ) = Lim [{mR(Xg —m) + §}P(Xﬂ —m,Tg —m;a)
1 (- 3-21)
+{mL(Xg +m)+ §}P(Xﬂ + 1, T — n2; 01)} :

Expanding the right-hand side to first order in 7, and to second order in 7;, we obtain

op 0 1 0

where p = p(X, m;a), R = R(X), L = L(X) and we used Eq. (IIT-3-14) and na/n} = 1
(the convention m = 1 has been used in this section). Identifying Eq. (III-3 -22) with
Eq. (I11-3-8), we have R — L = g. From this, with R + L = 0, we obtain

tim T 12 o),
m—0 771/2
Iim 1= = —qg(X).
In terms of lattice coordinate x, this reads for an infinitesimal 7,
1 1
rle] = (1 +mg(me)), lz] = 51 = mg(mz)). (I - 3 - 24)

In order for this to be consistent with 0 < r[z], {[z] < 1 for an infinitesimal 7;, function
g(X) must be bounded, that is, there exists a positive quantity M such that

lg(X)| < M for VX. (IT1 - 3- 25)

Otherwise (III - 3 - 24) fails no matter how small we choose 7. In what follows, we argue
that the condition (III-3-25) uniquely determines the constant £ and the function

9(X).
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Let us rewrite g(X) into the following form:

(X)) = —(-1-—)§——¥— (IT1 - 3 - 26)

where h(X) is non-vanishing over the entire interval because of (III -3 - 25), namely,

p—

MX)#0  for VX. , (I11- 3-27)
Substituting (II1I-3 - 26) into Eq. (IIT-3 - 7), we obtain

_1d%h(X)

~5 =5+ VEORX) = Bh(X). (I11 - 3 - 28)

This is precisely the eigenvalue equation obtained from the time dependent Schrodinger
equation (IIT-3-1). The existence of eigenfunctions h(X) and their properties are
familiar issues in quantum mechanics. We assume that this eigen value equation has
bound state solutions. This is the case if the minimum value of the potential Viin
satisfies the condition Vign < Min(Vy,V_), where V4 and V_ are the respective limits
of the potential when X tends towards oo and —oo. If the potential does not satisfy
this condition, we place infinitely high potential barriers at X = ®oo and reconsider
that the original potential is the finite-region part of the modified potential, thereby
making the condition satisfied. This is not a bad modification since, in a realistic
situation, a particle is usually found in a finite region. Considering in this way, we can
discuss bound state solutions of Eq. (III - 3 - 28) for an arbitrary potential. Bound state
solutions exist for discrete eigen values E; let us arrange these values in the increasing
order such that Eo < Ej < ---. Since we are considering 1-dimensional case, the
eigen value spectrum is non-degenerate. Let hya(X) be the nth eigen function having
cigenvalue E, (n =0, 1, ---). What is important for us is the following fact which we
shall call “node theorem”.

Node theorem: The nth eigenfunction hn(X) has n nodes.

This guarantees that there is one and only one solution which satisfies the condition
(I11 - 3 - 27); it is the ground state eigenfunction. The condition (III - 3:27) has now
uniquely determined the function h(X) and the constant E. In this way, the constant
E and the function g(X) which define the transformation (III -3 -4) (with (TIL- 3 - 6))
are uniquely determined by the condition (IIT -3 - 25) to be

1 dhe(X) _ dloghg(X)
he(X) dX  dx

E=Eg ¢(X)= (11 - 3 - 29)

where hg(X) = ho(X) is the ground state eigenfunction of Eq. (II1- 3 - 28) and Eg = Fy
is the ground state energy.
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We have now completed constructing a discrete stochastic process (a random walk)
whose diffusion limit gives the continuous stochastic process described by Eq. (IIT -3 - 8):
Given a potential V(X), solve the eigenvalue equation (III - 3 - 28) to obtain the ground
state eigenfunction hg(X). Define a function g(X) from hg(X) according to Eq.
(IT1-3-29). The random walk in question is then uniquely constructed on the lat-
tice [z,t] according to the rule (III-3-24) and Eq. (IIT-3-15).

Here it would be in order to rewrite several equations which include g(X) and U(X)
in terms of hg(X). The basic relationship is, from Eqs. (III - 3-6) and (III - 3 - 29),

_ dloghg(X) _  dU(X)

or equivalently,
X -
ha(X) = const. exp (~U(X)) = exp( / g(X")ax"). (IT1 -3 31)
The ‘probability’ of random walk in one step is given by
1 dlog hg(m<) _ 1 dlog hg(mz)
T[$]_§(1+—T , l[a:]—§ I—T . (I11- 3 - 32)

Since the ground state is non-degenerate, hg(X) is a real function within a phase; r{z]
and [[z] are certainly real. Let us define a two-point function Gg(8; ):

L he(Xg)eFer
Gg(B;a) = ho(Xa)cEems" (ITI- 3 - 33)
The Euclidean propagator (III-3-11) is then written as
Pg(8; @) = Gp(B; @)p(B; ). (111 - 3 - 34)

By the Wick rotation which puts 7g = i1g, 7o = 1T4, Xg = Xp and X, = X4, we have

®(B; A) = G(B; A)p(B; A), (111 - 3 - 35)
where
A = oy ey P(A4) 3.
G(B; A) = Gg(Xp,iTg; X4,iT4) = o(B) (111 - 3 - 36)
with
W(X,T) = hg(X)e'FeT, (111 - 3 - 37)

which is the Schrodinger’s wave function for the ground state. Functions G'g and G
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have the following properties:

Ge(B; ) = Gg(B;7)GE(v; );

G(B; A) = G(B; C)G(C; A). (IT- 3 - 38)

Summarizing all the discussions so far, we have now acquired a constructive method
of defining and calculating the quantum mechanical propagator ®(B; A) starting from
a sum over ‘paths’ of a random walk.

(i) Given a potential V(X), we first solve Eq. (III-3-28) for its ground state to
obtain hg(X) and Eg. We then go down to the Euclidean lattice [z,t]. To a
rightward walk from [z,t] to [z + 1,¢ + 1], we assign the weight r[z] defined by
Eq. (IIT-3-32). The weight {[z] is assigned to the leftward walk from [z,?] to
[z —1,t]. A weight of a ‘path’, which we denote by p(‘path’), is defined to be the
product of r’s and I’s multiplied along the ‘path’. Given end points a and b, we
sum up u(‘path’) over all the ‘paths’ which connect the end points. We denote
the result by u[b;al.

(ii) We take the diffusion limit of u[b; a] (divided by 27;) according to (III-2-6) and
write the result as p(8;a) as indicated by (III-3 - 19).

(iii) We Wick rotate p(8; ).
(iv) We multiply the result by the two point function G(B; A) which is constructed

from the ground state wave function as Eq. (III-3-36) with (ITI- 3 - 37). The re-
sult is the propagator ®(B; A) which has the sum-over-paths expression (II-1-1).

The above construction is summarized as follows:

Z exp(iS) = G(B; A) x |Wick rotation{Lim Z ﬂ(‘path’)} , (III-3-39)
pathse W ‘paths’€w

where A and B are the end points of W; W and w are, in the construction of the
propagator, the same as those explained after (IIT-2-12). The procedure of dividing
the sum over ‘paths’ by 27; has not been written out in (III-3- 39). This is because we
will later apply this scheme to a sum over ‘paths’ which is divided not by 2m; but by
21,. Ilere the dividing procedure is to be understood as being included in the symbol

Lim.

It was shown in §2 that, for a free particle, the composition law (TI1- 2- 15) can be
derived from the composition law (IIT-2-13) on the lattice according to the scheme
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(ITI-2-12). In the presence of a potential, same thing can be said if the old scheme
(III - 2 - 12) is replaced by the new one (III - 3 - 39), which we shall now demonstrate. By
classifying the ‘paths’ contributing to u[b; a] with respect to the crossing of the ‘surface’
of ‘time’ t., we have the composition law (IIT-2-13). (Since ‘paths’ are discrete, this
classification is always possible and therefore we can always write down the composition
law on the lattice as a well-defined equation.) Dividing both sides of (III - 2 - 13) by 21,
and taking the diffusion limit according to (III - 2 - 6), we once have

p(B;0) = /dl yP(B;)p(7; ). (IIT - 3 - 40)

According to the scheme (III- 3 - 39), both sides of the above is Wick rotated and then
multiplied by the factor G(B; A). Noting the property (III -3 - 38), we have

G(B; A)p(B; A) = / dXoG(B; C)p(B; C)G(C; A)p(C; A). (T - 3 41)

Because of (IIT-3-35), this is the real-time composition law (III-2-15).

Since Feynman’s path integral (in configuration space) is obtained from the com-
position law (III-2-15), we can say that the path integral is included in the scheme
(IT-3-39). Moreover the sum over ‘paths’ on the right-hand side of (III-3 - 39) is
merely a discrete sum and is therefore always well-defined. Even a sum over paths for a
non-cylindrical set, for which Feynman’s path integral is not applicable, can be defined
by this scheme. Hence we adopt the scheme (II1 - 3 - 39) as a flexible definition of a sum
over paths. In this way, the Fuclidean lattice method is newly defined to be (111 - 3 - 39)
when there is a time-independent potential. Therefore, even in the presence of such a
potential, the sum over paths on the right-hand side of (I1-2-1) is well-defined. This
makes sure that the our question (I-1-8) is well-posed even in such cases.

3.2 Application

We apply the scheme (III-3-39) to two sums over paths. One is the sum over
paths (III-2-25) for the “first hitting amplitude” F and the other is the “half-space
sum over paths” (III-2-35) in the presence of a potential V(X).

(I) The first hitting amplitude.
The evaluation of the sum over paths on the left-hand side of (ITT - 2 - 25) also begins with
calculating the corresponding sum over ‘paths’ (III-2-21) in which the weight (1/2)!
is replaced by p(‘path’). We then take the diffusion limit. Assuming the existence of
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the limit, we write the result as F(X,7).

fle,d= S nlpath),

[0,t]-[,0]

F(X,r) = Lim X/ /m],
22

(111 - 3 - 42)

The sum for f is over ‘paths’ which connect [z,0] and [0,¢] and which are restricted to
the right half-space z > 0 when z in [z,0] is positive or to the left half-space z < 0
when z in [z, 0] is negative; this restriction is expressed by the symbol <. According
to the scheme (II1-3-39), we Wick rotate F(X,7) and then multiply by the factor
G(0,T; X,0), thereby having

> €5 =G(0,T; X,0)F(X,iT). (I11 - 3 - 43)
(0,T)«(X,0)
For later use we define
F(X,7) = Gg(0,7; X,0)F(X,T). (1T - 3 - 44)
It follows that
Y ¥ =F(X,iT) = G(0,T; X,0)F(X,iT). (111 - 3 - 45)

(0,T)¢(X,0)

Although we have completely defined the first hitting amplitude F'(X,:T), the above
definition itself is not suitable for the actual calculation of F. For that purpose, an
equation is useful which F satisfies. In fact, (III-2-33) is such an equation. It also
holds even in the presence of a potential V(X). We shall first prove this and then solve
it formally.

Let us note that Eq. (III - 2 - 28) also holds, provided that weights of the form (1/2)*
are replaced by p(‘path’). (This is because Eq. (III-2-28) expresses a manifestly
possible ‘path’ classification.) Consider the special case At = t; —t;. The sum on the
right-hand side of (IT1-2-28) then exhausts all the ‘paths’ from a to b to give ufb;a].
Therefore the equation becomes

u[b;a} = Zu[b; c)f[ra,t] for zqap <0, ¢ =[0,t], (III - 3 - 46)
1

where u and f are of course defined by (IIT-3-17) and by (III -3 -42), respectively.
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Dividing both sides by 27; and taking the diffusion limit, we have

p(B; ) = /0 " drp(B;0,7) F(Xa, 1), (I11 - 3 47)

where XgXs < 0 and we have used Eqs. (III-3-19) and (III - 3 - 42). Wick rotating
and then multiplying by the factor G(Bj; A), we obtain Eq. (III-2-33), where we have
used Eqs. (IIT-3-35) and (II1- 3 - 45).

Let us solve (ITI-2-33). Since we are considering a time-independent potential, the
propagator has the translational invariance in time, so that we shall write ®(B; A) as
®(Tp — Ta|XB,X4), displaying its time dependence explicitly. Equation (III - 2 - 33)
then becomes

Ts
®(Tp|Xp,X4) = / diT)®(Tg—T|Xp,0)F(T|X 4) for XpX4 <0, (IIT-3-48)
0

where F(T|X) = F(X,iT). This is a Volterra integral equation of the first kind for the
unknown function F. According to the theory of integral equation, the solution F' is

given by ,
' 1 ["* $(s|Xp, Xa)
iF(T|X4) = ——/ ds 2 L2 eTe III- 3 - 49
TX) = 57 [, ioe ™ (61X 5,0) ( )
where ¢ is the Laplace transform of ®, namely,
oo
d(s| Xp,X4) = / dTe_'T(I)(TIXB,X'A). (IIT - 3 - 50)
0

On the right-hand side of (III - 3 - 49), the integration contour is an infinite vertical line
in the complex s-plane and the constant = is chosen so that all the singularities of the
integrand are on the left-hand side of the contour. Formula (IIT- 3 - 49) gives the formal
expression for the first hitting amplitude F. If we use

®(T|X g, X4) =< Xp|exp(—iHT)|X4 >, (I1- 3 - 51)

where I is the Hamiltonian, we can perform the time integral in (III - 3 - 50):

(| Xp, X 1) = /0 dT < Xpg|exp(=(s +il)T)| X4 >
1
s+ i1H
_ 5 Lol (nla

s+ ik,

=< XBI

X4 > (111 - 3 - 52)

b/



221
Norifumi YAMADA

where |n > is an eigenstate of the Hamiltonian H with an eigenvalue Ey, namely,
Hln >= Epjn > . (I1I- 3 - 53)

This shows that the first hitting amplitude F' can be defined when the series on the
Jast right-hand side of (IIL - 3 - 52) converges. Let us assume that the potential is such
that makes the series converge. (The series converges for a free particle (see Appendix
B). Moreover, if |¥1 > and |3 > are states of unit norm, then | < Uyle *HT |0y >
| < 1 and the Laplace transform of < Wyle*HT| Wy > certainly exists. Hence our
assumption would not be very restrictive.) Solving the eigenvalue equation (111 - 3 - 53)
and substituting (IIT- 3 - 52) into (ITI- 3 - 49), we obtain the formal expression for I in
terms of eigenvalues and eigen functions of the Hamiltonian. To explore more about
F with concrete examples of V(X) is itself an interesting issue. However we do not
need an analytic expression for F in later investigations; what we need there is the only
fact that I satisfies the integral equation (III-3-48). So we shall not be engaged in
calculating F for concrete V’s. For a free particle, the integral equation can be solved
explicitly and the result agrees with (IIT-2 -24). This will be shown in Appendix B.

Here, for later use, we shall also extend Eq. (IIT-2- 34) to the case of a nonzero
potential. Equation (III -2 - 34) does not hold in the presence of a general potential.
When there is no potential, there is the symmetry F(—X,iT) = F(X,iT) because
a path from (X4,0) to (0,T) and its mirror-reflected path from (—X4,0) to (0,T),
where T is the time of first hitting of X = 0, are associated with the same amplitude.
This symmetry explains why Eq. (III: 2. 34) holds for the same F' that satisfies Eq.
(11T-2-33), as already discussed in §2.2. A general potential breaks this symmetry and
Eq. (IIT -2 - 34) fails. Ilowever, this symmetry is retained by a symmetric potential
V(-X,T) = V(X,T), so that it is reasonable to expect that F satisfies Eq. (II1-2-34)
in the presence of such a potential. Confining ourselves again to the time-independent
case, we shall prove this in the context of the Euclidean lattice method. Let us consider
a symmetric and time-independent potential:

V(-X)=V(X). (TIT - 3 - 54)
Consider the quantity on the right-hand side of Eq. (IIT-3 - 46). First we shall prove
flza,t] = f[-a,t]. (111 - 3 - 55)

Recall that f is defined in Eq. (III-3-42). Consider a ‘path’ contributing to the
sum defining f[z,,t] and its mirror image with respect to z = 0, which contributes
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to f|—z4,t]. Let us pick up a rightward walk linking [z, ] to [z + 1,t + 1] from the
former ‘path’ and consider its mirror-reflected process from [~z,t] to [-z — 1,t + 1],
which is a leftward walk picked up from the latter ‘path’. The weights of the rightward
and the leftward walk are respectively r[z] and {[—z], where r and [ are defined by Eq.
(III - 3 - 32). Note that hg(X) is even since our potential is even. It then follows from
Eq. (IIT- 3 - 32) that ‘

rlz] = i[-z]. (II1 - 3 - 56)
Since this holds for Yz, the former and the latter path have the same weight and therefore
Eq. (IIT-3-55) holds. Now we write Eq. (IIl-3-46) with z, replaced by —z, and
then use Eq. (IIL- 3 - 55) to have

ulb; —z,,0] = Zu[b; | f[Ta,t], for zaxy > 0, ¢ =[0,1]. (T1I1 - 3- 57)
t

Dividing both sides by 2n; and taking the diffusion limit, we have
3 -
(B ~Xas0) = [ drp(830,7)F(Xay 7). (ITI - 3. 58)
0

Wick rotating and multiplying by the factor G(B; —X4,0), we once have
Ts _
®(B; —X4,0) = / d(iT)®(B;0,iT)G(0,T; — X 4,0)F(X 4,:T), (IIT - 3 - 59)
0

where we used the property (ITT-3-38) on the right-hand side. Recall that hg(X) is
even. It then follows from Eqs. (IIT-3-36) and (III-3-37) that

G(0,T; —X4,0) = G(0,T; X4,0). (IIL - 3 - 60)

Substituting this into Eq. (III-3-59) and using (III - 3 - 45), we obtain Eq. (III-2-34).
We have now derived the following formulae in the scheme of the Fuclidean lattice
method:

Z s

B—(0,T)«-(X 4,0)

0<T<Tg
Ts
- / d(iT)®(B;0, T)F(X 4,iT) (T - 3 61)
0
_ | ®(B;X4,0) for XpX4 <0, V(X) (I - 3 - 62)
| ®(B;—X4,0) for XpX4 >0, V(=X) = V(X). (111 - 3 - 63)

What has been proved is that F' which is defined by Eq. (I1I -3 - 45) with (III - 3 - 36)
and (TII - 3 - 42) satisfies Eqs. (ITI-3-62) and (IIT-3-63). This has been proved within
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the framework of the Euclidean lattice method (III-3-39). By the way, without the
knowledge of the Euclidean lattice method, Egs. (IIT-3-62) and (III - 3 - 63) could
have been obtained from the very meaning of F' as the first hitting amplitude. That
is, each of these equations would naturally arise when we classify paths with respect to
the time at which each path firstly hits X = 0, provided that such a classification of
paths in the real spacetime makes sense. (Note that the Euclidean lattice method gives
a rigorous sense to such a classification.) In this sense we could regard Eqs. (III-3-62)
and (IIT - 3 - 63) as being free from the Euclidean lattice method. Furthermore, once
Eqs. (IIT-3-62) and (III-3-63) have been accepted, we can employ these equations as
the definition of F. Therefore, the first hitting amplitude F can be obtained without
the knowledge of the Euclidean lattice method. This method of integral equation is
extendible to the case of a time-dependent potential V(X,T) to which (IIL-3-39) is
not applicable. Even if such a potential exist, there is no difficulty in considering the
path classification with respect to the first hitting time. Thus we can write down

Z eiS

B—(0,T)«(X4,0)

0<T<Tg
Ts
_ / d(GT)®(B;0, T)F(X4,iT) (T1T - 3 - 64)
0
_ [ ®(B; X4,0) for XpX4 <0, YV(X,T) (III - 3 - 65)
T | ®(B;=X4,0) for XgX4 >0, V(-X,T)=V(X,T). (III - 3 - 66)

Whether these equations have solutions or not may depend on the behavior of V(X,T).
When they have solutions, we can define the first hitting amplitude F'. At the time of
this writing, the author does not have a definite idea of extending the Euclidean lattice
method to the case of a time-dependent potential V(X,T). (It will be discussed later
that elaborating the Euclidean lattice method in the presence of such a potential would
not be fruitful.) Whenever F is used in the presence of a time-dependent potential
in later investigations, it is to be understood as being defined by integral equations
(III - 3- 65) and (II1- 3 - 66); it is of course assumed there that the potential belongs to
such a class that guarantees these integral equations to have solutions.

(IT) The half-space sum over paths.
Equation (ITI-2-35) is also extendible to the case of a symmetric potential. The
second term ®(B;—Xy4,0) on the right-hand side is the contribution from the paths
which invade the forbidden region X < 0 or X > 0 on the way from A = (X4,0) to
B which is on the same side of A with respect to X = 0. The reason why this way
of taking account of the contribution from the forbidden paths goes well is because
that a path invading the forbidden region does not change its amplitude e*S when it is
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mirror-reflected before its first hitting of X = 0. This is also the case when the potential
has the symmetry V(—X,T) = V(X,T). Thus Eq. (III - 2 - 35) should also hold in the
presence of such a potential:

> € =8(B; X4,0) — B(B; —X4,0)
Bee(X 4,0) (II1-3-67)
for XpX4 >0, V(-X,T)=V(X,T),

where the sum of €5 is over paths which are restricted to the right half-space X > 0
when X 4, Xpg > 0 or to the left half-space X < 0 when X 4, Xpg < 0; this restriction is
expressed by the symbol <. When the potential is time-independent, Eq. (IIT-3-67)
can be proved in the scheme of the Euclidean lattice method as follows. Consider the
sum over ‘paths’,

Y u(*path’) for zpze > 0, (I1I - 3 - 68)

beo[24,0]

where we take x4, 73 > 0 without loss of generality; the sum is over ‘paths’ which are
restricted to the right half-space > 0. This is evaluated as follows:

Z p(‘path’) = ufb; a] — Zu[b; c)flzast], (c=10,1]) (IIT - 3 - 69)

beo-[24,0] t

where the first term is contributed from all the ‘paths’ connecting a and b and the
second term represents the contribution from the ‘paths’ invading the forbidden region
z < 0. The summand in the second term is the contribution from the ‘paths’ whose
first hitting of = 0 occurs at ‘time’ ¢. If V(—X) = V(X), then Eq. (IIT- 3 - 57) holds
and we substitute it into Eq. (IIT - 3 - 69) to obtain

Z p(‘path’) = u[b;a] — u[b; —z4,0] for zozp > 0. (III - 3 - 70)
beo-[24,0]

It is now straightforward to convert this into Eq. (ITI-3-67) according to (III- 3 - 39).
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84. Discussion

The Fuclidean lattice method has been reviewed and extended as a flexible defi-
nition of a sum over paths. Here we shall examine the results obtained by use of the
method and discuss whether they can be obtained by use of Feynman’s path integral
in configuration space.

Let us begin with Eq. (III-3-67). Its physical meaning is clear; the right-hand
side is the propagator on a half space X > 0 (or X < 0). That is, if an amplitude
Uhatr(A) = Upa1(Xa,Ta) is given at an initial time T4 = 0 so that Wpa(0,0) = 0 and
that it is normalized on a half space to (we consider the half space (0,00))

o0
/0 dX | Vpaue(A)? =1, (II1-4-1)

then the “half-space wave function” defined at a later time Tg by

Uha(B) = /0°° dX 4 (‘I’(B;XA,O) - &(B; —XA,0)> Upa1e(A) (II1- 4. 2)

obeys the Schrodinger equation, vanishes at Xp = 0 and is normalized to

/ dXp|Vnae(B)> = 1. (11T - 4 - 3)
0

Comparing these with Eqs. (II-1-9) and (IT-1-2), we understand that the right-
hand side of Eq. (III-3-67) is the propagator for a particle confined in a half space.
As shown in the previous section, the Euclidean lattice method calculates the half-
space propagator by “summing up 'S over the paths which are restricted to the half
space”. (The precise meaning of the phrase in “ ” is of course defined by the scheme
(I1I - 3 - 39).) This method already calculated the entire-space propagator ® when paths
(‘paths’) were not restricted at all. Thus (III-3 - 67) is the second example in which the
Euclidean lattice method reproduces the correct propagator by restricting paths to the
region where the propagator is defined. Can similar things be said in Feynman’s path
integral? It is also the case in Feynman’s path integral that the entire-space propagator
is calculated when the sum is over all the paths, that is, when the integration ranges are
(—00,00) as the last right-hand side of Eq. (II-1-1). However it is not clear whether
the half-space propagator is obtained just by restricting integration ranges to the half
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space, namely,

N-1 .00 N-1
. - (o \—N/2 (Xk41 — Xk) Xiy1 + Xi
l% E ‘/(; dX;(2mie) exp [z 2 { 5e V(————2 )

= ®(B; A) — ®(B; —X4,Ta),

(III- 4 - 4)
where Xo = X4, Xy = XpB. The usual way of obtaining the half-space propagator in
Feynman’s path integral is to use the method of images. Given a particle defined on
the half-space (0,00) with a potential V(X) (X > 0), we first extend the potential to
the unphysical region X < 0 so that V(-X) = V(X). Taking end points A and B
in the half space, we calculate the left-hand side of (II1-4-4) with integration ranges
replaced by []; f dX; including the unphysical region (—o0,0). The result is the
propagator ‘I)(B A) this is the solution to the Schréodinger equation defined on the
entire space (—o00,00) in the presence of the symmetric potential and it satisfies the
initial condition (IIT-3-13). We next take end points (—X4,T4) and B and perform
the same path integral. The result is ®(B; — X 4,T4) which is also defined on the entire
space and which obeys the same Schrodinger equation and satisfies the initial condition
limp, 7, ®(B; —X4,T4) = 6(XB + X4). The half-space propagator is defined to be
the solution to the Schrodinger equation which satisfies the initial condition (III-3-13)
for Xp, X4 > 0 and satisfies the boundary condition that it vanishes at X = 0. From
®(B; A) and ®(B;—X4,T4), such a solution can be constructed by superposing them
so that the result satisfies the boundary condition. The result is the right-hand side
of (IIT-3-:67) (T4 = 0). The half-space propagator is thus constructed in Feynman’s
path integral. It must be stressed that this construction by the method of images has
not calculated the path integral on the left-hand side of (IIl -4 -4). There are several

discussions as to whether Eq. (III-4-4) is correct or not.'® The present author has
also explored this issue but has not obtained a definite result. Although one may
naively write down the left-hand side of (III - 4 - 4) as giving the half-space propagator,
justification of it is not easy or, possibly, it is not correct. In this way, in Feynman’s path
integral, the correspondence is not necessarily clear between the range of the sum and
the range where the resultant propagator is defined. By contrast, the correspondence
is very clear in the Fuclidean lattice method as shown already. This is a merit of the
method.

However the real reason we employ the Ifuclidean lattice method is the existence of
those sums over paths to which Feynman’s path integral seems not to be applicable but
to which the Euclidean lattice method is applicable. They are sums over paths which are
not expressible as a cylindrical set as argued in §1. An example is the sum over paths for
the first hitting amplitude F'. As already discussed, I’ could naturally be introduced in
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quantum mechanics by considering a path classification with respect to the first hitting
time; F could then be defined as the solution to the integral equation (IIL-3 - 48);
this definition is free from the Euclidean lattice method. The important thing is that
the Euclidean lattice method correctly reproduces F' without difficulty, while Feynman’s
path integral may not because the paths over which the sum is taken are not expressible
as a cylindrical set. Another example of a sum over paths for non-cylindrical set is
(ITI1 -1 - 1). Differently from the first hitting amplitude which could be defined without
the FEuclidean lattice method, it seems difficult to define (IIL-1-1) unless we use the
method. (The author thinks that Feynman’s path integral is inapplicable.)

In this way, the Fuclidean lattice method is applicable to various kinds of sums over
paths, some of which are undefinable in the naive context of I'eynman’s path integral.

There seems to be no fundamental difficulty in generalizing the discussion in §3.1
to an isolated many-particle system in higher dimensions interacting with each other.
At the time of this writing, however, the author has not explored this issue yet. It
is a remaining problem. One might think it a more urgent problem to generalize the
Euclidean lattice method to the case of a time-dependent potential. However a problem
of n particles in such a potential should properly be regarded as a reduced problem of
an isolated system of more than n particles. Thus it is included in the problem already
mentioned. The generalization to more general cases of a system consisting of particles
and fields is, of course, a problem. It deserves to be studied separately from the theme
of this thesis and we shall not discuss it here.
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Chap. IV. Application of General Framework

to Concrete Examples ()
Probability-undefinable cases

Throughout this chapter we deal with a particle in (141)-dimensional Newtonian
spacetime. To be specific we work with

ESI : the set of possible numbers of times and possible locations a particle intersects
a (hyper) surface in the spacetime,

ESII : the set of possible numbers of times and possible locations a particle is found
on a surface,

ESTIT : the set of possible locations a particle is first found on a surface.

A suitable potential is allowed for ESIIL.

§1. ESI

We prove that C-1 does not hold for ESI, thereby concluding that QP cannot be
defined.

Suppose that a particle intersects a surface §. Let us divide § into a countable set
of non-overlapping domains {A(l) | [ = 0,%1,%2,---} such that § = |J; A({) (see Fig.
13). The number and the places for the particle to intersect S can be specified by a
subset of these domains. Thus, an alternative of ESI is specified by A(l,); n is a (odd)
number of times a particle intersects § and

ALY = AlL) X Ally) X - x A(ly) (1 < -+ < ly) (IV-1-1)
denotes n-places of intersection. ESI is expressed as
ESI = {A(I,)}. IV -1-2)

We follow the steps which we showed at the end of §2.1 of Chap. II. The component of
propagator to be associated with an alternative A(l,) is defined and denoted by

@(B;A(Z,);A)z/ dX®a(B; 5 )= ) HSED] (IV-1-3)
Be—A(l)—A

(IV-1-4)

<.

X= (A1, ,An) such that Ay < -+ < A, / dXzH/ d;.
Al o JAW)

The sum on the right-hand side of (IV -1 -3) is over paths which start from A, move
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forward in time to intersect S at n domains {A(l;) | j =1, ,n} and arrive at B (cf.
Fig. 1). The classifiability condition (II - 2-2) takes the following form for ESI:

o0

3(B;A) =3 3 (B;A(R); A)

n=1 j‘ﬂ

- (IV-1-5)
- Z'/dXdi)n(B;X; A),
n=1

where ', stands for the sum over all positive odd integers.

Here we make a simplification: As a surface §, we consider a steplike surface Sstep as
shown in Fig. 14. This simplification makes analytic investigations easy. The essence of
the problem is not lost by this simplification, since there is no geometrical relationship
between Newtonian space and Newtonian time. As the coordinate A on Sgiep We adopt

Xe (X¢<0,T=Tg)
A={T (X=0,Tc¢<T<Tp) (IV-1-6)
Xp (Xp>0,T=Tp),

where X¢ and Xp are the space coordinates on St, and S, respectively. With this
coordinate, domains on Sstep are given by

AXe(l) on St
A(l) = ¢ AT(l) on S| (IV-1-7)
AXp(l) onSt,,

where S| is the vertical (i.e., X = 0) part of Sstep. (For instance, ! runs from —oo to
—101 on S8t,, from —100 to 100 on S| and from 101 to co on St,. The surfaces Ste
and ST, are of course restricted to X¢ < 0 and Xp > 0, respectively.)

The question of whether Eq. (IV -1-5) holds or not is the question of whether
paths connecting A and B are classifiable or not according to how many times (n) and
at what locations (X) they intersect the steplike surface. Since paths move forward
in time to intersect St and ST, once and only once, we can concentrate on whether
such classification is possible or not when paths intersect S| on the way from a point
C = (X¢,Tc) on 81, to a point D = (Xp, Tp) on St,. The path-classification between
St, and ST, falls into the following two types according as C' and D are on the same
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or the opposite side of X = 0.

®(D;C) = Z'/d:i"é,.(D;T; C) forX¢<0<Xp, (IV-1-8)
- |

®(D;C) = z"/d’ﬁén(D;T’; C) forX¢,Xp<0, (IV-1-9)

where 37 stands for the sum over all positive even integers (including zero); &, (B; T; A)
is defined by

/ _dTo,(B;T;4)= ) &SI (IV-1-10)
ATn) B—A(T.)—A
where the sum is over paths which intersect §| at T} < --- < T,, on the way from A

to B. If {®,} “exist to satisfy” Eqs. (IV-1-8) and (IV - 1-9), then one can construct
{®, } which satisfy Eq. (IV - 1-5). Conversely, if either of them fails to hold, then it is
concluded that C. 1 does not hold for ESI on Sgep. Here we should comment on the
phrase “exist to satisfy”. The amplitudes {®,} exist in the sense that they are defined
by sums over paths (IV-1-10). However, the precise definition of the sums is given
by the Euclidean lattice method. It is apriori unknown whether the amplitudes thus
defined satisfy Eq. (IV-1-8) and (IV-1-9).

In what follows, we prove that Eq. (IV-1-8) does not hold, thereby concluding
that QP cannot be defined for ESI. For simplicity we take the symbol off , and replace
C and D in it by A and B, respectively. We call Eq. (IV - 1 -8) with these changes C. 1
for ESI on §|. In the context of the Euclidean lattice method, C. 1 for ESI on 8] is to
be derived in the following way:

N
u[b; a] =Z'Zun[b;f;a], (IV-1-11)

t

lLim

Bp(5i0)= Y [ 785,570, (V-1-12)
n=1
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lWick rotation
o(B; A=Y / dT @, (B; T A), (IV-1-13)
n=1

where

7y <0< 24, Xg <0< Xa, Xp<0< Xy

Ti+1

EEDY ,/dv“zli[lfr drj  (Tat1 = 78)

7T ta<tiye,ta<ty a (IV-1-14)
n T,
/dTE H/ dT; (Tut1 = Tp).
j=17T4

Let s| be the spatial origin = 0 on the lattice. The quantity un[b; %; a] is the ‘probabil-
ity’ that a ‘particle’ starting from a intersects s| at ‘times’ t1,--- , ¢, in this order and
arrives at b (we denote by N the maximum number of intersection). This ‘probability’
is given by the following sum over ‘paths’: '

~ |
unlbifia] = > (5)“' =, (IV-1-15)
 betl—a
where the sum is over ‘paths’ which intersect s| at t; < -+ < t, on the way from a

to b. It is certain that there holds Eq. (IV-1-11) with (IV-1-15). This is because
(i) the ‘paths’ defining u[b;a] (zo < 0 < 73) are uniquely classifiable according to how
many times (n) and at what locations (f = ¢; < -+ < tn) they intersect s| and (ii)
every ‘path’ has the same weight (1/2)%*~%. This ‘path’-classification is expressed as
Fig. 15 in which the diagram on the left-hand side is the abbreviation of the ‘paths’
defining u[b; a]; the zigzag diagram on the right-hand side is the abbreviation of all the
‘paths’ which intersect s| at t; < -++ < t,, on the way from a to b. Note that ‘paths’ are
allowed to touch s| between one intersection and the next intersection. Observing Eqs.
(IV-1-11) ~ (IV-1-13), we note that

(1) The transformation « — ®g — ® on the left-hand sides has no problem because

of Eqs. (ITT-2-7) and (III - 2 - 10).

(2) The mathematical relationship between ®g, and @, is unique on a suitable as-
sumption on the analytic property of ®g, (see Appendix C):

(I’n(XB, TB; Tn, ey Tl; XA, TA) = in(I’En(XB, iTB; iTn, e, iTl; X'A, iTA) .
(IV-1-16)
Therefore we have only to investigate whether the diffusion limit converts the right-hand
side of Eq. (IV -1-11) into the form of the right-hand side of Eq. (IV -1-12).
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Now let us calculate the sum over ‘paths’ (IV-1-15). This sum is broken down
into partial sums and then recomposed as follows: The sum is over ‘paths’ which are
contained in the zigzag diagram on the right-hand side of Fig. 15. The zigzag diagram
can be decomposed into sub-diagrams of the type of Fig. 10 and that of Fig. 16. The
sum over ‘path’ (IV - 1-15) is then given by a product of partial sums over ‘paths’, each
of which is over ‘paths’ that are contained in a sub-diagram. There are two types of
partial sum. One is over ‘paths’ of the type of Fig. 10 and we have already evaluated
this type of sum; the sum over ‘paths’ contained in Fig. 10 is given by Eq. (IIT-2-19).
The other type of partial sum is the special case of the former type; the sum over ‘paths’
contained in Fig. 16 is given by putting z = 0 in Eq. (IIT- 2 - 19), namely by

1 1 t+1
glt] = f[0,1] 2tt+1(g> (IV-1-17)
Therefore we obtain
Un (0515 a) = flzp, ty — ta]g[ta — tn-1] -+ glta — t1] fza, t1 — ta]. (IV-1-18)

In the course of this ‘path’-decomposition, we also obtain the precise expressions for
the multiple time summation in Eq. (IV-1-11) and for the maximum number of
intersection N:

n tj41—2
=11 > , (tag1 =ty —ap + 2) AV -1-19)
i 7=1 tj=t¢+|z¢|+2(j—])

where each sum Zti is taken either over even integers or over odd integers because of
the odd-even asymmetry, and

N = (tb - l'b) "‘2(ta + |$a|) +1. (IV 1- 20)

(One can confirm that Eq. (IV-1-11) is satisfied by (IT1-2-1) and (IV-1-18) ~
(IV-1-20); Eq. (IV-1-11) becomes an identity concerning binomial coefficients. The
confirmation is however not easy. We have numerically confirmed it. Analytical confir-
mation is left as a problem of enumerative combinatorics.)

Now we examine the diffusion limit of Eq. (IV -1-11) substituted with (IV -1 -18).
Dividing both sides of Eq. (IV-1-11) by 2n; and writing lattice coordinates a and b



Norifumi YAMADA 233

in terms of the corresponding Euclidean coordinates a and f, we first have, with the
notation (IIT-2-5),

U[ﬁ/’% a/n] — Li mz Z un[B/7; t_‘?a/n]. (IV-1-21)

o 2m

The maximum number of intersection N = (18 — 7o — mm(Xg + | Xal))/(2n2) + 1 (cf.
Eq. (IV - 1-20)) becomes infinite in the limit. The left-hand side of Eq. (IV - 1-21) is
®g(B;a). A necessary condition for Eq. (IV - 1 - 21) to turn into the form of Eq. (IV - 1-12)
is that the right-hand side of Eq. (IV - 1-21) can be transformed into the following dou-
ble limit:

MR n Un
lim Z lezt;(an) I - (IV-1-22)

No—oo
n=

where Np is an odd integer independent of n;. This is because that the sum over
n in Eq. (IV-1-13) and hence in Eq. (IV-1-12) is understood to be defined by

lim Ny — 00 Z'fil according to the mathematical definition of a sum of an infinite se-
ries. If the transformation is possible, then the value of the double limit (IV -1 -22)
must coincide with ®g(8; ). Let us evaluate the double limit explicitly. We change
the variables for the multiple ‘time’ summation defined by Eq. (IV -1 -19) from ¢; to
7;(= mt;) (7 =1,2,---,n). The ranges of the summation in terms of 7; are

Ta +mm| Xa| +2m2(5 — 1) < 75 < Tjg1 — 212, (G=12,---,n) (IV-1-23)
where Tp41 = 73 — mmXg + 2n2. In the diffusion limit, these ranges tend to
Ta <TI <T2 <+ < Tp < 178, (IV-1-24)

and accordingly

> (@m)" - / 7. IV -1-25)

Finally, the double limit (IV - 1-22) can be written as

- Up /8/777Tn/772, t ’71/772;04/77]
hm /d Lim . IV.1.26
No—oo Z (2m2)"2m ( )
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If this is to recover ®g(3; a), then we must identify

- T un[ﬁ/n;Tn/TIz"“571/772;&/77] 1.
¢g (B;7; ) = Lim @myom . (IV-1-27)

Substituting Eq. (IV -1-18) into Eq. (IV -1 -26) and using the following formulae,

X/, /m] _ iy (M2 mX? ’
Lim o =F(X,7)=|X]| (27r73) exp(——— |, (IV-1-28)
. glT/n2] m \1/2
Lim 2772 = 1.
im? = G(r) ( 2M3) : (IV - 1-29)
where F is given by Eq. (III-2-:24), we find
. Un
Lim—
(2m2)™2m |
= lirn0 n}'?"“mF(X,g,Tﬂ — Tn)G(Tn — Ta=1) - - G(12 — 1) F(Xa, T1 — Ta)
m—

. m
x lim ny =0.
m—0

(IV-1-30)
It then follows that the double sum (IV -1 -26) vanishes and fails to be ®g(3; ).
Therefore Eq. (IV -1-11) cannot be of the form of Eq. (IV -1 -12). This means that
Eq. (IV -1-13) fails to hold. Accordingly Eq. (IV-1-5) (C-1 for ESI on Sstep) does
not hold. We therefore conclude that QP cannot be defined for ESI on Ssiep because of
the failure of C-1. In this way, our framework judges “at Step2”(see the end of §2.1 of
Chap. II) that QP cannot be defined. Discussion about this result, together with that
for ESII, is given in §2.2.

§2. ESII
2.1  Analysis

Here we prove that C-1 does not hold for ESII, thereby concluding that QP cannot
be defined again. We also simplify a surface S to be the steplike surface Ssiep shown in
Tig. 14. An alternative of ESII is also expressed as A(l,) with (IV-1-1) and (IV -1-7)
where n is the number of times a particle can be found on Ssep and A(l:,) denotes n-
places of finding. The difference between “to intersect Sstep (ESI)” and “to be found on
Sstep (ESII)” is to be understood as the difference between a component of ESI and that
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of ESII. For ESII, the component of propagator to be associated with an alternative
specified by A(i:,) is also defined by the sum over paths (IV - 1-3), but the sum is over
those paths which hit (i.e., intersect or touch) Sgtep at n domains A(l_;,) on the way from
A to B. The distinction between “to hit” and “to intersect” is made on the luclidean
lattice.

The formal discussion from Eq. (IV-1-1) to (IV-1-16) for ESI also applies here
with minor changes of the notation and the terminology. (In equations corresponding
to Eqs. (IV-1-5), IV-1-9) and so on, the sums over n are not restricted to odd
or even integers, because the number of times a path hits Ssep can be even or odd.
In what follows, anytime we refer to equations of previous subsection, they are to be
interpreted as equations for ESII with these minor changes.) '

We can begin with Eq. (IV-1-11) of ESII-version to prove the failure of C-1.
This time however, we shall provide a somewhat more elegant proof which does not
need an analytic expression of u,. In particular, starting from an identity concerning
‘probabilities’ of a random walk , we prove that ®g, in Eq. (IV-1-12) vanishes for
any finite n. (Notation (IV - 1-14) is still valid here.) The identity is the following:

ty—2xp
ulb; a] = Z flzs, ty — t]u[0,t; a], (za < 0 < p) (IVv-2-1)
t=t,+|za|

where f[z,t] is defined and given by Eqs. (III-2-21) and (III-2-22), respectively.
This is obtained by classifying the ‘paths’ from a to b according to the last hitting
(i.e., intersecting or touching) ‘time’ of s|. This ‘path’classification is schematically
represented as Fig. 17. We take the diffusion limit of the identity:

Lim”[ﬁ/m /1] rp/'nifﬂ/m fIXa/m,7a/n2 — t]u[0,t; /] o ave2.9)

= Lim
2 2
m t=ta/m+|Xal/m n

Changing the summation variable from t to 7 = nat, we find
78
Op(fB;a) = / dTF(Xﬂ,Tﬁ—T)(I’E(O,T;a) (IV-2-3)

with F given by Eq. (IIT-2-24). This is also an identity, confirmed by use of formula
(ITI1 - 2 - 31), and is understood as expressing the ‘path’-classification shown in Fig. 18
which is the continuum version of Fig. 17. In the figure, the diagram on the right-
hand side is the abbreviation of the ‘paths’ (of Euclidean Brownian motion) whose last
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hitting of S| is at ‘time’ 7. In identity (IV -2 - 3), the integrand F'®g multiplied by dr
(and divided by ®g(f;)) is the ‘probability’ that:-the ‘time’ of the last hitting of S|
lies somewhere in d7. Next we note

un-{-l[b; tn-{-l, et ,tl;a] = f_[xbatb - tn+1]un[03tu+l;tn7' ot ,tl; (l] ) (IV -2 4)

which follows directly from the very meanings of f and u, as explained in Fig. 19.

We are now ready to prove the failure of ‘ESII‘ version of Lq. (IV -1-12). Suppose
that it holds for X, < 0 < Xpg, then a modified equation

Pp(0,73;a) = ®g, (0,785 ) + Z/di”@g"(O,Tﬁ;f';a) (IV-2.5)
n=1

should hold when the final point lies on §|. The extra term ®g, takes account of the
existence of ‘paths’ on the lattice which start from @, never hit s| before ‘time’ ¢, and
reach [0, tp] on s| (see Fig. 20). This extra term is therefore calculated as follows

®5,(0,73) = Limg [ Xa /1, (7 = 72) ] (IV -2-6)

However from Eq. (I11-2-24) and the relationship 7y/n% = const, it follows that the
right-hand side of Eq. (IV -2-6) vanishes. Hence Eq. (IV-1-12) can be assumed to
hold for Xo < 0 < Xg. Paying attention to this fact, we substitute Eq. (IV-1-12)into
the right-hand side of identity (IV -2 -3), replace the integration variable 7 by 7,41,
and change the order of the integration over 7,41 and the summation over n. The result

1S

(I)E(ﬁ;a) = z / dTh1 F(XﬂaTﬁ - Tn+1)q)En(0’ Tnt1; Tn; (,.Y) s (IV 2 7)
n=1

where we have explicitly displayed the subscripts of integration variables; 7, = (71, -+, Tn).
If Eq. (IV-1-12) is to be derived from (IV-1-11), then ®g_ should be given by
IEq. (IV - 1-27). Now let us see what happens if this is the case. We use first Eqs. (ITI - 2 - 24)
and (IV - 1-27), then identity (IV -2-4), and finally Eq. (IV -1-27) again, to rewrite
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the integrand of (IV-2-7) as

F(Xﬁ’ 8 — Tn+1)(I’En(O7 Tn+15 Tn; a)

.1z
= L1m2——f[Xﬁ/771, (Tﬂ - Tn+1)/’72]
2
1

X—_unOsTn y T » Ty ) c L
I @m ) [0, Tat1/m2; T /M2 T1/m2;5 /] (IV-2-8)
1
= Lime———u, s Tn sty T/ M2;
S (@m) +1[8/1; Tns1/m2 1/m2; /)

= (DE,..H, (ﬁ; 7_—;‘&+1; a) .
Substituting the above into the right-hand side of Eq. (IV -2-T), we have
B5(50) = ., [ duss 05,0, (B Furri)
n=1

=Y. [anon i),

n=2

(IV-2-9)

which is Eq. (IV - 1 - 12) with the term ® g, deleted. This procedure can be iterated an
arbitrary number of times. Consequently we obtain

¢E=Z/dﬁup&:;\.’j_:z/d?,,%ﬂ.—_i/dﬁ.qm=---. (IV-2-10)

Since each ®,_ is positive because of Eq. (IV -1-27), Eq. (IV - 2-10) proves
&g, (B;7Ta;) =0  for finite n. (IV-2-11)

These ®g_ cannot satisfy Eq. (IV - 1-12) and thus Eq. (IV -1 -11) cannot be converted
into the form of Eq. (IV - 1-12). Therefore we conclude that QP cannot be defined for
ESII on Sstep because of the failure of C-1.
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2.2 Discussion about ESI and II

Physical reason of the failure of C-1 and the generalization of our result: We have
concluded for both ESI and I on Ssep that QP cannot be defined because C-1 fails. For
ESI, lattice version of C-1, namely Eq. (IV-1-11), did hold. However in the diffusion
limit the ‘probability’ (IV -1-27) for any finite number of intersection vanished and
C-1 failed. This was also the case for ESII as Eq. (IV-2-11) showed. (Although we
did not construct the ESII version of Eq. (IV -1:11), we can construct it by classifying
‘paths’ from a to b according to how many times and at what locations they hit s|.
Thus the lattice version of C-1 also holds for ESII, whose diffusion limit however fails.)
The physical reason of the failure of C-1 in the limit is as follows: The relationship
“ny/m? = const” between the temporal and the spatial spacing implies that the velocity
of the random walk 7;/n; o 1/n; becomes infinite in the diffusion limit. This contin-
uum property of the walk makes a ‘path’ everywhere nondifferentiable with respect to
‘time’ in the limit. (This property was also quoted by Hartles)
justification to his conclusion about “wave function on §.”) It is in fact well-known,
irrespective of the dimension and the potential (provided that it is a sufficiently good
function), that nondifferentiable ‘paths’ contribute dominantly to the Euclidean sum

to give a qualitative

over paths for a nonrelativistic particle.” Since nondifferentiable ‘paths’ intersect S|
an infinite number of times, the ‘probability’ density of Euclidean Brownian motion
vanishes for a finite number of intersection. The number of ‘times’ of hitting of Slis
also infinite and the ‘probability’ density vanishes again for a finite number of hitting.
This observation applies to cases of (i) a more general surface § than S| (or Sstep), (ii)
a nonzero potential and (iii) higher dimensional Newtonian spacetime. Hence we be-
lieve that our results obtained analytically are also correct in such general cases. Since
physical reason of the failure of C-1 is now clear in this way, we shall not discuss ESI
and II in such general cases.
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§3. ESIII

We again use Ssiep shown in Fig. 14. For ESIII on Sstep, we prove that (i) C1
holds but that (ii) C-2 does not hold, thereby concluding that QP cannot be defined
for ESIIT on Sgep. A potential is allowed which is spatially symmetric with respect to
X = 0 between T¢ and Tp and which is arbitrary at other times, namely,

V(-X,T)=V(X,T) for T¢c <T < Tp, V.3.1
V(X,T)=V for Ta<T <TcorTp <T<Tp. ( )

ESIII on Sstep is expressed as

ESIII = {A(])}, (IV - 3-2)

where the alternative specified by A(l) is the occurrence that a particle is first found
on Sstep at A(l), whose concrete expression is given by (IV-1-7). The component of
propagator which is associated with the alternative specified by A = A(l) is defined
and denoted by

@(B;A;A)s/dm(B;A;A)s S S IV -3-3)
a B—A—A

where the sum is over paths which connect A and B and whose first hitting of Sgep
occurs in A. The classifiability condition C-1 takes the following form for ESIII:

B(B; A) = /dA B(B; \; A)

0
z—/ dXc®(B; Xc; A)
o (IV-3-4) .
+/ dT®(B;T; A)
Te

+ / dXp®(B; Xp; A),
0

where the coordinate A on Sstep is given by (IV -1-6). In the following, we classify
paths from A to B according to the first place they hit Ssep and obtain components
®(B; \; A) satisfying the above condition.
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We begin with ®(B; X¢; A) which is defined by

/ dXc®(B; Xc; A)= ) €5, - (IV-3-5)
AX ' B—AXe«A

where the sum is over paths from A to B whose first hitting of Sstep Occurs in AX
on St, (see Fig. 21). This is easily calculated. The above sum is decomposed into
two partial sums and one integration. That is, a sum over all the paths from A to
C = (X¢,Tc) (X¢ < 0) which results in ®(C; A), a sum over all the paths from C to
B which results in ®(B;C) and an integration over —oo < X¢ < 0. Therefore we have

O(B; Xg; A) = (B; C)3(C; A). (IV -3.6)
Let us turn to find ®(B;T; A) which is defined by

/dT@(B;T;A)E Yoo €S, IV -3-7)
AT B—AT—A

where the sum is over paths whose first hitting of Sstep occurs in AT on S|. This sum
is also broken down into partial sums and integrations as follows (see Fig. 22):

/ dXD/ dXCeb(B;D)( > e‘s)rb(c;A), (IV-3-8)
—o 0 D—(0,T)«C
TeAT

where the detailed notation in §2.2 of Chap. III is employed for the sum over paths
in the brackets; two propagators originate from partial sums over paths from A to C
(X¢ > 0) and from D to B, in which paths are not restricted at all. The Euclidean
lattice method carries out the sum over paths in the brackets. Without loss of generality,

we put
C =(Xe,0). (IV-3-9)
The following formula holds:
Y e / d(T)®(D;0,T)F(Xe,iT), (IV - 3-10)
D—(0,T)«eC AT
TeAT

where the sum is over all the paths which link C to D and whose first hitting of X = 0
occurs in the time interval AT. This is obtained from Eq. (III -2 -28) (with the weight
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replaced by p(‘path’) in general) taken diffusion limit, Wick rotated and then multiplied
by the factor G(D;C). From Eqs. (IV-3-7), (IV-3-8) and (IV - 3-10), it follows that

oo

@(B;T;AA) = z/

— o0

= i®(B;0,T) / dXcF(Xc,iT)®(C; A).
0

dXp / dX¢c ®(B; D)®(D;0,T)F(X¢,iT)®(C; A)
0 IV -3-11)

Let us turn to find the last component ®(B; Xp;A) (Xp > 0) whose definition is
given by Eq. (IV - 3-5) with X¢ replaced by Xp. The sum is again broken down into
partial sums and an integration.

®(B; Xp; A) = @(B;D)/oo dXC( > e‘5>«p(c;A), (IV-3-12)
0 DwC

where the sum in the brackets is over paths which never hit S| on the way from C to
D such that X¢, Xp > 0. Noting (IV - 3 - 9), we employ formula (III - 3 - 67) to have

®(B; Xp; A) = ®(B; D) /m dXc ((I)(D; C) - ®(D; C*)) o(C;4),  (IV-3-13)
0

where C = (—X¢,0). This completes decomposition (IV -3 -4). One can confirm that
the components given by Egs. (IV - 3-6), (IV - 3-11) and (IV - 3 - 13) satisfy Eq. (IV - 3 - 4)
by performing all the integrations occurring on the right-hand side of Eq. (IvV-3-4).
(To perform the time integral in Eq. (IV-3-4) with (IV.-3- 11) substituted, we use
formulae (I11-3-65) and (I1I- 3 -66).) Therefore the classifiability condition C-1 holds
for ESIII.

Next we examine C-2. Decoherence functional for ESIII is defined by
D[\ N = / iXp / f X 4dX 0 (B; X A)YB(B; N5 AN (A)T(A).  (IV-3-14)
The no-interference condition is then
ReD[M ] o 6(A = \'), | (IV-3.-15)

where X and ) are given by Eq. (IV - 1 6). There are six cases depending on the choice
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of A and ). We define

o(D) = /0 " dXe(®(D; C) — B(D; C)¥(C), (IV -3 - 16)

X(T) = z'/om dX¢ F(X¢,iT)¥(C), (IV-3-17)

where U(C) is of course given by ¥(C) = [dX,®(C; A)¥(A). We substitute compo-
nents (IV-3-6), (IV-3-11) and (IV - 3 - 13) into the right-hand side of Eq. (IV - 3 - 14)
and carry out the integrations over Xp by use of property (II-1-5). The results are
as follows:

D[X¢; Xe) = 6(Xe — XU (O, (IV-3-18)
D[Xp; Xp) = 6(Xp - Xp')le(D)|?, (IV-3-19)
D[X¢; Xp] = ®*(D; C)¥*(C)p(D), (IV - 3-20)
D[T;T'] = (2mi(T - T') 7 2x* (T)x(T"), (IV-3-21)
D[Xp;T] = ®(D;0,T)e"(D)x(T), (Iv-3-22)
D[X¢;T] = ®*(0,T; C)¥*(C)x(T). IV -3-23)

If the real part of the right-hand side of Eq. (IV - 3 - 21) is proportional to §(T'—T") and
if the real parts of the right-hand sides of Eqs. (IV - 3-20), (IV-3-22) and (IV - 3-23)
vanish, then C-2 holds. However none of these occur. For example, the real part of
the right-hand side of Eq. (IV - 3-21) never vanishes for T # T'. Therefore C-2 does
not hold; our framework judges at “Step3” (see the end of §2.1 of Chap. II) that QP
cannot be defined.

Discussion:

(1) There is no possibility that a special choice of an initial amplitude ¥(A) makes C-2
hold. For instance, no matter how we vary ¥(C), the real part of the right-hand side
of Eq. (IV -3-21) does not vanish for T' # T".

(2) Equation (IV-3-18) tells that there is no interference between “to first find a
particle at X¢ at time T¢” and “to first find it at X¢r at time Te” (X¢ # Xe¢v).
Equation (IV -3-19) also tells this kind of things. This is physically quite natural
because (i) the number of times a particle is found on St, and St, is once and only
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once and (ii) there is no interference between “to find a particle at one place at time 7™
and “to find it another place at the same moment of time” since these two alternatives
are mutually exclusive. .

(3) Because of the symmetry of the potential between T¢(= 0) and Tp, we could use
formula (ITT-3-66). So long as a potential obeys (IV - 3 - 1), concrete expression for the
potential is not needed in the above calculations. Expression for the function F' is not
necessary either.

To summarize: The paths contributing to ®(B; A) can be classified with respect
to the first place they hit Ssep, so that ®(B; A) can be decomposed into the components
whose expressions are given by (IV-3-6), (IV-3:11) and (IV - 3:13); thus C-1 holds
for ESIII. However interferences between different components do not vanish except for
trivial ones; thus C-2 does not hold. We therefore conclude that QP cannot be defined
for ESIIT on Sgep.

§4. Lessons from probability-undefinable cases

Here we discuss what we can learn about the definability of QP from the investiga-
tions so far (ESI~III). Not only for ESI and II but also for ESIII, QP cannot be defined.
However the reason why QP cannot be defined for ESIII is different from those for ESI
and II. As discussed in §2.2, paths which dominantly contribute to the sum over paths
which defines a propagator are everywhere nondifferentiable with respect to time. Since
a nondifferentiable path intersects or hits a surface which is not S an infinite number
of times, an amplitude for any finite number of crossing or hitting of the surface van-
ishes and C-1 fails for ESI and II. Alternatives of I5SI and II are too fine to be used as
labels for path-classification. Alternatives of ESIII do not refer to the number of times
of hitting or intersecting the surface. They only refer to the first hitting. In this sense,
alternatives of ESIII are coarser than those of IEST and II. This we shall simply say that
ESIIT is a coarse-grained set of ESI(or II). For this coarse-grained set, C-1 holds. This
means that we can classify nondifferentiable paths by using first hitting place of a sur-
face as a label for path-classification. It is intuitively understandable that one can talk
about the first place a nondifferentiable path hits the surface, although one cannot talk
about the number of times the path intersects or hits it. Since this observation applies
to a more general surface than Sgep, We believe that C-1 also holds for such a more
general surface. We also believe that C:1 does not hold for an ES which is finer than
IESIII and holds for an ES coarser than ESIII; ESIII will be the finest ES for which C-1
hold, since no information finer than the place of first hitting will be specifiable as to
how a nondifferentiable path intersects or touches a general §. Therefore so long as C-1
is concerned, we can predict, without calculations, whether it holds or fails for a given
ES. If the ES is coarser than ESIII, C-1 will hold and otherwise it will fail. Since ESIV
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and V are coarser than ESIII, it is predicted in advance that C-1 will hold for the two
ES, which is indeed the case as we will see later. This prediction however tells nothing
about analytic expressions for components of propagator. Without them, we cannot
investigate C-2. For ESIII, C-2 does not hold. Although C-2 is the key to the successful
definition of QP, it seems difficult to find a qualitative way of judging whether C-2 holds
‘or fails when C-1 holds. Calculating the decoherence functional seems to be the only
way to judge it. In this way, whether C-1 holds or not might be judged qualitatively,
however a quantitative investigation is necessary to discuss C-2.
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Chap. V. Application of General Framework

to Concrete Examples (II)
Probability-definable cases

In this chapter also we deal with a particle in (1+1)-dimensional Newtonian space-
time. A potential with a suitable symmetry is allowed. We work with

ESIV : the set {Yes,No}, where “Yes” is to find a particle in a temporal domain AT at
a constant X and “No” is the complement to “Yes”,

ESV : the set {Yes,No}, where “Yes” is to find a particle in a spacetime domain
Q= AX x AT and “No” is the complement to “Yes”.

§1. ESIV

1.1  Analysis
We consider the following temporal domain:
AT = [0,Tp] at X =0. (V-1-1)

This is S|, namely, the temporal part of Ssiep. A potential is allowed which belongs to
class (IV-3-1). ESIV is expressed as ‘

ESIV = {Yes, No}, (V-1-2)

where “Yes” is to find a particle in AT at X = 0 and “No” is not to find it in the domain.
The component of propagator to be associated with “Yes” is defined and denoted by

®(B; Yes; A) = Z e, (V-1-3)

B« hitting Sj—A

where the sum is over paths which hit S| at least once on the way from A to B (see
Fig. 23). Similarly the component for “No” is

®(B;No; A) = Z e, (V-1-4)

Benot hitting S|—A

where the sum is over paths which never hit S| (see Fig. 24). The classifiability condition
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C-1 takes the following form for ESIV:

®(B; A) = ®(DB; Yes; A) + ®(B;No; A), (V-1-5)

Let us calculate the two components. The sum over paths on the right-hand side
of Eq. (V-1:3) is equivalent to the sum over paths on the right-hand side of Eq.
(IV - 3 - 7) with AT = [0, Tp]. We have already studied Eq. (IV -3-7) for AT € [0,Tp]
and then obtained Eq. (IV - 3-11). Substituting Eq. (IV - 3 - 11) into the left-hand side
of Eq. (IV-3-7) and putting AT = [0,Tp], we have

TD (> <] ‘
®(B; Yes; A) = / d(:T) / dXc®(B;0,T)F(Xc,iT)d(C; A). (V-1-6)
. 0 '

-00

This is understood as classifying all the paths which link A to B and hit §| with respect
to two labels: one is the position X¢ where paths intersect ST, and the other is the
first hitting time T of §|. The paths from C = (X¢,0) to (0,T) are restricted to the
half space X > 0 or X < 0 and the sum over such paths gives the function F' according
to formula (III- 3 -45) with (IIT-3-42) and (III-3 - 36). Since paths from A to C and
those from (0, T) to B are not restricted at all, familiar propagators appears accordingly
in Eq. (V-1-6). Writing

o .
®(B;0,T) = / dXp®(B; D)®(D;0,T), (V-1-7)
— 00
and using formulae (III-3-64) ~ (III- 3-66), we can carry out the time integral in Eq.
(V-1-6). The result is
®(B; Yes; A)
oo 0 0 oo
= (/ dXD/ dX¢c + / dXD/ dXC)Q(B; D)Y®(D; C)d(C; A)
0 —00 —00 0 (V -1- 8)

(o) oo 0 0
+ ( / iXp / iXo + / dXp / ch)Q(B;D)@(D; C)B(C; A),
0 0 —00 -0

where

C = (-Xg¢,0) for C = (X¢,0). (V-1.9)
Although expression (V -1 6) is correct for an arbitrary potential, expression (V -1 - 8)

is valid only when the potential belongs to class (IV -3-1) (this is the case we are

dealing with) because we used formula (III - 3 - 66) in carrying out the time integral in
(V-1-6).
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Next we calculate the other component (V -1-4). There are two ways for a path
from A to B to avoid hitting S|. That is, (i) to cross St, and ST, respectively at C
and D such that X¢, Xp < 0 and never hit S| (see Fig. 24), (ii) to cross ST, and S,
respectively at C and D such that X¢,Xp > 0 and never hit § |. In each case, the
partial paths from A to C and those from D to B are not restricted at all and they are
summed over to give ®(C; A) and ®(D; B), respectively. The partial paths from C to D
are restricted to a half space and the sum over such paths is given by Eq. (IIL- 3 - 67).
From these, we have

®(B;No; A) (/ dXD/ dz\c+/ dXD/ dXC) ~(V-1-10)

x ®(B; D)(®(D;C) — ®(D;C))d(C; A).

One can confirm that components (V-1-8) and (V -1-10) satisfy the classifiability
condition (V - 1-5). Therefore C-1 holds for ESIV.

Next we investigate C-2. The decoherence functional for the pair of “Yes” and “No”
is given by

D[Yes;No] = /dXB // dX 4dX 4®*(B; Yes; A)®(B; No; A)I*(A)¥(A"). (V-1-11)

The no-interference condition is
ReD|Yes; No| = 0. (V-1-12)

Substituting expressions (V - 1 - 8) and (V - 1 - 10) into the right-hand side of Eq. (V-1-11)
and carrying out the integration over Xp by use of formula (IT-1-5), we have

D|[Yes; Noj

/ dXp / iXe / X (V-1-13)

x ®*(D; C)(®(D; C") = &(D; C") (T*(C) + ¥*(C)) (¥(C") + (C).-

(We discuss ESV in the next section which includes ESIV as a special case. Calcu-
lations of the decoherence functional for ESV is given in Appendix E. Since a special
case of the decoherence functional for ESV gives (V- 1-13), we shall not exhibit the
acutual derivation of (V -1-13) here.) The real part of (V-1-13) is not identically
zero. Therefore, in general, C-2 does not hold and QP cannot be defined for ESIV.
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However we note that only the symmetric combination of ¥(C)
(Schridinger’s wave function at time T¢(= 0)) contributes to the decoherence func-
tional. Therefore, if U(C) is spatially antisymmetric, namely

U(C)+¥(C) =0, (V-1-14)

then the interference ReD vanishes. In fact, (V-1 - 14) is also the necessary condition for
ReD([Yes; No| = 0 at least for a free particle. We shall prove this here. Since an arbitrary
function can be written as the sum of a symmetric function and an antisymmetric
function, all we have to do is to prove that a-symmetric ¥(C') never makes Re) vanish.

When ¥(C) = ¥(C), it turns out that

00 0 2
ReD|Yes; No| = —4/ dXp / dXc®(D; C)¥(C)| . (V-1-15)
0 —o0
Therefore C-2 takes the following form:
0
/ dXc®(D;CHY¥(C)=0 for Xp > 0. (V-1-16)

Since this is required to hold for YXp > 0, we have U(C) = 0. (Details are found in
Appendix C.) It now follows that C-2 holds and thus QP can be defined for ESIV if
(and, for a free particle, only if) W(C) is an antisymmetric function. Let us calculate
values of the probabilities when ¥(C') is such. We substitute component (V -1 - 8) into
formula (II- 2 - 3), carry out the integration over X g and rearrange the result with the
help of Eq. (V -1-14). Finally we obtain

P(Yes) =0. (V-1-17)
Since our framework guarantees the total probability to be unity, it follows that
P(No) =1, (V-1-18)

which is of course confirmed by substituting (V - 1-10) into (IT-2 - 3). Therefore “the
particle is never found in the temporal domain”. We put an interpretation on this result
in the next subsection. Before that we claim the following: The condition (V-1 -14)
can be regarded as a condition on the initial amplitude ¥(A) because there is one to
one correspondence between ¥(C) and W(A). Let us consider a class of ¥(C) which
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is normalizable and satisfies (V-1-14). We write ¥(C) belonging to this class as
U 1ass(C). Then our result can be restated as follows: If an initial amplitude belongs to
a specific class '

Yo (4) = [ dXc"(C; A)Vana(C), (V-1-19)
then QP can be defined for ESIV with values (V-1-17) and (V-1-18).

1.2 Interpretation

We discuss the meaning of the proposition that “the particle is never found in AT ”.
This proposition sounds like as if it is speaking about something like a “measurement”
which is distributed in time but not distributed in space. When one talks about a
measurement in the usual sense, the measurement is distributed in space but not in
time. For example, a particle is found in a finite spatial interval at a moment of time.
One must first of all recognize this point when one is given a proposition of the above
kind. Therefore the measurement theoretical meaning of the proposition is not apriori
self evident. However this never means that it is impossible to give a measurement
theoretical meaning to the proposition within the usual measurement theory. In fact
we can give such a meaning to the proposition that is becoming to values (V -1 -17) and
(V- 1-18) of the probabilities. This turns out to be possible because QP are defined
only in the restricted situation (V -1 -14), which we shall now explain.

We have been dealing with a potential of the type of (IV-3-1). Because of this,
Schrodinger’s wave function remains to be antisymmetric between Te(= 0) and Tp,
provided that it is so at time T¢. Therefore (V - 1-14) makes the wave function vanish
on 8| in the presence of the potential (IV -3-1):

U(0,T)=0 forT € AT (V-1-20)

Since P(Yes) and (No) are defined only in the situation (V -1-20), interpretation
problem of the probabilities is also posed only in the situation. In fact the situation
(V - 1-20) is by itself very becoming to (V-1-17) and (V -1 -18) or to the proposition
that “the particle is never found in the temporal domain”. Hence we shall specify the
meaning of the proposition as

“The particle is never found in AT at X = 0.” (V-1-21)
= Schrodinger’s wave function vanishes in AT at X = 0.

Although the right-hand side is not yet stated in such terms that are directly related
to an instantaneous measurement, this interpretation is much better than the complete
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lack of the meaning of the left-hand side. Although we started our investigation without
having any concrete idea about the physical meaning of probabilities for ESIV, we have
arrived at interpretation (V -1-21) which seems more or less becoming to the values
of the probabilities. Of course this concerns only one example of ES. It is uncertain
whether the above kind of interpretation of QP for an ES is always possible when
our framework judges that the QP are definable for the ES. In addition to this, as
already mentioned, interpretation (V - 1-21) still leaves ambiguities because the right-
hand side is not spoken in the language of measurement. In view of these circumstances,
we investigate one more example of ES, that is, ESV which includes ESIV as a special

casece.
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§2. ESV

2.1 Preparation

We begin by generalizing sum-over-paths formulae obtained by the Euclidean lattice
method. Up to now, we often considered the time at which paths hit the “wall” X =0
for the first time. In the present case we consider “walls” which are positioned not at
X =0 but at X = Xw # 0. Accordingly we define

FW;4)= > &%, A=(XaTa), W= Xw,T), (Ta<T), (V-2-1)
WA

where the sum is over all the paths which link A to W and which do not invade the
region X < Xw when Xw < X4 or the region X > Xw when Xw > X4 until the
end time T. This sum over paths is defined by and calculated from the corresponding
sum over ‘paths’ combined with the diffusion limit and the Wick rotation. Function
F(X,iT) defined by the sum over paths (IIT-3 - 45) is the special case of F'(W; A):

F(X,iT) = F(0,T; X, 0). (V-2-2)

From Eq. (ITI -2 -24), for a free particle, it follows that

, o [ = x2 1 (Xw — X4)?
Ffree(Wa A) = [271'23(T — TA)3:| exp (Zm—) . (V -2 3)

Formula (IV -3 -10) is generalized to

> e‘5=ATd(iT)®(B;IV)F(W/;A), (V-2-4)

B—WewA
TeAT

where the sum is over all the paths which link A to B and whose first hitting of X = Xw
occurs in the time interval AT (see Fig. 25).

We introduce the following notation for the spatial mirror image of X with respect
to Xw:
X[le =-X+2Xw, A[Xw] = (XA[XW],TA)- (V-2-5)

In the rest of this section we write these simply as X and A. For a general potential,
the analytical expression for F' is not available. However if the potential V is symmetric
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with respect to the wall, i.e.,

VX, T)=V(X,T), (V-2-6)

then F' has the property
F(W;A)= F(W;A). (V.-2.7)

With these notations, formulae (III-3-64) ~ (IIT- 3- 66) are generalized to

/ " ST BB WF (W A)
Ta

_ [ 3(B;A) for (Xp - Xw)(Xa - Xw) <0,"V(X,T) (V-2-8)
| ®(B;A) for (XB - Xw)(Xa— Xw) >0, V(X,T) = V(X,T). S (V-2.9)

Similarly formula (III- 3 - 67) is generalized to

> €% = ®(B; A) — ®(B; A)
for (XB - Xw)(XA - Xw) >0, V(X,T) = V(X,T),

where the sum is over all the paths which never hit the wall of X = Xw on the way
from A to B (see Fig. 26).

2.2  Analysis
Let a spacetime domain {2 be bounded by St, and St, as shown in Fig. 27:

N=AX x AT

(V-2-11)
AX = [—a, a], AT = [Tc,TD], where Ty < Te < Tp < Tp.

To make our discussion as general as possible, we take account of a potential V(X,T).
A restriction is made, however, on the form of V for T¢ < T < Tp: (i)To make full use
of the formulae in §2.1, we assume the potential to be symmetric with respect to the
“left wall” and to the “right wall” of {2, that is, the temporal intervals T¢ < T < Tp
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at X = —a and X = q, respectively.
V(X[+2a],T) =V (X,T) for Te < T <Tp. (V-2-12)

(ii)For another reason which will be understood as we proceed, the potential is assumed
to be symmetric with respect to X = 0 as well.

V(-X,T)=V(X,T) for Te<T <Tp. (V-2-13)
From Eqs. (V-2-12) and (V - 2-13), the general form of V we deal with is

Sor o Va(T)cos X  forTe <T <1Tp

n=0

V(X,T) = { (V-2-14)

A/ otherwise.

ESV is expressed as
ESV = {Yes, No}, (V-2-15)

where “Yes” is to find a particle in  and “No” is not to find it in the domain. The
components of propagator to be associated with “Yes” and “No” are respectively

O(B;Yes; A) = Y €7, (V-2-16)
B—Ne—A

where the sum is over paths which pass through € on the way from A to B (see Figs. 28
and 29), and

®(B;No;A) = Z e, (V-2-17)
B—outside 2—A’

where the sum is over paths which do not pass through 2 (see Fig. 30). The classifia-
bility condition C-1 takes the same form as that for ESIV:

®(B; A) = ®(B; Yes; A) + ®(B; No; A). (V-2.18)

First we calculate the component for “Yes”. We shall call the spatial interval —a <
X < a at T = T¢ the “bottom” of 2. There are three ways for a path from A to B
to pass through f2: (i) to intersect the bottom of £2 (see Fig. 28), (ii) to cross Sty
at C such that X¢ < —a, hit the left wall and then arrive at B (see Fig. 29), (iii) to



254
Quantum Mechanical Probabilities Not Restricied to a Moment of Time

cross ST, at C such that X¢ > a, hit the right wall and then arrive at B, where ST,
is the surface of T' = T¢. Accordingly the sum over paths on the right-hand side of
Eq. (V-2-16) can be decomposed into three sums over paths. Summing over all the
paths of type (i) simply yields ®(B; C)®(C; A) integrated over —a < X¢ < a. Lvery
path of type (ii) can be decomposed into a partial path from A to C (X¢ < —a) and
a partial path from C to B whose first hitting time of the left wall lies in [T, Tp).
The sum over all such partial paths from C to B is given by formula (V -2 -4) with
AT = Tp — T¢. The result must be multiplied by ®(C; A), which comes from summing
over all the partial paths from A to C, and integrated by X¢ over [—00, —a]. The sum
over all the paths of type (iii} is calculated in a similar way. Consequently we obtain

®(B; Yes; A) :/a dXc ®(B;C)®(C; A)

—Q

—a Tp
+ / iXo / d(T) B(B; W )F(W_; C)YB(C; A)  (V-2-19)

—oo Tec

o0 TD
4 / iXg / d(iT) B(B; W4 ) F(W; C)d(C; A),
a To

where

Wy = (+a,T). (V-2-20)

(This is valid for an arbitrary V.) On the assumption of (V-2-12), we rewrite Eq.
(V-2-19) as follows. Substituting

o(B;Wy) = /codXD ®(B; D)O(D; W) (V-2.21)

—00

into the right-hand side of Eq. (V -2-19) and using Eqs. (V-2-8) and (V-2-9), we
can perform the time integrals in Eq. (V- 2-19). With the notation

Cy = C[+d] = (- X¢ £ 2a,T¢), (V-2.22)
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we obtain
®(B; Yes; A)

_ /oo dXp /adXC &(B; D)&(D; C)(C; A)

+ / iXp / dX¢ ®(B; D)YB(D; C_)d(C; A)

+/deD /_adXC(D(B,D)Q)(D, C)(I)(C,A) (V223)

+ / dXp / dX¢ B(B; DYB(D; C)d(C; A)
+ / iXp / dX¢ B(B; D)O(D; C4)B(C; A).

Let us turn to (V -2-17). There are two ways for a path from A to B to avoid passing
through £2: (i') to cross S, and ST, at C and D, respectively, such that X¢, Xp < —a,
never hitting the left wall on the way (see Fig. 30), (i) to cross S, and Sy, at C and
D, respectively, such that X¢, Xp > a, never hitting the right wall, where Sy, is the
surface of T = Tp. Accordingly the sum over paths on the right-hand side of (V - 2-17)
is a sum of two sums over paths: the sum over all the paths of type (i') and that of
(ii'). In each of these two, the sum over partial paths from A to C gives ®(C; A) and
that from D to B gives ®(B; D). The sum over partial paths from C to D never hitting
the left or the right wall is, on the assumption of (V - 2-12), calculated from formula
(V -2-10). The result is

®(B;No; A)
- _adXD -adX(;(I)(B;D) (®(D;C) — ®(D; C-)) ¥(C; A)

—0o0 —0o0

N / " dXp / " dX¢ 8(B; D) (2(D; C) - &(D; Cy)) B(C; 4).

(V-2-24)

One can confirm that the classifiability condition (V - 2-18) is satisfied by the compo-
nents (V - 2-23) and (V -2-24). Therefore C-1 holds for ESV.

Decoherence functional for ESV is given by
D[Yes; No| = / iXp / / X 4dX 40 (B Yes; A)B(B; Nos A)U*(A)(A"). (V -2-25)

The no-interference condition C-2 is

ReD|Yes; No| = 0. (V-2-26)
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We substitute Eqs. (V -2-23) and (V - 2-24) into the right-hand side of Eq. (V- 2 - 25).
The integration over Xp can be done by use of formula (II-1-5). Furthermore we use

&(D; C) = o(D;C) (D= D[0] = (-Xp,Tp), € =Cl0)) (V-2.27)

on the assumption of (V-2 -13). Noting [ dX49(C; A)¥(A) = ¥(C), we finally have

D[Yes; No] =/ dXp / dXc¢ / dXco
a 0 0
X (I)*(D; -Xc + a, Tc) (‘I’(D;Xcv + a,Tc) - (I)(D, —Xe + a,Tc))
X {(\II(XC —a)+ U (=Xg - a))* ¥(~Xcr — a)
+(¥(Xg +a) + ¥(~Xo +a))" ¥(Xor +0) },

(V-2-28)
where all the ¥’s in { } refer to time Tg¢, that is, ¥(X¢ — a) = ¥(X¢ — a,T¢), etc;
detailed calculations are given in Appendix IE. The appearance of the special combina-
tion of ¥’s in { } is a consequence of property (V -2-27). Although the decoherence

functional D{Yes; No] is not identically zero, it vanishes if ¥(C) satisfies the following
two conditions.

V(X -a)+¥(-X-a)=0 - (V-2-29)

and

w(x+a)%\p(-x+a)=o, (V-2-30)

where we write X¢ simply as X. Let ¥, and ¥_ be respectively the even and odd
parity part of W:

U(X)=U(X)+V_(X), Pie(—X) =2T4(X). (V-2-31)
Conditions (V- 2-29) and (V - 2-30) are equivalent to
Ui(X +20) = FU4(X). (V-2-32)

In fact, this is also the necessary condition for { } on the right-hand side of (V-2 28)
to vanish for arbitrary X¢r. This is easily proved by writing ¥ in the brackets in terms
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of ¥4. The general form of ¥ which satisfies (V - 2 -32) is given by

U(X) = (ApsinkaX + BncospnX) (V-2-33)
n=1
with
™m w(2n — 1)
kpn=—, pp=—F7. -2
= P 5 (V-2-34)

Our framework judges that C-2 holds and QP can be defined for ESV when ¥(C) belongs
to a specific class (V- 2-33), or equivalently, when an initial amplitude belongs to a
specific class (V - 1 - 19), where W 1as5(C) here is ¥(C') which belongs to class (V - 2 - 33).

Let us calculate values of the probabilities. From formula (II - 2 - 3),

2

P(Yes) = /dXB /dXAQ(B;Yes;A)\I!(A) . (V-2-35)

We substitute expression (V - 2-23) into the right-hand side. The integration over Xp
is carried out by use of Eq. (IT-1-5). We then use Egs. (V-2-29) and (V-2-30).
Finally we obtain '

P(Yes) = / dXp|¥(D)? = / dX|¥(X,T)? (Tc<T<Tp). (V-2-36)

—-—a -—a
The last equality follows from the conservation law:

5% dX|¥(X,T)?=0 (T¢<T<Tp). (V-2-37)

We shall prove this here. ¥4 (X, T) obey the Schrédinger equation. Since the potential is
symmetric and has the fundamental period 2a for T¢ < T < Tp, the 2a-antiperiodicity
of U, and the 2a-periodicity of ¥_ are conserved by the time evolution between T¢
and Tp. Thus, throughout the time interval, the form (V -2- 33) remains unchanged
with time dependent coefficients A, (T) and Bn(T'). Therefore

U(+a,T)=0 (Tc < T < Tp). (V-2.38)

Thus the current of probability density vanishes at X = ®a for T¢ < T < Tp and the
conservation law (V -2 -37) holds. From our general framework and Eq. (V-2 - 36), it
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follows that

P(No) = /m dX|U(X, T)[? /_ dX[U(X,T)?  (Te<T<Tp), (V-2-39)

-0

which can of course be confirmed by substituting component (V -2 :24) into formula
(I1-2-3). Quantities (V-2-36) and (V -2-39) are “spacetime probabilities” in the
scnse that these probabilities are associated with finite spacetime domain 2. The con-
servation law (V - 2 - 37) allows us to rewrite the spacetime probabilities into suggestive
forms:

P(Yes) = /n dV|¥(X,T)?, (V-2-40)

where

§(X,T) = TD =g VXD, /dV/ (V-2-41)

P(No) can also be written as an integral over a spacetime volume.

As one may have already noticed, there is a difficulty in the above discussion.
Since (V -2 - 33) is spatially periodic, it is not normalizable on (—00, 00); the first term
on the right-hand side of (V -2-39) diverges. In this sense, probabilities (V -2 - 36)
and (V -2-39) are formal ones. One way to get over this difficulty is to adopt a box
normalization for ¥ instead of (IT - 1 - 9) and reinvestigate C-1 and C-2. This is a possible
but cumbersome plan because the propagator in the box is complicated; it is a sum of
an infinite number of ® even for a free particle. We shall avoid such a task. Instead we
shall discuss what we can learn from the formal probabilities in the next subsection.

Lastly we look at the special case ¢ = 0 or Tp = T¢. (i)When a = 0, conditions
(V-2-29) and (V -2-30) are one and the same condition requiring that the initial
amplitude be antisymmetric with respect to X = 0. (Expression (V -2 -33) cannot be
used when ¢ = 0.) Given such an initial amplitude, probabilities can be defined for
{Yes, No} of the @ = 0 case. Since an antisymmetric and normalizable initial amplitude
is available, normalization problem does not occur. From expressions (V -2 -36) and
(V - 2-39), values of the probabilities are 0 for “Yes” and 1 for “No”. These are precisely
what we obtained for ESIV in the previous subsection. (ii)When Tp = T¢, domain {2
becomes the spatial domain [—a, a]; thus familiar probabilities must be defined without
any restriction on the initial amplitude. We can easily confirm this. When Tp = Tg,
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the decoherence functional (V - 2 - 28) identically vanishes because of

lim ®(D;C) = 6(Xp — Xo). (V-2-42)

TD - Tc

Therefore the pair of “Yes” and “No” decoheres for an arbitrary initial amplitude and
probabilities can always be defined with values (V -2 -36) and (V -2 39).

To summarize: The no-interference condition holds when an initial amplitude
belongs to a specific class specified by (V -2 -33). In such situations, probabilities can
be defined for spacetime alternatives {Yes, No} with values (V -2-36) and (V -2-39).
This result is correct in the presence of any potential of the form (V-2 -14). See Fig.
31.

2.3 Interpretation and discussion

Here we shall not refer to the normalization problem. The result for ESV is similar
to that for ESIV. That is, QP can be defined only in a restricted situation. Accord-
ingly, interpretation problem is also posed only in the situation. Let us concentrate
on expression (V-2-36). It says that “the particle is found in £ with probability
f2, dX|¥(X,T)|?”. This proposition sounds like as if it is speaking about a “mea-
surement” distributed both in space and time, whose meaning is not self evident. As
discussed in §1.2, this never means that it is impossible to give a measurement theoret-
ical meaning to the proposition within the usual measurement theory. It is interpreted
as follows.

In the restricted situation under which QP can be defined, Schrédinger’s wave func-
tion belongs to a specific class (V - 2 - 33) at time T¢ and thus there holds conservation
law (V - 2-37). It says that the spatial probability ffa dX|¥(X,T)|? is conserved only
for the time interval of £2. To be precise, the probability to find the particle at time
T on the spatial slice [—a,a] of £2 is independent of T only when T' € [Tg,Tp], pro-
vided that no measurement is made before T. (This is indeed a favorable situation to
introduce QP which is associated with §2 itself.) Hence the conservation law naturally
specifies the meaning of P(Yes) as

1
“Probability to find a particle in {2 is, for example, 5”
_ ' (V-2-43)
= Probability to find a particle on the spatial slice of 2 is (zlwaysg.

The right-hand side is stated in such terms that are directly related to an instantaneous
measurement and therefore has no ambiguity in its meaning. Specification (V -2 .43)
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in turn clarifies what kind of measurement “to find a particle in {2” is associated with.
It is not associated with a continuous measurement distributed both in space and time
but with a familiar instantaneous measurement which is distributed only in space. In
this way, in the situation under which QP can be defined, the measurement theoretical
meaning of ESV turns out to be clear. Except for the normalization problem, everything
comes to gain a clear measurement theoretical meaning when ¥(C') belongs to specific
class (V- 2-33). (In view of this, ESIV gains a status as an example of ES in which the
normalization problem does not occur and measurement theoretical meaning is clear.)

The important point here is that the specific class has not been provided by hand
but has been selected by the mathematical condition of vanishing interference, namely
C-2, making no reference to measurements. Our framework has selected the favorable
situation systematically. This convinces us that the framework has been successfully
constructed.

The above observation tempts us to say that the QP can be defined for ESV because
the spatial probability on a spatial slice of {2 is independent of the time of slicing.
However we cannot tell whether such a reasoning is correct or not at this stage. The
above discussion does not insist that the conservation of the spatial probability is the
criterion for the definability of the spacetime probabilities. The criterion is the no-
interference. The relation between the no-interference and conserved spatial probability
is an interesting issue, which we want to study in the future.
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Chap. VI. Summary, Discussion and Remaining problems

We have discussed whether QP (quantum mechanical probabilities) can be defined
for a set of alternatives which are not restricted to a moment of time. We have investi-
gated this problem within nonrelativistic quantum mechanics for a particle. By taking
spacetime picture, we have concentrated on alternatives in Newtonian spacetime. We
constructed a general framework in Chap. II and applied it in Chap. IV and V to
concrete examples of ES with the help of the Euclidean lattice method reviewed and
extended in Chap. ITI. The general framework provides two conditions: the classifiabil-
ity condition (C-1) and the no-interference condition (C-2). QP-definability for a given
S is judged by examining whether these conditions hold or not. We obtained both
negative and positive results. A lesson from negative results is that the success of C-1
depends on whether the ES serves as a good label in classifying virtual paths which are
everywhere nondifferentiable with respect to time. If the ES is coarser than ESIII then
C-1 will hold; otherwise it will fail. The positive-result cases (ESIV and V) are summa-
rized as follows: Given an ES (ESIV or ESV) whose measurement theoretical meaning
is left unspecified, our framework judges QP-definability for the ES by examining C-1
and C-2 making no reference to measurements and then concludes that QP is definable
if an initial amplitude belongs to a specific class. Owing to the restriction of the initial
amplitude to the specific class, the resultant probabilities are given clear mea.suremént
theoretical meanings within familiar measurement theory. This is somewhat surprising
because measurement theoretical issues were completely vague (at least for the author)
at the beginning of this study. In this way, everything looks like going well in the
positive-result cases, except for the normalization problem for ESV.

Looking through the whole story summarized above, we shall discuss several issues
to re-understand the meaning and the status of this study in quantum mechanics.

(1) About what we have actually studied: In the context of sum over paths, there is
no conceptual difference between ®(B; AX,T; A) defined by (II - 1-4) and ®(B; 0j; A)
defined by (I1-2-1). They are both amplitudes in that 'S are summed up over suit-
able paths. From the former amplitude, positive quantity (IT-1-3) is constructed which
fulfills axioms for probabilities. Since this positive quantity agrees with (I-1-1), it is in-
deed a physical probability in quantum mechanics associated with a clear measurement
theoretical meaning. Then two questions naturally arise: (i) Is the positive quantity
constructed from the latter amplitude in the same way as (I11-1-3) also a probabil-
ity? (ii) If it is a probability, then is it associated with a physical meaning? These
are precisely what we have posed as problems and investigated by examples. The first
question was answered in §2 of Chap. II; we formulated two conditions C-1 and C-2 for
the positive quantity to be a probability. The second question was answered positively
in Chap. V.
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(2) About the Euclidean lattice method: We used the Euclidean lattice method
to define and calculate the sum over paths (IT-2-1). At the stage of this writing, we
cannot make a definite statement as to whether this method is wider than Feynman’s
path integral. However the author feels that it is wider. For example, the naive use
of Feynman’s path integral may not give Eq. (IIT-2-35); it is also not sure whether
Eq. (ITT- 2 - 25) is obtained in the context of Feynman’s path integral. If the Euclidean
lattice method turns out to be indeed wider than Feynman’s path integral, one may
then think that the résults obtained in Chap. IV and V by use of the method are
possibly outside of quantum mechanics. This is however not the case.

For ESI and II, although the failure of C-1 was proved by use of the Euclidean
lattice method, the failure can be qualitatively understood without using the method
as discussed in §2.2 of Chap. IV. Therefore the result of QP’s undefinability for ESI
and II is understandable without the Euclidean lattice method. For ESITI~V, the use
of the Euclidean lattice method was only through the “first hitting amplitude” F de-
fined by Eq. (ITI-2-25) or by Eq. (III-3-45) in general. Ilere we make the following
observations:

(i) There was no need to know an analytic expression for I in investigating ESIII~V;
the only property of F' we used is that F satisfies the integral equations (III-2-33) and
(IT1-2 - 34) ((III-3-65) and (IIL- 3 - 66) in general).

(i1) These integral equations themselves can be written down without the knowledge of
the Euclidean lattice method, as discussed in §3.2 of Chap. IIl. They directly follow
from the very meaning of F' as the first hitting amplitude.

(iii) It is considered that whether these integral equations have solutions or not depends
on the behavior of the potential. We confine ourselves to such a class of potentials that
guarantee the existence of the solutions. Then the first hitting amplitude I” can be
defined without the help of the Enclidean lattice method.

Therefore all the calculations made for ESIII~V can be carried out without the Eu-
clidean lattice method.

Putting all these together, we can say that the results that QP is undefinable for
ESI~IIT but definable for ESIV and V are not something peculiar which were born
from the Euclidean lattice method but are understandable within the usual quantum
mechanics.

(3) About measurement theory: To tell the truth, the author began this study
as a purely logical problem in quantum mechanics without the confidence of finding
probability-definable cases. Measurement theoretical issues were hence out of his scope.
However, probability-definable cases have been found and they have naturally posed the
problem of interpretation of the probabilities. It is not directly the aim of this thesis
to provide a measurement theory for a general ES. Our main concern is to apply the
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rules of defining probabilities in the sum-over-paths quantum mechanics to an ES other
than EST, where the precise meaning of an ES is a set of amplitudes {®(B;0;; A)}.
Measurement theoretical discussion enters into our investigation when probabilities are
definable; when they are definable, it is expected that each of them is interpretable as
the probability of the occurrence of O;. However the meaning of “the occurrence of 0;”
is not self-evident except for EST. Hence what we can do is to examine whether such
a proposition as “the probability of the occurrence of Oj is p” can be given a definite
meaning within the familiar measurement theory which deals with an instantaneous
measurement. In probability-definable cases studied in Chap. V, definite meanings
can be given to such propositions, meanings which are becoming to the values of the
probabilities. Whether this is always true or not in probability-definable cases is an
interesting problem. However, at the time of this writing, the author cannot say definite
things about this problem. Although a general discussion is needed about probability-
definable cases, the author does not have a definite idea about the discussion.

(4) About the physical meaning of interference: When the interference

ReD|[0;; O] defined by Eq. (II-2 - 6) does not vanish for j # k, the sum rule (IT- 2 - 10)
fails and probabilities cannot be defined. In this thesis, we have considered that the
interference is a mathematical object which serves as the measure of inconsistency be-
tween the superposition principle for amplitudes and the sum rule for probabilities. It
is however an interesting question whether the interference has some physical meaning.
Again, the author cannot say definite things about this at the time of this writing.
Instead here we shall discuss the interference in a concrete example. Decoherence func-
tional D|Yes;No] for ESV is written as

D[Yes;No| = /dXBD[BIYes;No] (VI-1-1)
with

D[B|Yes; No| = ¥, (B)¥No.(B) (VI-1-2)
and

Uyea(B) = / X 4®(B; Yes; A)U(A)

(VI-1-3)
UNo(B) = /dXAq)(B;No; A)¥(A).
From Eq. (V -2-18), it follows that
U(B) = Uyes(B) + Uno(B). (VI-1-4)

Furthermore, because of (II - 2 - 13), functions Uy,s(B) and ¥n,(B) obey the Schrodinger
equation. Thus we can say that Schrédinger’s wave function U(B) consists of two
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“partial waves”, each of which also obeys the Schrodinger equation. The quantity
ReD[B|Yes; No] is the interference between the partial waves as understood from the
observation that the quantity is the cross term which appears when the right-hand side
of Eq. (VI-1-4) is absolutely squared. Note that the word “interference” is used in
the usual sense here. If physical meanings of the partial waves turn out to be clear,
then ReD|[B|Yes; No| also acquires definite physical meaning, which in turn clarifies the
meaning of ReD[Yes; No]. It must be noted that the question of the physical meanings
of the partial waves can be posed separately from the question of definability of prob-
abilities which we have pursued in this thesis. The physical meaning of a partial wave
is a remaining problem. |

(5) About the role of time: In a broad sense, our study belongs to the study of
the role of time in quantum mechanics. By exploring the definability of probabilities
for a general ES, we have all the more come to recognize a special property of EST. A
special property of EST reflects a special role of time in quantum mechanics. Time play
a special role in that a constant-time surface provides alternatives for which QP can
be defined for an erbitrary (normalized) initial amplitude. By contrast, for ESIV and
V, the initial amplitude cannot be arbitrary in order for QP to be definable. It is then
conjectured that an ES for which probabilities can be defined for an arbitrary initial
amplitude is limited to EST. Whether this is correct or not is a remaining problem. If the
conjecture is correct, then time is understood as follows: A set of alternatives for which
probabilities can be defined for an arbitrary initial amplitude forms a hypersurface;
time is then defined as a parameter which parametrize a sequence of such surfaces. By
the way, Newtonian time is already special in classical mechanics. One may therefore
take it for granted that time has a special property in quantum mechanics. However
classical mechanics is an approximation of quantum mechanics. A fundamental issue
like “a special role of time” should be understood at a fundamental level. Our study
made in this thesis is the first step toward the understanding the role of time from the
viewpoint of probability-definability in quantum theory.

The following are the remaining problems:

(1) Application of our framework to other examples of ES, especially to ESV with non-
rectangular spacetime domain with a potential, is worthy to be investigated. This
will tell us something about the relation between conserved spatial probability
and no-interference.

(2) In ESIV and V, for a specific class of initial amplitudes, decoherence functional
itself vanishes before we take its real part. Whether this is characteristic to the
- two ES or not is an interesting problem.

(3) From the investigations so far, it is conjectured that an ES for which C-2 holds
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for an arbitrary initial amplitude is limited to EST. This conjecture is worthy to
be investigated. If the conjecture is correct, then the status of time in NRQM
may be understood as follows: An ES for which QP is defined for an arbitrary
(normalized) initial amplitude defines a surface of constant time.

(4) We have extended the Euclidean lattice method to the case of a nonzero time-
independent potential for one particle in one dimension. Extension of the method
to more general cases is an interesting issue. If such an extension is successfully
made, the Euclidean lattice method will acquire a status as one formulation of
quantum mechanics alternative to, or possibly wider or more flexible than, other
formulations such as Hamiltonian, Path integral and stochastic quantization.

8),9
»9) has con-

(5) To construct a relativistic version of our framework. In fact Hartle
structed independently a general framework which is essentially the same as ours.
His ultimate aim is to apply his framework to quantum cosmology. The present
‘author is also interested in such a field, especially in the probability interpretation
problem in quantum cosmology. Constructing a relativistic version is one of his

long-term objectives.

Historical matter, author’s contribution and comments:
The author started his investigation from studying Ref. 3). After the efforts of im-
proving the normalization problem of some probabilities which Hartle discussed there,
the author pursued the automatic normalization (see §2.2 of Chap. II) for these prob-
abilities and came to recognize the need of vanishing of interferences between different
alternatives, which led him to the no-interference condition. And finally he arrived at

the general framework introduced in Chap. II. Historically, Grifﬁthn) may be the first
one who formulated the idea of defining probabilities for non-interfering alternatives.
His interest was the logical interpretation of quantum mechanics; he considered a set
of alternatives each of which is a sequence of events each of which is defined at a single
moment of time. From our point of view, such alternatives are alternatives of EST but
not the kind dealt with in this thesis. Gell-Mann and Hartle also formulated the idea of
defining probabilities for non-interfering alternativess) on the background of quantum
cosmology. Their framework and our framework are essentially the same. The differ-
ence is that the decoherence functional was written down from the beginning in their
framework, while the present author reached it by pursuing the automatic normaliza-
tion. Anyway, Ref. 3) may be seen as the common starting point for them and for the
present author, and constructions of respective frameworks were made independently.
Applications of such a framework to concrete examples of ES other than EST were first
made by the present author.

Sorkin has discussed the sum-over-paths rules of defining probabilities from amplitudes. !

1)
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However he did not take account of the no-interference condition and hence he was faced
with peculiar things such as causality violation in defining probabilities for alternatives
which do not decohere. This should be compared with our results. We have defined
probabilities only in the situation in which alternatives decohere. The resultant prob-
abilities do not suffer from such peculiar things. His work and that of author’s are
mutually independent.

In Chap. III we converted the Schodinger equation into a Fokker-Planck equation
by use of the transformation (III-3-4). The transformation itself is a familiar one in

the theory of Fokker-Planck equation. 13) The author’s contribution lies in the construc-
tion of the random walk whose diffusion limit gives the continuous stochastic process
described by the Fokker-Planck equation obtained from the Schédinger equation; he has
found a random-walk representation of quantum mechanics as (III- 3 - 39). (At the time
of this writing, he does not know of a literature dealing with such a representation.)

Just before completing this thesis, the author learned that the integral equation
method of calculating the first hitting amplitude (cf. Eqs. (III-3-48) ~ (III- 3 -52))
is, if the amplitude is converted into ‘probability’ by the Wick rotation, a familiar issue

in the theory of stochastic process.u) This in turn convinces us that the extension of
the Euclidean lattice method has been successfully made; the method gives the same

result as the integral equation method.
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Appendix A
A. 1 COUNTING LATTICE PATHS

‘Probability’ for an unrestricted random walk is given by formula (ITI-2-1). It is
obtained by counting the number of ‘paths’ contributing to the sum on the first right-
hand side of (III - 2 - 1). Without loss of generality, let us consider the case a = [0, 0] and
b = [z,t] such that > 0, t > 0; furthermore we assume that z + ¢ = even so that there
is at least one ‘path’ which connects a and b. Since a ‘path’ moves forward in ‘time’,
all the ‘paths’ connecting the end points consist of ¢ steps and are thus associated with
the same weight (1/2)!. As understood from Fig. 32, a ‘path’ of ¢ steps consists of ‘5%
steps of leftward walks and H'T’ steps of rightward walks. Thus the number of ‘paths’
which connect the end points is the number of combination of choosing t—‘;;’- things out
of ¢ things, namely, (._121) The sum of the weight (%)‘ over this number of ‘paths’ is

just the product of the number of ‘paths’ and the weight. The result is (ITT-2-1).

The sum over ‘paths’ (III -2 - 16), which defines f[z,t], is evaluated by the method
of images. The result is written in terms of unrestricted random walks as the first
right-hand side of Eq. (III-2-19). Here we calculate the first right-hand side to derive
the last right-hand side. Assuming z > 0 for simplicity and using (IIT-2-1) and

(T111-2 - 18), we have
K”‘) - (’*‘t+ 1)]

_ 1 (_t+:1: b_t—:c)
= a'b' @+ DiG-1) =72 7=

—  (a+1- b)]

f[:E,t] -

“’l*“

R =

(A-1)

a+1'b’

T+ t+1
‘t+1 =11)

A. 2 IDENTITIES

ww wa

(1) In the binomial formula

(1+2)" y <’?>z", (A-2)

let us put z =1, n =t and j = 2, changing the summation variable from j to z, to
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have
2=, L (A-3)
E3NE) _.

where the sum is taken over even integers when t is even or over odd integers when ¢ is
odd. Dividing both sides by 2!, we have

23 () =1 | (A-4)

z=—1

This identity proves the normalization of the ‘probability’ (IIT- 2 - 1) for an unrestricted
random walk.

(2) Because of the very meaning of f which is defined by Eq. (III - 2 - 21), it is evident
that there holds the normalization (III - 2 - 23) for the restricted random walk. However,
compared with the unrestricted random walk discussed just above, an analytical proof
of the normalization is not so easy. For definiteness, we put t = 23 and z = 2n such
that § > n > 0 in (IIT-2-23). The identity to be proved is then

o0 .
_ 1 nf 2 _ v
j=n
We use the method of generating function to prove the above. As a flexible expression
for a binomial coefficient, we use

(m>;:m(m—l)(m—Q)“'(m-n"‘l). (A -6)

n n!

For m < n, it follows that ('::) = 0. We introduce the following function of = and y,
which we call the generating function of I(n):

811—1 y Ynt1 Y2 o 3

I(n|z,y) = 2ng—— / dyn+1/ dy,,---/ dy1 (1 — 4zy1)~ 3. (A7)
. ox™ 0 Jo 0 ,

By expanding the integrand in power series of z and yi, carrying out all the integrals

over ¥ - - - Yn41 and then differentiating (n — 1) times with respect to x, one can prove

that

I(n) = I(nl, 3). (A-8)
We proceed as follows:

(i) We first perform yg intégrations in (A -7) directly (not by expanding in power se-
ries), carry out z differentiations and then substitute ¢ =y = % The result is a finite



270
Quantum Mechanical Probabilities Not Resiricted to a Moment of Time

series of binomial coefficients.
(ii) Next we prove that the value of the finite series is unity. This proof is also made by
introducing suitable generating functions.

By integrating (1 — 4zy;)~3 over yj - yn, We obtain

2k + 1 ynk
I(n|z,y) 2n
Z( 2z)E+1(2k + 1) (n — k)! (A-9)
+ terms which vanish when z =y = !

Dropping the vanishing terms, we carry out z differentiations and substitute r = y =

)

The result is a finite series:

I(n)=I(n|%,1)—( 1y [1+Z n_’ik(";’”)] (A-10)

(At this stage one can numerically confirm that the right-hand side is certainly unity
for concrete values of n. Such a numerical confirmation is impossible for the infinite
series (III - 2-23).) Using the identity

n n+k n+k 1/n+k-1 |
n+k(2k)‘(2k>"§< 2k—1)’ (A-11)

and (j) = 1, we have

I(n) = (-1)" [Z( (") -3 Z( ("5t ,1)} (A-12)

To evaluate the right-hand side, we introduce the following functions of z:

Alz) = Z}: 4)’=("+’”) " (A-13)

n=0 k=0

o o] n

B(z) = ZZ(-zl)’c(”;k’“_“l 1).7:". (A -14)

n=1 k=1

The two serics on the right-hand side of (A - 12) are generated by these functions in the
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following manner:

= +k 1 d°
—a)(" 4 :
5N kfnHk=1) _1d"
k=1( Y ( 2k -1 )— n!dan(:c) z=0 (A-16)

To obtain a closed form of generating functions A(z) and B(z), we note that the
expression (A - 6) allows us to extend the upper bounds of the k summations in (A - 13)
and (A - 14) from n to co. After this extension, we exchange the order of n summation
and k summation and use

> n+k) z*
Yol o )= ey (A-17)
o ( 2% (1 — z)2k+1
. /n+k-1 n_ z*
2 k1 )T =g (A-18)

n=

both of which can be proved by expanding the denominators on the right-hand sides in
power series of z. Consequently we have

i k

) = D =y
1 & 4z 1* )
e [} (A1)
_ l1—=2
- (142

= i [(1—_4;2] k (A-20)
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From Egs. (A -12), (A-15), (A-16), (A-19) and (A - 20), it follows that

, 1 d® 1
I(n) = (-1)"=-— [A(:c)——B(:c)] |
n!dz 2 2=0
NEE
- nldz®z +1|,_, (A-21)
L1 dt 1
=D s

This completes the proof of the identity (A - 5).

(3) Equation (ITI-2-13) is an identity concerning binomial coefficients. As under-
stood from Fig. 32, the range of the sum in (IIT - 2 - 13) is xp—(tp—t.) < z < Tp+(ty—t,).
To be specific, let us take a = [0,0], b = [I,m] and ¢ = [j,n] such that 0 < n < m and
both [ + m and j + n are even. Equation (III - 2 - 13) then reads

()= 3 (555 (i) =

2 j=l—(m-n)

We change the summation variable from j to ¢ = I—"—’% (note that the numerator is
even); we put '—+2ﬂ = q and m — n = p. Equation (A - 22) then becomes

(=500 o

This is a well-known identity for binomial coefficients and is proved by expanding both
sides of (1 4+ z)™*P = (1 + x)P(1 + z)™ in power series of £ and comparing coefficients
on both sides for the same power of . Explicitly, the expansion in power series is

ur n+p\ , P *. /n
N EELSEDY (D)oo (7)o (A-24)
q:O q r=0 T' s=0 S

Comparing the coefficients of 2" P~ on both sides, we obtain (A - 23).

(4) Equation (III-3-46) applied to a free particle is also an identity concerning
binomial coefficients. Use expressions (III-2- 1) and (III - 2 - 22) and put for definiteness
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a = [1,0], b = [-m,n] and ¢ = [0,j] such that [, m, n > 0. Equation (IIT- 3 - 46) then

reads
n ~(n—3\Il[(J ' '
(l+n21+n> = Z <m+n—j) ; (lil) : (A ) 25)
2 2

i=l

At the time of this writing, the author has not found an analytical proof of this identity.
Instead he has numerically confirmed it for concrete values of [, m and n. To give an
analytical proof is left as an elementary problem in enumerative combinatorics.

(5) Equation (IV -1-11) with (IV-1-18) is also an identity concerning binomial
coefficients whose analytical proof the author has not found. Ior definiteness, let us
put a = [k,0] and b = [-I,m] such that k, [, m > 0 and write t, = jn. The identity
then takes the following form:

T' m in=2 Ja—2 .
()= ¥ ¥ oY ts(tanl)
2 n=1 j.=k+2(n—1) ja_1=k+2(n—-2) 5=k m=Jnt T T
X ' 1 (jn""jn‘—l'i']-)x”.x 1 <j2'_'jl.+1)k_+_£(.jll+1 )
dmn—no1F 1\ demfemt i-n\ 2R Jn+1\BE41)
The primed sum over n is restricted to odd integers. The author has numerically
confirmed this identity for concrete values of k, [ and m. An analytical proof is also
left as a problem in enumerative combinatorics. Although analytical proofs for (A - 25)

and (A - 26) are lacking, combinatoric proofs have been given. The latter have been
obtained from manifestly correct ‘path’ classifications.

A. 3 DIFFUSION LIMIT

We exhibit the actual calculations of diffusion limits. We begin with demonstrating
Eq. (IIT-2-7). In the formula

1/t
U[b;a]:—i(iﬂ>, (tztb_tav"c:mb_‘xa) (A-27)
2

t, 2 and 25t go to infinity in the diffusion limit (III’-HQ -6). We shall rewrite the
right-hand side by use of Stirling’s formula in advance which is

2l V2mz2e™F for z > 1. (A - 28)
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We have

1 /¢
ot z+t

~ %\/QTttte-t [m (t —2 x) Te_._;z\/w(t_m (t ; x) '—?e-%—"J -1

_ 2t tt
m(t - 2?) (1 - 2)5 (t+ 2)'5°
2 -+ /(1-6 T
= /———<(1-6%) ? 6=-).
1rt(1—52)( ) <1+6) ( t)
Here we use (ITT-2-3) to have

X
1 2 . 1— A\ mX
b: — = .
5 L by = \/%ﬂﬁ( ar(l- a0 (1+A) A= (A-30)

In the diffusion limit, we keep the ratio m3/n? = m fixed and let n; — 0. Since
A = nymX/T — 0 in the limit, the first factor approaches V 3553 the second and the
third factor are respectively evaluated as follows:

(A -29)

(1- A%~ _727—->e - , 1FA)* o (A-31)

Consequently we obtain

]. m mx32 mx? m mx?
1 —— b' paced —_— 2r - r —_= —_— 2r .
leQmu[ ; al 1/27”_6 e ‘/27r're (A-32)

Next we calculate the diffusion limit on the left hand-side of (IIT - 2 -24). This is
now easy because (we assume X > 0 for simplicity)

flz,t] = %u[x,t;o, 0], (A-33)
as seen from (III-2-1) and (III - 2-22). The limit is evaluated as follows:

- fIX[m,T/m) X/m ..
Lim 2172 Ilm2n T/ “[AX/UI,T/%,O 0]

_ X UX/m,7/n20,0]
T 2m

_ X m mX?
=TV 25 P 2r )’

(A-34)
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giving (I11-2-24). By the way, the above quantity, namely F(X, ), is normalized to
[o o]
/ drF(X,7)=1. (A - 35)
0

(This can be proved by carrying out the time integral explicitly.) This is the continuum
counterpart of (III-2-23). Actually (A -35) can be obtained as the diffusion limit of
(II1 - 2 - 23); in the limit ), 2n; goes over to fdr and f divided by 21, tends to F to
give (A - 35).

Appendix B
Confining ourselves to a free particle, we solve the Volterra integral equation (III - 3 - 48).
Noting ®(T|Xp,X4) = ®(Xp,T; X 4,0), we substitute expression (IIT-2- 10) for the

free propagator into the right-hand side of Eq. (IIT- 3 - 50) to have (we use the conven-
tion m = 1 here)

0o 1 . x2

—_ —sT o —_ Y

d)(.s|XB,X,4)—‘/0 dTe ‘/Zm'Te T (X =Xp %A)

2 [ , 1X?

_./ _ _ B-1
m‘/o ‘“e"p{ (SA W)} B
1 .

=/ —Josx2/;

=\ 555 exp( 2sX /z) ,

where v/i = exp(ir/4). Substituting this into Eq. (III-3-49) and taking account of
XpX4 <0, we have

€+ico

FTX) = -5 [ dsexp(=(s)), (B-2)

€—100

where

f(s)=4/2sX%/i-Ts, ¢>0,T>0. (B-3)

The constant 4 in Eq. (III-3-49) has been chosen to be an infinitesimal positive
quantity € so that the integration contour sees the singularity s = 0 on its left-hand
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side; the contour is shown in Fig. 33(a). Introduction of the cut which runs from s = 0
to —z00 restricts 6, the phase of s, to the range

T 3
--2-<9<§7r. (B-4)

This guarantees the integrand to be single valued. Let us explore the behavior of the
integrand on the complex s-plane. Using the polar representation s = re*®, we have

f(s) =v2X2r (cos %(0 - g) + i sin %(0 - %)) — T(cos @ + isin ). (B-5)

Because of the restriction (B - 4),

1 A3
Re f(s) > 0 on the left half-plane 5T < 0 < ;71'. (B-6)

This enables us to deform our contour as shown in Fig. 33(b). The resultant contour

is Cg + Cp. We note that r ranges from co to 0 and § = —% on Cg, while, on Cr, r

ranges from 0 to oo and 0 = %71'. Therefore

1 [ [0 e . oo sx: sx ;
F(T\X)= —5- [/ood(re'?')exp (—f(re_i')) +/O d(rea*)exp (—f(reT')>]
_ _52'; 0°°dr (ei I _ e—im) e=iTr (4 = 2X?)
_ _WLf :o dq q (e"Bq _ e—"BQ) e’ <q2 —Tr, B= —;4:)
— __;T /;: dq qe'(B1-9")
— _%a% _: dge'(B1—1")

- i) o (7).
(B-7)

The result correctly reproduces expression (III - 2 - 25) calculated in the scheme of the
Euclidean lattice method (III - 2-12). (Note F/(T|X) = F(X,iT).)
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By the way, the Laplace transform (B - 1) can be alternatively calculated by use of
the formula (III- 3 - 52). Since we are dealing with a free particle, the formula gives

KX
#(s |}1B>XA) = —/ m (X =Xp—Xa)

i [ KX GKX S
= . - = Ko=Vv2
2w Ko /—oo (IS’ -Ky K+ ]&’o) ’ ( to 225)

(B-8)

where K is the wave vector in the units i/m = 1; Res > 0 because v in Eq. (IIT - 3 - 49)
is positive. It is enough to calculate (B - 8) for positive s. The result can be extended
over the right half plane by the analytic continuation. Ior definiteness, let us consider
the case X > 0. Then the integral contour can be closed by an infinite semicircle in
the upper half plane which contribute nothing to the integral (see Fig. 34). The second
term on the last right-hand side of (B - 8) is analytic on the upper half plane and thus
contribute nothing to the integral. The contribution from the first term is the residue
at K = Ko multiplied by 27i. Consequently,

—_— 3KOX
#(s|X4,XB) o K 2mie

- ,/—exp( V2is X) for X = X5 — Xa > 0.
s

Since the phase of the exponential term of the above and that on the last right-hand
side of Eq. (B-1) are equally 37, Eq. (B-9) coincides with Eq. (B-1). The case
X < 0 also results in Eq. (B -9) with X replaced by —X. The results are unified into
the form of the last right-hand of Eq. (B -1).

(B-9)

Appendix C

We prove Eq. (IV-1- 16) revealing the condition under which it holds. We begm
by rewriting Eq. (IV - 1-12) as

(B« Z; H/ dr; Z(I)En(ﬂ;q-n,...’ﬁ;a), (C-1)

perm

where Zperm is the sum over all permutations of the 7j in ®g,_ . Performing the Wick

rotation such that 7, = iT4 and 73 = iTp and putting Xo = X4 and Xg = Xp, we
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have
©,1 & [iTs
(I)(B;A):Z EH_/,T dr; Z Op (B;Tn, - -,m; A). (C-2)
n=1 i=1 4 perm

The contour of each f:}z’ dr; in the complex 7; plane is such that its end points are fixed
on the imaginary 7; axis at :T4 and :Tg. Apart from this restriction, 1t is arbitrary on
the assumption that }:pem ® g, is analytic with respect to 71,---,m, for all odd n. We
can then write 7; = ¢T}, where Tj are real variables. In terms of TJ, Eq. (C - 2) becomes

;—H/ ATy Y @, (B;iTh, - ,iTi; A)

perm

(C-3)

/dT’(I)E“(B;iT,.,---,iTl;A),

where the last multiple time integral is time ordered such that Ty < T} < --- < T, < Tp.
Identifying this with Eq. (IV - 1-13), we have Eq. (IV -1-16).

Appendix D

We prove that a symmetric function ¥(C) which satisfies Eq. (V-1-16) is iden-
tically zero. We assume that there is no potential. We then substitute expression
(TIT-2-10) into Eq. (V -1:16) to have

0 .
/ dXe EXf(X)=0 for YK >0, (D-1)

—o0

where we have put —DT_ = K and exp(i ﬂT—X??T—T)\I!(C) = f(X¢) and have written X¢
simply as X. We can differentiate both sides of (D - 1) with respect to K (> 0). After
n times differentiation, we have

0 .
/ dXe 'EXxmf(X)=0  for K > 0. (D -2)

Let the set of coefficients {Cn|n =0,1,2,---} be defined by

*

Cu = [5 dfi;,. (f(X)e“KX>]X=O, (D-3)
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so that

i CoX™ = f*(X)eEX. (D - 4)

n=0

Let us multiply both sides of (D - 2) by C, and sum up over all n. The result is

/_ " ax (X =o0. (D-5)

This proves f(X) = 0 and hence ¥(C) = 0 for X < 0. Recall that ¥(C) in Eq.
(V -1-16) is symmetric. Thus we conclude

¥(C)=0 for "X¢. (D - 6)

Appendix E

Here we calculate the decoherence functional for ESV explicitly to derive Eq. (V -2 - 28).
In this appendix, we use the abbreviation C4 for C+ defined by Eq. (V- 2-22). First
we calculate [ dX4®(B; Yes; A)¥(A). From Eq. (V-2-23), we have

/dXAq)(B;Yes;A)

=/_adXD achd)(B;D)‘I)(D;C)‘I’(C) -1
N / Xp / dXo®(B; D)®(D; C)¥(C) -2
+ /°° dXp / dXc®(B; D)®(D;C)¥(C) -3
+/_., dXp /_a dXc®(B; D)®(D;C-)¥(C) —4
oo oo
+ [ axp [ axoa(s 1a(D;:0)¥(O) -
+/a dXp /deCq>(B;D)rIi(D;C)‘I’(C) —6
+/°° iXp /mdxcep(_n;p)ds(n;C+)\1’(C), T

. (E-1)
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where ¥(C) = [dX4®(C; A)¥(A). Let us introduce the following abbreviation:

84 (D;C) = ®(D; C) — ®(D; Cy)

= &(D; C) — ®(D; —X¢ + 2a,Tc). (E-2)
Fquation (V -2 - 24) then gives
/dXAQ(B;No; A)T(A)
= /_ X /_  dXo®(B; D)S_(D; C)¥(C) 38
+ /m dXp /oo dXo®(B; D)®4(D;C)¥(C). -9
’ : . (E-3)

We substitute Eqs. (E-1) and (E-3) into Eq. (V- 2-25) and carry out the Xp integral
by use of

/ dXpd*(B; D)®(B; D') = 6(Xp — Xp) (Tpr = Tp). (E-4)
The following combinations survive after the integration: 1 x8,4x8,6x8,3x9,5%x9
and 7 x 9, giving
D[YeS' No]
Xp ( dXCCI’(D; C)\II(C)) /

-a

—00

dX(;'(I)_(D;C)\II(C)} ~—1x8

|
+/a°°dXD .([adXCQ(D C)u(C ))‘/deC@Jr(D C)\Il(C)] —3x9

—a [ —a
+ dXD( dXc®(D;C_)¥

o0

dXC(I) (D; C)@(C)] —4x8

o o]

dAC<I>+ (D;C)¥(C)|  —5x9
J

dXc®_(D;C)V(C)|. —6x8

4

@) /.
[xosmicower) [”
/_:dXCQDC ) ”
) /.

[Fom(
+ / " dXp K
|

+/ dXp (/ dXc®(D;C)¥

8

.- (E-5)
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To arrange the right-hand side, we note a property of ®+(D;C) in the presence of a
symmetric potential (our potential (V -2 -14) is symmetric). With the notation

D = (—XD,TD), C_' = (—Xc,T(;), (E6)
‘I):t( é) = (D C) ‘I’(D, Xc¢ £ 2a,T¢)
= (D C) - ®(D;—X¢ F 2a,T¢) (E-7)
= ®+(D; C),

where the second right-hand side follows from (V - 2 - 27) which is correct for a symmet-
ric potential. Let us concentrate on the first term (1 x 8) on the right-hand side of Eq.
(E-5). Change the integration variables (two X¢’s and Xp) according to X¢ — —X¢
and Xp — —Xp and then use the property (IE-7). The result is the second term
(3 x 9) with two ¥(C) replaced by ¥(C). Same thing occurs for pairs {4 x 8, 7 x 9}
and {5 x 9, 6 x 8}. Accordingly we introduce the following abbreviation:

(C;C') = T*(C)¥(C") + ¥*(C)T(C")

E-8
= U (Xc)¥(Xer) + ¥ (-Xo)¥(-Xe)- (5:8)
Equation (E-5) is arranged as
D|Yes; Noj
=/ dXD/ dXC/ dXo®*(D; C)04+(D; CY¥(C; C")
+/ dXD/ dXC/ dX @ (D; C4) B4 (D; CYU(C; CY)
(E-9)

+ / iXp /  dXo / dX®*(D; C)d4 (D; CYU(C; C")
= / iXp / iXc / iX 8" (D; C)b4(D; C)U(C; C")

+ / dXp / dX¢ / dX®*(D; C4)24(D; C)T(C; C").

By the change of integration variables X¢c—a— X¢ and X¢r — a — X¢v, the constant
a disappears from the upper and the lower bounds of X¢ and X' integrals. We
succeedingly change the integration variable X¢ by X¢ — —X¢ in the first term on
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the last right-hand side of Eq. (E -9). Then the two integrals are unified on the last
right-hand side. Explicitly,

D[Yes; No] = /a " dXp /0 " dxe /o " dXo
x ®*(D;-X¢ + a,T¢) (®(D; Xer + a,T¢) — ®(D; —X¢ + a,T¢))
x {(¥(Xc - a) + ¥(~Xc - a))* ¥(~Xcr — a)
+ (¥(Xo +a) + ¥(-Xo +4))" ¥(Xo + a) }.
(E - 10)

This is Eq. (V -2-28). The special case a = 0 gives the decoherence functional for
ESIV, namely, Eq. (V-1-13).
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B

S7s
the future of S S

T

L.

the past of §

X
STA

Fig. 1

Intersection of a classical path with a sur-
face S in (1 + 1)-dimensional Newtonian
spacetime. A classical path is shown which
connects two points A and B lying in the
opposite sides of § and which intersects &
three times at Ay, Ay and Aj.

B
///
e
Ve
/
Q<
\
\
T \
N
A
X
Fig. 3

A spacetime domain 2. The solid curve
is an example of paths which contribute
to “Yes”and the broken one to “No”.

B

STs

kSTA

Fig. 2

Two examples of virtual paths which in-
tersect S three times on the way from A
to B. Quantum mechanically many vir-
tual paths contribute to the motion from
A to B; they intersect S odd number of
times, and the number and the places of
intersection vary from a virtual path to
another.

Fig. 4

The path-classification which leads to the
composition law (IT-1-16). The diagrams
on the left- and the right-hand side are the
abbreviations of the paths defining ®(B; A)
and ®(B; C)®(C; A), respectively.
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SSTCP
X
Fig. 5
A steplike surface Ssiep-
B
S
AXa (STJ
I__ St
/A X STI
A STA

Fig. 7

A path passes through the cylindrical set
AX; made up of spatial intervals AX; on
surfaces S;. The usual “time slicing” def-
inition of the sum over paths is capable of
summing e'S over the paths specified by
the cylindrical set AX3, namely, all pos-
sible paths which start from A, move for-
ward in time to pass through the set AX;
and arrive at B; this sum is expressed as
(IIT - 1-2) with n = 3. By contrast, the
set AT in Fig. 6 is not a cylindrical set
because it is not expressible as a set of spa-
tial intervals on surfaces of constant time.

B
o
4.
/ AT,
A
Fig. 6

A path which contributes tosum (ITT-1-1)
with n = 3. The paths defining the sum
are specified by the set Afg of temporal
intervals ATj on the vertical part of Sgtep.

Fig. 8

A random walk on a spacetime lattice [z, t].
A ‘particle’ starting from [0,0] moves one
step in ‘time’ to [-1,1] with a ‘probability’
1/2 or to [1,1] with the same ‘probability’.
When x + t is odd there are in general
many ‘paths’ of ¢ steps which move for-
ward in ‘time’ to link [0,0] to [z,t]. The
zigzag diagram in the figure is an example
of such ‘paths’. The sum of (1/2)* over all
such ‘paths’ gives the ‘probability’ uz,t;0, 0]
that the position of the ‘particle’ at ‘time’
t is z, provided that it started from [0, 0].
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b b t

Sty Sty
& [0.t]
== Z ._rc Ste
‘ Tec & sl—'
Sta

Sta
a a
Fig. 9
x
0 [x,0]
A classification of ‘paths’. The diagram
on the left-hand side stands for the ‘paths’ .
Fig. 10

defining u[b; a], namely, all possible ‘paths’
which start from a, move forward in ‘time’
and arrive at b. Since all the ‘paths’ in-
tersect s;c once and only once, they can

The ‘paths’ which define f[z,t]. The bent
line 1s the abbreviation of all possible ‘paths’
which start from [z,0], move forward in
‘time’ never intersecting s| of = 0 before
‘time’ ¢, and arrive at [0,¢] on s|. (Note
that ‘paths’ are allowed to touch s| even
before ‘time’ ¢.) The sum of (1/2)¢ over all
such ‘paths’ defines f[z,1].

be classified with respect to intersection
z. of a ‘path’ with s,.. The diagram on
the right-hand side stands for the ‘paths’
defining u(b; cJu[c; a]; the sum of such ‘paths’
over all intersections recovers the ‘paths’
on the left-hand side.

I Ao, 1) b Alo,t)

!
!
l
|
1

et —— —— —

10 (x0) [z 10
(a) (b)
Fig. 11

(a)An example of ‘paths’ which invade the region z < 0 on the way from [z,0] to
[0,]. This ‘path’ can be divided into two parts: a partial ‘path’ from [z,0] to the
first hitting of 2 = —1 and a partial ‘path’ from the first hitting to [0,¢]. (b)The
partial ‘path’ in (a) from [z,0] to the first hitting is mirror reflected with respect
to z = —1 and the partial ‘path’ from the first hitting to [0,¢] is unchanged. The
resultant ‘path’ is of equal weight with the original ‘path’ in (a). In this way, a
‘path’ invading the region z < 0 is mirror reflected before hitting = —1 to give
a corresponding ‘path’ of equal weight which connects [~z — 2,0] and [0,t]. This
correspondence is one-to-one.
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0 [z,0]

Fig. 12

The ‘paths’ which define f[z,¢]. The bent
line is the abbreviation of all possible ‘paths’
which start from [z,0], move forward in
‘time’ never intersecting nor touching s| of
z = 0 before ‘time’ ¢, and arrive at [0,t] on
s|. The sum of (1/2)! over all such ‘paths’
defines f[z,t]. In contrast to the case of
flz,t] defined in Fig. 10, ‘paths’ are not
allowed to touch s|; this restriction is de-
noted by the mark o attached to s|.

T
AXo(J)

To i T Sstep
L T
[4T(0)

Sﬂ"c S{“'
+ v" TC
AX(J)

Fig. 14

The steplike surface Sgiep made up of three
surfaces St, (X¢ < 0), S, (Xp > 0)
and S|, where S| stands for the surface of
X =0for Tec < T < Tp. A domain A(y)
on Ssep is AX¢(j) on St,, AT(j) on S|
or AXp(7) on Stp.

Fig. 13

A general surface § divided into a count-
able set of non-overlapping domains {A(!) |
| =0,+1,£2,---}. The figure shows the
(1 + 1)-dimensional case. The sample of
ESI such that the particle intersects S at
the domains A(-1), A(0) and A(2) is de-
noted by A(l3) with i3 = (~1,0,2). A gen-

—

eral sample of ESI is denoted by A(l,).

i,
—ﬂzl

~
k)
o

Fig. 15

Classification of the ‘paths’ defining u(b; a]
according to how many times (n) and at
what locations (t; < --- < t,) they inter-
sect the ‘surface’ s| of z = 0.
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¢ b b

[0, t]
)
ty—x, ﬁ
= 2, [ 0. t]
t =tq+ILal
. a a ls
0
; Fig. 17
Fig. 16
: Classification of the ‘paths’ defining u[b;
The ‘paths’ which define g[t] = f[0, t]. This with respect to the ‘time’ ¢ of the last
is a special case of Fig. 10. hitting of s|. The diagram on the right-
hand side is the abbreviation of the ‘paths’
whose last hitting of s| is at [0, ¢].
I3 I b
7
Tg )
= /. dr (0, 1)
C cKts
a a Sl f
t
Fig. 18 Q
4
The diffusion limit of Fig. 17 defines the
classification of the ‘paths’ defining ®g(8; a) )
with respect to the ‘time’ 7 of the last hit- |
ting of the surface S| of X = 0. a ’
Fig. 19

Decomposition of uz for ESII. The zigzag
diagram connecting a and b is an example

of ‘paths’ contributing to u3[b;t3,s,t;a].
This diagram can be decomposed into two
partial ‘paths’: One is from a to ¢ = [0, t3]
and the other from ¢ to b. The former con-
tributes to ua(c; t2,t1; a], and the latter to
flas, ty —t3]. Since this separation is possi-
ble for all the ‘paths’ defining u3(b; t3,t2,%1; a,
Eq. (IV-2-4) holds with n = 2.
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Fig. 20

The case of the final point b lying on s|.
There exist those ‘paths’ which start from
« and arrive at b without hitting (i.e., in-
tersecting or touching) s| before ‘time’ t3;
the first diagram on the right-hand side is
the abbreviation of all such ‘paths’. The
second diagram (zigzag one) is the abbre-
viation of all possible ‘paths’ which start
from a, hit s| at t; < --- < t, before ‘time’
ty and arrive at b on s|.

B
AT = [odXc AT
= —= e
Sl
A
(a)
Fig. 22

(a) Examples of paths contributing to sum
(IV -3-7). The mark o attached to S| de-
notes the restriction that ‘paths’ are not
allowed to hit §| before T' € AT. (b) Sum
(IV - 3-7) can be decomposed into a sum
over paths from A to a point C, a sum over
paths from C to D whose first hitting of S|
lies in AT, a sum over paths from D to B,
and integrations over X¢ > 0 and —oo <
Xp < oo. The first and the third sums
over paths give ®(C; A) and ®(B; D), re-
spectively. Therefore, sum (IV -3 -7) can
be rewritten as (IV -3 8).

Fig. 21

Typical paths contributing to the sum (IV - 3-5).

B
0,T)
A
Fig. 23

Typical paths which contribute to ®(B; Yes; A).

The case X¢ < 0 is shown. Paths are
unrestricted from A to C, restricted so
that they do not hit §| before time T on
the way from C to (0,7") and unrestricted
again from (0,T) to B. The unrestricted
paths are associated with the usual propa-
gators in the potential (IV-3-1); the ampli-
tude for the restricted paths is i F'(X¢,iT).
Since we do not specify the values of X¢
and T for ®(B; Yes; A), they are integrated
over all possible values on the right-hand
side of Eq. (V-1-6).
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Fig. 24

Typical paths which contribute to ®(B; No; A).

The case of X¢,Xp < 0 is shown. The
other case is X¢,Xp > 0. Paths are un-
restricted from A to C, restricted so that
they never hit S| on the way from C to D,
and unrestricted again from D to B. The

amplitude for the restricted paths is given
by formula (III - 3: 67).

X=Xw A

Fig. 26

Typical paths which never hit the wall at
X = Xw on the way from A to B ly-
ing on the same side of the wall. The case
X4,Xp > Xw is shown. Paths are re-
stricted to the half space X > Xw. The
sum of e* over all such paths gives the
right-hand side of formula (V - 2-10).

Fig. 25

Typical paths contributing to sum (V-2
4). Paths from A to W = (Xw,T) (T €.
AT) are restricted to X < Xw, restriction
which is denoted by the mark o attached
to the “wall” of X = Xw. The sum of
'S over all the paths from A4 to W thus
restricted yields the “restricted propaga-
tor” F(W; A) in Eq. (V -2 -4). Paths are
not restricted from W to B; the sum over

all such paths gives the usual propagator
o(B;W).

T
Stp
""" T=Tp
Q
: T T=T:
" 0 21 STa
Fig. 27

Spacetime domain {2 bounded by St, and
Sty . In the figure S7, is identified with the
spatial axis.
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B
\STB STB
<> ’
N /
C
A STA kSTA
Fig. 28 : Fig. 29
Typical paths which intersect the bottom of £2. Typical paths which pass through X¢ <

—a, hit the left wall of 2 at W_ = (-, T)
and then arrive at B. Paths are restricted
to X < —a from C to W_. The partial
paths from C to B are of the type of Fig.
25.

Fig. 31

The situation in which spacetime proba-
bilities can be defined for {Yes, No}. The
broken and the solid curve show the typi-
cal form of the potential between T¢ and
Fig. 30 Tp and the typical form of the Schrodinger’s
wave function at time T, respectively.

Typical paths which pass through X¢, Xp <
—a and never hit the left wall on the way
from A to B. The partial paths from C to
D are of the type of Fig. 26.
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Fig. 32

Contour for the integral (B-8).
Lattice paths on the Euclidean lattice.
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< \
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q
q S~ ~
(a) (b)
Fig. 33

(a) Contour for the integral (B-2).

(b) Deformation of the contour. The vertical line running from € to € + ¢co0 in
the upper right half plane can be closed by an infinite semicircle in the left half
plane with the vertical line running from —e¢ to —i00 — ¢, which we denote by
Cr, and with the semicircle of radius ¢ which detours the branch point s = 0
anticlockwise from s = € to —e. Since the infinite semicircle and the infinitesimal
semicircle contribute nothing to the integral, the contour is consequently deformed
into Cg + Cj, where Cp is the vertical line running from —ico + € to €.



