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We present a heuristic description of a practical theory of n-d elastic
and breakup reactions. This is a new version of our three-body theory based
on the Faddeev equation with a local potential in coordinate space. We
reformulate our previous treatment as legible as possible, and made the follow-
ing revisions: (1) The structure of the theory is centered on the elastic
part of the Faddeev wave function. The breakup components are deduced as
necessary ingredients of the elastic part. (ii) Since elastic channel must
contain all possible spectator partial waves, it is treated in terms of a
multi-channel coupled equation. (iii) Breakup processes to two-body partial
waves other than lso are treated as the perturbation. (iv) The logarithmic
singularities in the Faddeev Kernel in the breakup channel are studied in
detail, and a practical method of solving our key equation is suggested based
on the knowledge of the singularity structure of the solution.

The presentation is detailed enough so that the formulas can immediately

be transcribed to suit actual coding of a computational program.

Keywords: n-d elastic and breakup reactions. Faddeev equation.
Local potential.

§1. Introduction

Even after twenty years of pioneering works on the so called Faddeev
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theory on the three-body scatteringl'zl a method and its code for computation

of nuclear reaction that is accessible, or at least in its outlook accessible,
to conventional nuclear reaction theorists is not available as yet. By
outlook, we mean that the theory must be presented in the coordinate space

for a local potential, and should be handled as a coupled channel (ordinary
differential) equations. The difficulties which we should surmount concerns
the treatment of breakup reactions. Under a two-body interaction, one par-
ticle is left free, yet the reactions must take place in a finite spacial
region. This statement causes a difficulty in the theoretical treatment of
the breakup process: In what manner the first half of the sentence is related
to the second half ? The answer was given by the Faddeev theory: The equa-
tion should be written in a manner that the interaction between a pair of ‘
particles should follow the interaction between another pair of particles, so
that no particle be immune from any collision. Here we should remark that
this recipe is not only for theorists, but also for experimentalists, because
the quasi-free scattering peak is a manifestation of such a process.

Unfortunately, Faddeev being a mathematician, his theory become under-
stood only after a number of reiterating articles written by physicists.
However, even now some nuclear theorists are reluctant to study it presumably
because the Faddeev theory is written in momentum space.

With this background, we have strived for constructing a three-body theory
of scattering based on the Faddeev equation. We have formulated a theory
involving a number of essential ingredients to make the description physical
as well as the computation feasible. Also we have proposed techniques by which
we can handle parts of the whole theory efficiently. Let us write what we

have innovated.

[A] Fundamental concepts

The contributions from poles such as the bound state, virtual state and
resonances of subsystems cause physically important effect. Therefore, the
theory should be presented in a form that such effects are clearly be seen.
On the other hand, once these pole contributions are accommodated properly,
the remainder may be handled as the perturbation. Of course, the usual
perturbation theory written in a text book of quantum mechanics can not be
used for this purpose and we have to construct a new perturbation theory for
this purpose. In our opinion, the use of a complete set of functions, such as
a complete set of Sturm functions, for calculating a physical quantity is a
mathematical illusion of the past time. At a computor age, we should not
recourse to it, because any complete set of functions can not be calculated
by a computor. The increase of nodes causes the increase of error. As a
result, we are forced to truncate, or rather correctly, we have to abandon

the calculation without reaching a true value. Thus we prefer the
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perturbational treatment. The calculation of a large number of small effects
is much easier in the perturbational treatment than otherwise. Based on the
same considerations, we have treated three-body bound :states by a perturba-

tional approach3—6).

[B] Fundamental technique
Before any calculation, we know the asymptotic behavior of the wave

function of each channel analytically and its behavior near the origin as
regular. Therefore, by letting the §-function singularity of the Green's
function involve in the asymptotic behavior, we can construct a compact Green's
function for each channel that vanishes at the origin as well as at the asymp-
totic region. By using this green's function we don't need introducing any
artificially boundary, inside of which the breakup reactions are supposed to

take place.

[C] Other techniques
(1) Method of continued fraction (MCF) as a method of calculating a

scattering problem for a non-local potential7): The particle exchange is a

characteristic feature of the Faddeev equation, and not only elastic scattering
but also all kind of three-body scattering processes are represented as a
scattering from a non-local potential. For handling this problem, we have
proposed three methods in the pasta—lo), and at last reached the MCF as the
most efficient one. This method solves a scattering equation without recourse
to any form of perturbational expansion.

(2) Method of accelerationlo): We proposed a method of acceleration for
promoting the convergence of a perturbational series. By using this method,
we get a convergent value quickly before the error accumulates. After having
MCF, the method of acceleration may be used as supplementary; for example, to
check the result of MCF. However, the method of acceleration is yet useful
especially many states(partial waves or channels) are coupled, in which case
the MCF becomes complicated.

(3) Method of partially separable t-matrix CPST}l): The effect of the
virtual state for the two nucleon lS0 state is very important in the n-d
scattering. We have introduced an expression in which the effect of this pole
is given by a separable term. The remainder does not involve any pole contribution,
and may be treated as the perturbation. The separable potential can naturally
accommodate the virtual state. Since we do not recourse to the separable
potential, we had to introduce the PST.

Our three-body scattering theory based on the Faddeev equation is a
result of works over many years3-l4). The present paper is intended to be a
consistent and unified mannual of our theory, together with a collection of
necessary techniques7’lo'll). Here, we reformulate reference 14 in a manner

that it allows us to represent processes by diagrams, giving a'primary role to
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the elastic component. This component will be treated in terms of a multi-
channel formalism. "Also, the two-body breakup states other than lS0 and
3Sl+3Dl states are treated as the perturbation.

Our equation expressed as an integral equation on the real spectator
momentum naturally contains the Faddeev kernel much studied by people working
in the momentum space representation. It has the well-known logarithmic
singularities in the breakup region. In order to determine the method of
solving the equation, we must know the singularity structure of terms involved.
Following Larson and Hetherington, we investigate these terms and conclude
that the solution to our equation is analytic along the real axis of the
spectator momentum except for a square-root branch point corresponding to the
physical two-body threshold. This enables us to discuss a practical method of
solving the equation.

In section 2, we present the antisymmetrized Faddeev equation for n-d
elastic and breakup reactions. Some notations used in the later sections are
defined. The decomposition of a Faddeev component into elastic and non-
elastic components are explained in section 3. An operator I' is defined which
contains all effects other than the elastic channel and which plays a central
role in later sections. The elastic wave function |F> is subject to a non-
local potential matrix U. An integral equation for the elastic wave is given
in a multi-channel formalism. In section 4, we discuss the asymptotic behavior
of |F> and define the T and S matrices in the elastic channel. Section 5
deals with the crucial operator T which is decomposed into a sum of a non-
perturbative part I and a perturbative part W. The non-perturbative part I
consists of the contribution of the lSO virtual state pole expressed in a one-
term separable form for the absolute value of momentum g less than a judi-
ciously chosen value g in the closed channel region and for all real positive
q for the breakup region. This is achieved by means of the PST formalismll).
The perturbative part W represents the remainder. Both in the non-local
potential U in the elastic channel and in the computation of the breakup
amplitudes, the operator of a form (l—I‘Q)—l appears. Here, Q is the particle
exchange operator characteristic to the Faddeev equation. We discuss this

operator (l-l“Q).l

using the decomposition of T into I+W, and derive the
fundamental equation expressed as an integral equation over real spectator
momentum with the Faddeev kernel. The perturbative treatment of the operator
(l—WQ)-l is also presented. This part yields the breakup components of the
3Sl+3Dl and higher partial waves. In section 6, we connect these breakup
components in the Faddeev wave function to its asymptotic form and obtain the
expression for the breakup amplitudes. In section 7, we present concluding
remarks. _ _ , ,

Details of various tools used are presented in a number of Appendices.

In Appendix A, the PST formalism is reviewed briefly. . The presentation for a
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1)

coupled two-body states in our previous paperl needs some revision as
discussed here. Appendix B explains how to deal with the perturbative term W
near the deuteron pole. In Appendices C and D, we present the formulas to
compute the particle exchange operation Q. Appendix C is given for the case
with free spectator wave functions, for which the Faddeev kernel with the
logarithmic singularities appears. Appendix D deals with formulas for the

Q operation when the initial spectator wave function is not free but is under
a distorting interaction. The method of solving the elastic channel integral
equation is explained in Appendix E. The operation cof W requires the computa-
tion of operators (w-1) and GV. This is explained in Appendix F. The
singularity structure of our key integral equation obtained in section 3 is

studied in Appendix G. Finally, the method of acceleration is recapitulated.

§2. Faddeev Equation

In this section, we give the antisymmetrized form of the Faddeev equation,
and define a number of symbols that are used in later sections.
To begin with, let us forget the antisymmetrization for a moment. Let us

denote by W(l) the total wave function that has developed from the incident
wave f(l) with the deuteron pair(2,3) and the free spectator 1. W(l) is
decomposed into three Faddeev components.
(L _ (1) () (1)
¥ =97+ 074 ®3 . (2.1)

(
2

which the last interaction takes place between pair (3,1). This is expressed

For example, the function ¢ 1) denotes a sum of all posible diagrams in

in the following Faddeev equation.

(L)

(2) A
¢, = £()8, . + G, t. . =1,2,3 . 2.2
(2) 2,3 0 JQ¢3 (3 2,3) ( )

J

We have introduced the particle exchange operator Q by

IO RENGS

Q@jf“ ; ; (i,3.k cyclic) . (2.3)

Now, we antisymmetrize the total wave function by taking the combination

v = LoDy (2) 3y (2.4)

V3

This is totally antisymmetric because (i) in the incident wave f£(i), the
deuteron pair (j,k) is antisymmetrized, and (ii) the total Hamiltonian is
symmetric in particle labels. In this regard, one should remember that ¥
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satisfies the three-body>Schrodinger equation.

Instead of dealing with three equations (2.2) for nine components @;l)
with awkward 62 3 in it, we recombine these functions to define
=L . (2) (3) F
@i = @i + @i + @i (i=1,2,3) . (2.5)
Then Egs.(2.2) and (2.4) become
1
¥o= = (b, 40, +0.) (2.6)
/3 1 2 3
and
®i = f£(i) + GOti Q¢i (i=1,2,3) . (2.7)

@i has the incident wave f (i), and also it represents the sum of all diagrams
in which the last interaction takes place between pair (j,k). Since three
equations in Eg. (2.7) are equivalent, we only need to solve one of them. From

now on, unless necessary, we drop the suffix i in Eq.(2.7) and write it as

o> = [£> + Gyt Qfe> . (2.8)

In our formulation, we use the following symbols. For the spin-isospin-

angular function with the total spin, parity, and isospin JOTTMOTMT , we use

[a(23,1)> = I(LS)J,(R%)j;JOMO(23,l) >|I%;TMT(23,1)> . (2.9)

Here, L,S,J, and I refer to the pair (2,3) and (23j) to the particle l. For a

coupled two-body state, |a> is a 1x2 row vector. In particular, we denote by

|a0(23,l)> the states in which the pair (2,3) is in the 3Sl+3Dl state.

la> = |a(’s

2 3 2
0 ' Zj), a( Dl’ lj)> . (2.10)

1

The radial part of the deuteron wave function is refered to as bq -

log (’s)>

3 (2.11)
l64(°D;)>

|¢‘d> =

The incident wave f(l) is the projection of the product

= .o1P0°¥1
[E£(1)> = [94(23)-e ]jo"Mo,TMT
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=y Ba0|a0¢d(x23)>ljl(p0yl)> . (2.12)
%0

Here, the sum z is taken over all possible (23j) for a given (JO"MO,TMT)
A constant Bualois the weight(a product of Clebsch-Gordon coefficients). The
function jz(poy) denotes the spherical Bessel function, Py being the incident

momentum

gl . (2.13)

Py = V—J% (E + |E
3R
Throughout the text, we use the notation V for a local two-nucleon potential

multiplied by M/hz, M being the nucleon mass. Further, we define all Green
functions with the factor hz/M. For example,

Gy = M E-H.+ic (2.14)

where HO is the sum of kinetic energy operators,

= + . .
HO T;{» T; (2.15)

We also use the notations TL(x) and Tl(y) for partial wave kinetic energy

operators. Thus, for examplé,

2 1
G = (2.16)
a M he .

~ E—TL(X)—TQ(Y)—TTVa+l€

To deal with the breakup threshold behavior correctly, it is better to

introduce following notations for interacting pairs,
3, (ax) = 3, (qx)/q" (2.17)
L L :

qL+th(+)(qX) (2.18)

ﬁ£+)(qx)

and

ﬁé+)(qx) = qL+lnL(qx) } ‘ (2.19)
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These notations will appear throughout appendices.

§3. Decomposition into Elastic and Non-elastic Components

Since Eqg.(2.8) is a linear equation, we can express {®> as

jo> =] Bgle, > - | (3.1)
0!.0 0

Using Egs.(2.12) and (3.1) in Eq.(2.8), we find the Faddeev eguation for |9 _  >.

|4>d0> = |°‘o¢d31> + GVQ‘@OLO> . (3.2)

The suffix a, on i©a0> is to indicate its initial component. It has all three-
body components that. can develop from |a0¢dj2>
On the right-hand side of Eqg.(3.2), we insert the identity between G and

v,
1=} lageg><oy agl + (1- §|a0¢d ><pqonl1 - (3.3)
% %0
Thus
o 1 L} 1
o, > = [a0¢d31> + ) Glafo><dgqafivele, > + role > (3.4)
0 o 0 0

where we have defined the operator I by

T = G[1-) logdq><dq%q 11V (3.5)
a
0

In Eg.(3.4), we rewrite G|a6¢d> as follows.

he 1 2 1

1 ] h 1
Glopd s> = 5 om—m—or— |00 3> = o - — |a ¢ >
07d M E-Ty T17 V+ie 0vd M E+[Ed] T§+15 07d

= ' 4 X
= |0‘O¢d>3 GO,Q,' 14 (3.6)
where GO I} is the (partial-wave) Green function for the spectator
14
G = élfl_z_. 1 = 1
0,2 4 M E+IEd]—TZ(y)+l€ p2_ aM
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= —pyh (" (o), gy 9 (y=y ) +3, (eyI by By ey -y
(3.7)

Thus, Eqg.(3.4) becomes

|6, > = la0¢dj2> + ) ]aé¢d>%50,2.<¢daélvo|®u >+FQ|¢Q > . (3.8)

0 oy 0 0

Let us define the elastic channel wave function jFu6a0> by

iFa6a0> =6a6aolj;> + G0,2'<¢d“5|§Qi¢ao> (3.9)
with

T o= % v (3.10)
Then we have from Eg. (3.8)

!¢u0> = g lagjogq Fa6a0> + FQi®a0> . (3.11)

0

As we show in Appendix B, Eq.(3.5) defines the operator ' which is free from
the deuteron pole. Therefore, in the asymptotic region it has no elastic
components. We postpone the discussion of T until Section 5. The solution of

Egq.(3.11) is formally expressed as

0% Fara > - (3.12)

6 > =7 (1-TQ) !a .
! 00

%0

Substituting this expression for {@a > on the right-hand side of Eq.(3.9), we

obtain 0
]E‘ ' >=6 ] l] >+ z \é ,U 1) IIIF " (3-1_3)
uoao aoao 2 @0 0,2 uoao aoao
where we have defined the non-local potential
_ = -1
Vo ap <agdq VR (1-TQ) “lagey> . (3.14)

Eq.(3.13) is a set of coupled integral equations for elastic wave functions.
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The non-local potential Uaoa' couples (£'3j') in [aj> to (23) in |a6>

for a given (J TrMO,TMT). Eq.(3.13) can be written in a matrix form

0

|E> = |3> + G, U|F> | | (3.15)

v
where |j> and G, are diagonal. The elastic component can be obtained by

0
solving Eg.(3.15). Then the breakup component can be found from Eg.(3.12).
In this course, we need to know how to deal with the operator (l—l‘Q)-l in
Eg.(3.14). This will be discussed in Sections 5 and 6. Before doing so, let

us discuss the asymptotic behavior of |F> in the next section, and define the

elastic scattering amplitude.

§4, Elastic Scattering Amplitude

The asymptotic form of the elastic wave function {F> can be found from
Egs.(3.7) and (3.15).

7> 5l 3> - polh ) scsvies . (4.1)

Here, [h(+)> is diagonal and so is <j| and |j> . They all refer to all

possible (23j) in |a0> for a given (JO"M TMT)' Let us define the T matrix in

Ol
the elastic channel.

T = -p0<j|U|F> . (4.2)
Then, we have from Eq. (4.1)
. (+ 1 - (+
[F>-§:g|3> + |h Vst = - if[lh( )s - |h )>S] (4.3)

where the S matrix in the elastic channel is defined by
S =1+ 2iT . (4.4)
Let us define the stationary solution [£> as the solution to

o .
le> = |3> + PGyU|g> (4.5)
v/
where PGO is the principal value Green function.

v - ) . . ‘
PG0 = G0 + 1p0[]><]| (4.6)
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= po[nl(poy)jl(poy')e(y—y') + jl(poy)nl(pOY')@(Y'—y)] .

0,2
(4.7)

In terms of |£> , |F> is given by

|[F> = |§>[1+iT] . (4.8)
The asymptotic form of |£> can be found from Egs.(4.5) and (4.7).

|g>§:3-|j> - |n>K (4.9)
where we have defined the K matrix by

K = - p0<j|v|g> . (4.10)
T, K and S are related as follows.

T = (1-iK) "'k (4.11)

s = (1-iK) t+in) . (4.12)

From time-reversal, K must be symmetric. Below breakup threshold, K must be

real so that S is unitary.
The elastic component of |¢a0> is the first term in the right-hand side

of Eq.(3.11). With Eg.(4.3) this becomes

Elastic_ _ : (+)
> = a |32> * lhl' *Tara ]

lo ,
0%o 0%

Ylate F >— Jlate >1[8
oy a6 0vd a6a0 y > aé 07d o

(4.13)

Therefore, the elastic component of |3> of Eq.(3.l1l) becomes asymptotically

Elastlc> E R
y—m

%

|o

. (+)
‘o .>[8 >+ (h,,">T_,
Z,lu0¢d [ aoaoljl I L %%

o
0 ag

; 1 (+)
I 8y lagogdg> + I lageghy s> 18, Toag - (4.14)
ag 0 ag a, 0 7070

The first term of this expression is just the incident wave, Eq. (2.12).
Therefore, the elastic scattering amplitude is given by
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el ki 1 L=
£ (I3, My T ) = = 7 i~ Jal> } B T (4.15)
0 0 T pO o 0 o' %o aéao
0 0
wher h d (h(+)>-——» ei(p Y-%;v)/
€, we have use Q! v 0 poy.

This amplitude is for partition (23,1). Although the total wave function V¥

is given by Eg.(2.6), in the asymptotic region the elastic components of ¢ ,%

1’72

and ¢3 do not overlap. Therefore the elastic scattering cross section is

simply given by

el m _ el T 2
dc» (Jo MO,TMT) = |f (JO MO,TMT)| . (4.16)
To conclude this section, let us write out how to calculate the phase

shifts. Let Rk be the eigenvector of the K matrix with an eigenvalue Ky«

= K, u (k=1,2,...,N) (4.17)

If there are N possible (%3j) in |a0> with (JOWMO,TMT), then v is a (Nx1l) row

vector. Let w be the NxN matrix composed of Yy (k=1 to N).

k

w = (%1’¥2""'%N) . (4.18)
Further, let k be the diagonal matrix whose diagonal elements are Ky Then
Eg.(4.14) can be written as

Kw = wk : (4.19)

To Eq.(4.12), we multiply w from the right and the transpose of w from the left.

wisw = (1-ix) tuTw(1+ik) (4.20)

Since K is symmetric, w is orthogonal. This means wT=w-l. Therefore, we

see that S is diagonalized by w:

-1

o lg, = Ltik 2i6

e - © (4.21)

which defines the plase shift §(a diagonal matrix). Below the breakup
threshold it is real. Above the breakup threshold § becomes complex(Iszo is
required) .
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§5. Operator I' and the Key Equation

Hereafter, we shall often suppress the state label a whenever possible,

and write Egs.(3.11) and (3.12) simply as
|6> = [94F> + TQ|e> ' (5.1)
and

F> (5.2)

[}

|6> = (1-rQ) "}

%3
To obtain IF>, we solve Eg.(4.5).
> = [3> + PGy<oq 10 (1-TQ) 048> (5.3)

The asymptotic form of Eq.(5.3) yields the K-matrix of Eq.(4.10), in terms of.
which the elastic T-matrix is given by Eq.(4.11). Thus we can calculate |F>
by Eg.(4.8).

|F> = |g>(1+iT). , (5.4)

To solve Eqg.(5.3), we use the iterative scheme of Horacek and Sasakawa7). As

is explained in Appendix E, during the process of iterative solutions, we need

to operate the non-local potential V of Eg.(3.14) on the i th iterate lf‘l)>as

in Eq.(E.14). Therefore the operator (J.—I‘Q)—l in V need be operated on a known
function |¢df(l)>

We could conceive an alternative method of solving Eq.(5.3) in which it
is expressed as a set of coupled equations among expansion coefficients of |£>
in terms of, say, the spherical Bessel functions. Then we can solve this set
of equations by a matrix inversion. There again, the operator ('1—1“Q)—l
opefates on known functions.

After having solved Eg.(5.3), we compute |[F> by Eg.(5.4), and then [®> by
Eq.(5.2). However, this last step is in fact unnecessary. In solving Eq. (5.3),
we have already computed (l—FQ)-l|¢d€> i

In any case, what we need to know is how to operate (1-TQ) "~ on a function

¢ x> where |¥> is a given function of y.
d , v ,
Therefore, let us define

o> = (-re) Hog> - ‘- (5.5)
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The integral equation for |p> is

lo> = [¢4x> + TQfp> | : (5.6)

Now, we come to a point where we must decide how to treat T. First of
all, we must expand T into partial waves. Introducing the complete set of

orthonomalized functions |F%) by

F) = |lasu) = |asu,(p,y)) = |av2Z pj, (pY)) ' (5.7)
1% I % I Zpy | = 1

we find from Eg. (3.5)

r =8 [F )G_(F ‘[l- aad . ><0 .0 l]V ‘ (5.8)
31705y Mal (1) 190%™ 0%
where S = mdp , and
i = Lo
2 2 2

_h 3h 2 h . -1

G% = ﬁ. [E - m— P - TL(X) - e V + ig]
_ 2 M _ . =1
= [q" - ;17 TL(X) V + ieg] . (5.9)

The momentum g of the interacting pair is defined by

2 2
he 2 _ 3n° 2
e = E- 2 P . (5.10)
For E<0 (below breakup threshold), g=i|g| . Since the deuteron pole is

extracted out in Eq.(5.8), there remain only closed channels for E<0. For E>0
and 0<p<p, =/8ME/3hZ? , q is real positive. This is the breakup region,
although there are some closed channel components as we shall see. For E>0
and P>P. - again g=i|q| and this belongs to the closed channel region.

The operator I has all the effects of breakup and closed channels except

the deuteron pole. Among others, the lSo virtual state pole has the strongest

effect and should be treated as an unperturbed part. The effect of the 3Sl+3Dl
state, on the other hand, may very well be treated by perturbation, since the
deuteron pole has already been extracted 6ut. All higher partial waves may
also be treated as perturbation. Thus we split T into the lSO pole term I and
the rest W. The unperturbed part I is given by the separable pole term of

the PST decomposition of Got(lso)(See Appendix A) for p less than a judiciously
chosen value p. The perturbation W represents all the remainder. Thus T

takes the form
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(I) | (w)
r =s' "/ |Fu ><t F | +8 " |F )W (F . (5.11)
R l%% R‘,%I% IR‘, %l

The functions |u_ > and <t1_| are given in Table 1, and the operator W_ in

Table 2. For |oa> with the 3Sl+3Dl two-body state, W,  requires a special
treatment for g near iqd(qd=¢M Ed|752 ). See Appendix B for the details. The

calculation of (w-1) and GV in W_ is discussed in Appendix F.

Before proceeding any furthér, let us draw schematic diagrams of the
treatment so far. We shall represent Got by the diagram of Fig. 1. The
Faddeev equation (2.8) is depicted in Fig. 2. We shall represent T by a
spring in Fig. 3. Then, the extraction of the deuteron pole from Got would
be given by Fig. 4. 1In Fig. 5, we illustrate the elastic component |F> of
Eq.(3.9). Then Eq.(5.1) for |@> is given by Fig. 6. The decomposition (5.11)
of T is represented as Fig. 7.

Let us simply write Eg.(5.1l1l) as

I = |Fu><tF| + W , (5.12)
where the summation symbol has been suppressed.
On substituting this expression of I into Eq.(5.6) and treating W as

perturbation, we find

lo> = (1-wQ) "o x> + (1-WwQ) "t |Fu>a (5.13)

where

A

<1F|Q|p> . (5.14)
Multiplying <tF|Q|to Eq.(5.13) from the left, we obtain our key equation

M

M + NA , (5.15)

where we have defined

M <TF|Q(1—WQ)_1|¢dX> (5.16)

and

N = <tF|Q(1-wQ) "t |Fu> (5.17)

The perturbation expansion of (1—WQ)'l is illustrated in Fig. 8. If |p> is
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depicted by the same diagram as |¢> (see Fig. 6), then A can be pictured as
in Fig. 9. For M and N, we have diagrams of Figs. 10 and 11. Finally, the
diagramatic representation of Eq. (5.13) is given by Fig. 12.

The zero-th order term of M is <tF|Q[¢4x> . Since [x> here is either
the 1 th iteration IE(l)
wave but a distorted spectator function. Therefore to compute <TF|Q|¢dX> , we

> to Eq.(5.3) or |F> in Eq.(5.2), it is not a plane

need the method developed inrefs. 4 and 6 for distorted spectator functions(see

Appendix D). For the first and higher order M and for all orders of N, the
matrix elements are all of the form <t F |Q|F , 2 ,(x)> . Specifically, we
. R R R R '
define
ot (m) ’
In (x)> = 7 |n " (x)> . (5.18)
R m=1 &
with
]n(l)(x)> = (F_|Qla d.x> for M (5.19a)
R Rt otar
= (F_|Q|F_ ,v_,>  for N (5.19b)
RUURTR a
and
™ x> = s @ Jolr 2™ (x)> (m22) (5.20)
R Q" g R R B
where
(m-1)

|zém’<x)> =W |n (x) > (m22) . (5.21)

R R

Then M% and N%%, are given by <t _|n >(notice that lna> are different‘for M and
N). The calculation of (F_[Q|F,Z ,> is best treated by the method described
in ref. 18 for plane wave spectator functions(see Appendix C). As a function
of p and p' along the real (positive) axis, (F iQ]F .2 ,> has logarithmic
singularities{see Appendix C). The method of solving gur key equation, Eqg.
(5.15), depends essentially on the analytic property of the solution vector
Aa(p) as a function of p along the real axis. This is investigated in Appendix
G using the technique of Larson and Hetheringtonzzl There, it is shown that
Aa(p) is an analytic function of p except for a square-root branch point at
the breakup threshold P=P., and it goes to zero as p»0.  Based on this
knowledge, we employ the method proposed in ref. 9 to solve Eq.(5.15) in the

following manner. Let us divide the entire p interval into four regions.
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Region I O<p<»/ME7’H2
Region II /ME/ﬁ2<p<pc (=/4ME/3h?2)
(5.22)
Region III pc<p<§
Region IV p<p< ®
(For p, see Tables 1 and 2.) For each region, we choose appropriate "standard"

mesh points and an appropriate interpolation function =£i(p) (e.g., Lagrange

interpolation function) to interpolate Aa(p) by

A (p) = gximmami) . (5.23)
The summation runs over the standard mesh points within the region to which P;
belongs, not over the entire mesh points. With the conditions on £ (p)

Lilpy) =8; 5 i Z,(0) =0 _ ' (5.24)

Eg.(5.15) becomes

A (py) =M (p;) + é § 2(ai,B3) Aglpy) (5.25)
with
Q(ai,83j) = [dp'N(ap, ,Bp") .tj<p'> . (5.26)

The p' integral here is over the region to which pj belongs, not over the
entire p interval. The summation Z in Eq.(5.25) now runs over the entire
standard mesh points. To deal witﬂ the square-root branch point correctly,

in Region II and Region IIIwe employ the integratidn variable q'

q' = /PCE—P'Z for Region II
' ' (5.27)
lqa*| = /P'i-pcz for Region III ,

with an appropriate,uti(q') and with judiciously chosen secondary gq' mesh
points to carry out the q' integration rather than the p' integration in Egq.
(5.26). 1In Region I, we may use the standard p mesh for the p' ' integration.
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Although A (p) exists only over 0<p<p , the p' integration in Eq.(5.26) runs

over Region IV also. Here we introduce a variable Z by

p' =p + A , 0<2Z<1 (5.28)

with a parameter s, and set up secondary Z mesh points and a suitable eﬂi(Z)
to carry out the Z-integration.

The advantage of the above method of solving Eq.(5.15) is clear. The
complicated p' integration involving the singular kernel is decoupled from
Eq.{(5.25). The matrix elements {(ai,Bj) can be calculated in advance with
sufficient accuracy to be used over and over again, while Eq. (5.25) can be
solved by a matrix inversion. This will speed up cgnsiderably the solution
of Eq.(5.3) by iteration during which (1-TQ) [¢& '
times.

> must be calculated many

§6. The Total Wave Function and Breakup Amplitudes

The Faddeev component |®a > of Eq.(3.12) can be expressed in the form of
Eq.(5.13) . 0

_ -1, -1.(I) adag
¢ > = [(1-WwQ) ~|a' ¢ .F , > + (1L-WQ) °S |F v >A ] (6.1)
| g gé 07d aga, R R R
where
adag - .
A% <T%F%|Q|ao¢dFa6a0> (6.2)

We shall suppress all indices referring to @ and a'o in this section. The

amplitude A% can be obtained by solving, as explained in section 6,

(1)

A =M + 8§ N__, (6.3)

ROR oy owTR
with My and N g defined by Eqgs.(5.16) and (5.17) with |[x>=|F> . Treating

N

(1-WwQ)~1 as the perturbation, we find

(1-wQ) "L o F> = |6 4F> + s r W, In, (x) (6.4)

%' R R R
where
(m
Ing (x)> = mzlln%,)(x>> (6.5)
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with
(1) . ;
n y (x)> = (F_,|Ql|¢ F> - (6.6)
i 2 " loldy
(m) - (m) )
In2y ' (x)> S (an|QlF W2 (X)> (m22) (6.7)
R e AR
and
(m) (m=1)
Z . (x)> =W ,In_, (x)> (m>2)
l 2 | 2 2
Similarly,
(1-w) L[F v > = [Fu>+s™IF oW lg (x> (6.9)
where
lz , (x)> = ¢ ™ (x> (6.10)
with
(1) '
2 V7 (x)> = (F_,|Q|F v > (6.11)
| &R g | g8
1™ s = s (L ]oF .2™ (x> (m22) (6.12)
R g" R g" "% =
and
(m) (m-1) -
lz 0 (x)> =W .|z, T (x)> (m>2) (6.13)
RR R | RR = :

With Egs.(6.3) and (6.8), Eg.(6-1) becomes

lo> =[oF> + s T F v >a + s F YW [y (x)> (6.14)
l0g7> + &7 IFgup>Re + &7 [P M IYg

where

(1,

Y (x)> = |n (X)> + § , (x)>A . (6.15)
Ve Ing o a7

The first term on the right-hand side of Eg.(6.14) is the elastic component
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of |6> . The second and the third terms represent the non-elastic component.

They yield breakup components at asymptotic region. The asymptotic form of

the second term of Eg.(6.14) is given by the lSO component

(+)

! \ A = -|F & % A -1F 'ﬁ ) >A (6.16)
A TR Lt S AR

(]a>=|u(lso)> here) where we have used Eqs.(5.7),(A.1), (A.5) and (A.21). The

asymptotic form of the third term of Eq.(6.14) comes from the operator GV in
the 3Sl+3D

and higher partial waves in the positive energy region of WRs in
Table 2.

1

|F )w fy (x)>— |F )G, U 21V (x)>-——>|F%-h£+)

C 6.17)
A % % (@) >Cy (

(|a>#la(lso)> here) where Cy is the C-coefficient in Eqg.(F.13) for |Z(x)> of
Eq. (F.9) with [x(x)> equal to lw%(x)> of Eq.(6.15). We should keep in mind
that A% and C% are, more precisely, A%duo and C%éao .

The asymptic behavior of the breakup components of |¢> , therefore, is

) g0
|9 >-Z|(x¢ MZ[ dIFh (6.18)
% ay d O‘00‘0 ® R RE
where
%0 - _ z Aabao £ _ 1
= or a=0("8,) (6.19a)
g oc(') & 0
= ] cj0%0  for all other states . (6.19Db)
at A
0

Going back to the Faddeev component |6(1,23)> of Eq.(3.1l), we have

Pe h () %)
[¥(1,23)> — Z[ dplF% (23)> ) BOB% . (6.20)
+m a [¢3
0
This is for |¢l> in Eq.(2.6) . Therefore, for the total wave function
o> — L ap ¥, (1 R (23) + F_(2)h_(31) + F_(3)h (12)>] g B%O
§,<:zz/:r§f | R A g fow
(6.21)
13)

The p integral can be carried out using the saddle point method The result

is
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ikr .
! — & ! .
ly> = 572 gla(l,23) + a(2,31) + a(3,12) > T, (p,) ) (6.22)
_ 1.,23/2 172 .-(L+Q) 3/2. L1l ag
Te(Pa) = = =53 i i k qz@;} ByBy (Pp) - (6.23)
0

Bzo(pA) is given by Eq.(6.19) with p replaced by p, . Here,

- 2k 6.24)
Py = 37 Y (6.

k = V2ME/RZ (6.25)
qpX + PpY = kr . (6.26)

and r is the hyper-radius defined by

X2 2 2
r = ‘/XT + %y2 (6.27)

§7. Concluding Remarks

We hope that the prsentation in this article of our theory of three-body
scattering has been transparent enough to readers who otherwise are not too
conversant with the Faddeev theory. We believe that we have made it amply
clear that the use of realistic local potentials in the Faddeev theory is as
practical as and is not much more complicated than the use of conventional
separable approximations. Just as the optical model and DWBA analyses, which
were in the realm of theoreticians when we were students(that was in fact a
long time ago), are now handled almost routinely by experimentalists, the day
will come in the future when nuclear reactions are analysed routinely by using
computer codes based on theories such as ours; By then, the justification of
conventional (or traditional) nuclear reaction theories will have to be investi-
gated in view of the more mathematically rigorous Faddeev theory. Since the
use of complex potentials are not at all prohibited in our theory, we beleive

the theory presented here will contribute a great deal toward such goals.

Appendix A Partially Separable t-Matrix(PST)

i) Positive energies

11,13,14) In

this appendix, we present a generalized version of it which will be called the

An important ingredient in our theory is the method of PST

source function PST. This appendix also serves as an errata to our previous
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11,13,14) and to show the correct PST for coupled states.

treatments

The gist of the PST is as followsll). The Jost function method is useful
in treating two-body problems. The expansion in powers of the potential
converges absolutely without regards to the strength of the potential. The
zeros of the Jost function is the poles of the scattering amplitude. However,
in order to carry the method into three-body problems, and to treat the non-
pole (non-separable) tream of the t matrix as the perturbation, it is necessary
to modify the irregular nature of the Jost function. Thus we introduce a
function [$(x)> that is regular and has the same asymptotic behavior as the
) A(+)(qx), see Eq.{(2.18)).

spherical Hankel function IﬁL+ (gx)> . (For hp

~

la(X)> = 'GOIS(X)> SR Ih(+)(qx)> . (A.1)
s

L

Here, |s(x)> is an appropriate short-ranged, regular source function with the

normalization
<Gplax)fs(x)> =1, (A.2)
and RS is its range(See Eq.(2.17) for jL(qx)). It is convenient to choose

RS not greater than the range R of the potential V and we shall do so. The

free Green function GO is decomposed into two terms,

Gy = -le><3| + 9 (A.3)

which defines §. We also introduce the wave operator, § as its Green function.
w=1+gvVvae . (A.4)

Since |¢> is regular, so are § and ©®. They are real for real and pure imag-

inary g. Outside the force range

gv m—»o , w -X-;-R_)l . (A.5)
Then the source function PST of Got is given by

Got = (w-1) -w|¢>D" <j|vw | (A.6)

where

A A

D=1+ <j|Vuld . ' : (A.7)
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It can be proved that all poles in V are given by the zeros of det D, (D
is a 2x2 matrix for coupled states) and the second term(the separable term)
of Eg.(A.6) has the correct pole residues at these pole%l'lq)

erties (A.l) and (A.5), both terms in Eq.(A.6) are regular, and furthermore

With the prop-

Eq.(A.6) has all the virtue of the Jost function method provided the operator

© has no poles on or near the integration path(i.e., the positive real g axis

below VME/hZ , and the entire positive imaginary gq axis). This last condition
on » must be satisfied by a proper choice of the source function |s(x)> . ‘One

example of such a choice is the use of the Sturm-Liouville functions for

uncoupled states. They are defined as the solutions to

PGOVIwn> = xnwn> (n=1,2,...) . (A.8)

with the nomalization

<j|vlwn> = _An ’ (A.9)

which also yields the asymptotic behavior

]$n> §:§>-]n(qx)> . (A.10)
For |ﬁ(qx)>, see Eq.(2.19). Let us choose the source function |s(x)> as
N
s> = - 1 oM g > (A.11)
n=1 n

where the summation runs over all eigenstates whose An become larger or close

gN) are those of

to 1 in the energy interval of interest. The coefficients a
Egs.(27) , (28) and (46) of ref. 11. Then, Eq.(A.2) is satisfied by Eq.(A.9)
and the normalization condition on agN), Eq.(4.6) of ref. 1ll.

From Eq.(A.l) we find

15> = v + iqL+lJ'>;'>—R'* s ' (A.12)
where

~ N ~

lv> = ] OL,(!N) lv,> - (A.13)

n=1

In deriving Eq.(A.12), we have used Eq.(A.8) with GO=PG0-iq|j><j|. Therefore,
|$> is regqular and has the correct asymptotic form. Incidentally, D of
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Eq. (A.7) can be expressed as

1+ <jlwiv> + ig<jlw]j>

lw]
n

N ~
L -2 + ig<ilwly> (A.14)

]
~1
—

n=1

where we have used Eq.(33) of ref.ll. This permits us to rewrite Eq. (A.6)
in the many-~level form of Eq.(32) of ref.ll. What is important, however,
is that we have proved in ref.ll that there is no pole in ; in this case.
The extension of this method to the optical potential is easily donels).

A straightforward extension of the above PST for coupled states with the
Sturm-Liouville functions proves to have an undesirable aspect. Now, |$n> of

Eq. (A.8) has two components
v
~ _ | .n,L
lvn> v ' ;
n,L

For simplicity, let us consider the case when only A is chosen to 1 (as in
the case of the 381 + 3Dl two-nucleon state), and henceforce neglect the suf-

fix n. Then, & of Eg.(A-3) becomes
g = PGO + [w>(]{ v

where <§| = (<§L|, <jL,1) while PGO is diagonal. This g has non-diagonal
elements which do not vanish at x > ». As it is indispensable to have Eqg. (A.
5) for three-body problems, we must modify |w> so that g becomes diagonal.

Let us consider

e ()
0 ' H}L‘,>

together with

~ <Gple 0
<3| o, <. (A.15)
so that

g = PGO + | x><3]|

is diagonal. Does &v approaches to 0 as x +» «» as required by Eq.(A.5) ?

The asymptotic form of |x> is given by
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Se s > A .
. lnL JleLﬁPL + VLL'wL' /N, 0o
R 0 A scdo |V + v /
x IV A Ll B A0 -0 RS A5 L% AU ERAS
To be gV ” *k* 0 for this g, we must require two conditions
<IplVewve ¥ Vopwwre T 7 A (A.16)
and
<g_.lv 1 + Vv Y_oo> = A
Ll LIL L LILI Ll

be satisfied at the same time. However, |WL> and |V are two components

L|>
of the solution > of Eqg. (A.8) (with n = 1), and hence we can have only one
freedom about all over normalization. It is not possible to satisfy above
two conditions simultaneously,

Thus, we should modify lX>, Let us consider

[¥> = flow> O ) (A.17)

o el&L->

with the normalization condition Eg.(A.16) and
€ = - >\/<]LIIVLULWL + VLILIwLI> . (A.lS)

It is easily seen that this |y> satisfies Eq.(A.10) with a diagonal |n(gx)>,

and hence

g = PG, + |P><I| (A.19)

is not only diagonal but also satisfies gV TR 0. In the language of the

source function PST, if we choose

|sq, (%) >, 0 )
lS(X)>=( 0 , (SL'(X)>

=(Vpplvp> + Vo v/ .0 ~ )
= 0 , - E{VL'LIWL> + VLILII‘PLI>}/>\
' (A.20)
as the source function, relations (A.l), (A.2) amd (A.12) hold. Then, by

the general theory, we have the PST expression of Got as given by Eq.(A.6).
We must be careful, however, not to confuse |$> of Eq.(A.17) with the solu-
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tion }$> of Eg.(A.8). 1In fact, |$> does not satisfy Eq.(A.8) and hence it is
not the Sturm-Liouville function. Therefore, the prbbfrin ref.1ll concerning
the absence of poles in w does not hold for coupled states.

The question of poles in W has to be studied case by case, just as for
more general choice of. the source function ls(x)>. Fortunately, in our
treatment of the n-d scattering, the unperturbed part I in Eq.(5.11l) consists

3 3

only of the lSo state, which is not coupled. Even the Sl + Dl

be treated as the perturbation since the deuteron pole is extracted from r.

state can

This means that the PST expression of Got for positive energy, Eq.(A.6), is

required only for the lSo state. Thus, the positive energy contribution to

the unperturbed part of Eqg.(5.11) is given by

p P ~

3 Caplrv.><t pol= = IS Saplp.w ¢ > 1 3 “ '

g o 9P o] R o dp F% S % 5 <]$|Vam€(F%| (A.21)
with the summation running only over |a> with the lSo two-body state. (See,
Table 1). The function D_ is given by Eq.(A.14) with N = 1. The contribu-
tion from ( ; - 1) is included in the perturbation W .

ii) Negative energies

The general theory of source function PST presented in (i) can in prin-
ciple be applied to negative energies as well. Strictly speaking, the PST
for coupled states must be treated with the same care as for the positive
energies. However, since Go approaches e_\qlx asymptotically for negative
energies, even coupled states can be treated by the Sturm-Liouville functions
in the same way as uncoupled states. In fact, this is the method we have

3 3,4,17)

employed in calculating the triton and “He bound state problems Now,

the Sturm-Liouville function |$> with thz2 largest eigenvalue )\ is defined by
G VIv> = Aly> (2.22)
with the normalization
<PIVIP> = - 1 . (A.23)
We introduce g and the corresponding wave operator w by

S X!$><J)i + g ' (A.24)

Q
]

€
i

1 + gVu . ‘ (A.25)

Here, g and w are both regular at the origin and real. For x > R, g becomes
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proportional to'h£+)(iqx); Then we can show that 13)
Gt=(w-1)-|17;> A <q:|V . (A.26)
o 1 -
The negative energy contribution to the unperturbed part I of Eq.(5.11l) con-
sists of the lSO state with |g|<g (or P <p<p ). Thus, in Eq.(5.11),
) fp dp|F v ><t F | = = y fp dp|F $a> A <$a|V(F | . (A.27)
o pc g R R R o pc RS 1 - | g

See, Table 1. The contribution from (w - 1 ) is included in W%.

Appendix B Treatment of perturbation near the deuteron pole

Theoretically there is no deuteron pole in I of Eq.(3.5). The contribu-
tion to I form the 3Sl + 3Dl two-body state is given by
D _ e ' 1
r- =] /7ap|F_ )G, V = [65> ——5<¢qlV I(F | . (B.1)
a, © Ro Ro q” + ag Ro

1 . .
T———~2-<¢d]v is tricky
q + d4

for numerical treatment. When g is not too close to the deuteron pole iqd,

The cancellation of the deuteron pole of GV and |¢d>

we may use Eq.(B.l) directly. When |gq| is close to qq, we employ the PST e -
pression of Got of Eg.(A.26) and rewrite inside the square bracket of Eq. (B.

1) as
GV - 04> s <041V = (w - 1) - P(lahv (8.2)
q“ + q3
where
A 1
p(lah = |¥> |+ |ogr——a— <tg4l (B.3)
1 - T
with .
A 1¥Cs))>
ly> = (B.4)
1¥%p))>

This is given by the solution of Eq.(A.22) with the normalization (A.23);

Since we can show that

d)\(qg) = - Zlqlxz<$l$> ’ (5.5)



28
Formulation of n- d Elastic and Breakup Reactions

the deuteron poles in the first term and the second term of P(|q|) cancel

each other. Thus P(qd) is finite. In fact, we have

0
= (1) (2)
P(qy) = |$o><wp | + I¢d><wp | (B.6)
where
(1) 1 o (B.7)
< = - <
Wp | X— WOI
o
and
0
A
N 0
2 a, 1 e
w()l—-v9<wl+{2—(x—ﬂ—>+——}<¢l (8.8
P A © 9 ° 2ng 4 d
o 94
where NO =(< w w >) ° indicates d/dg, and the suffix o is to evaluate the
quantity at |q] = qq- The value of p that corresponds to q4 is p, of EQ.(2.3).
3). If the integration mesh point p is very close to P, we evaluate the
integrand of Eg.(B.l) by interpolation using the value at Py (. to which we
use Egs.(B.3) and (B.6)) and the value at neighboring mesh points (to which
we use Eqg. (B.l) directly). This will necessiate a special treatment for the

contribution from the asymptotic region-of P([q|) as explained in Appendix C.

Appendix C Reduction of (F F. .2,

The calculation of (F%|Q|F%.Z%,> is the center of the entire operation.

The algebra involved can be dealt with by the method of ref. 18. Throughout
this appendix, we use the notation of Egs.(2.17), (2.18) and (2.19).
First, we consider the case when |Za,(q‘x)> has the following asymptot-

ic form,

g0 (@'%)> SR~ Bge (@) 0T @re)> (c.1)

The exceptional cases are the terms -1¢d>——7~£——7<¢d|v and - P(fqW)V in W

q“ + qj R
state. These will be treated later in this appendix.

R

3S + 3D

for the 1 1
Using Egs.(E.24) and (E.25) of ref.l8 for |z

> with the asymptotic form (C.1l)
, we find :
(Fololry,zg.> = 2 YCladep')lX{a,- (p/p'ix) + Ay, (a)Y] (P,p'ix)],
L S
o”o (C.2)
where
2 L(L_S )

Y Y
Coar (Prp') = N 700" S ' (p,p") (C.3)
agr (PrP L (L2, L'2") L
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N,
\
N

(L_S ) Y
. o"o 'y s £
with Naa' and S(LR,L'Z')LO(p'p ) given by Egs.(E.7) and (E.25) of ref.l18.
L g Lo L' ¢ LO
(L_ S ) ~na A A A A A
0“0’ _ - 1 v 1
Naa' - GLOLé 6SOSC') JIL,S,) 8 7 S5 193 L,5,18" 7 5,
1] 1
J J Jo J' 3 Jo
11 11
e 220 gan (22° |
x(=)"II' (-)"8s’ (C.4)
1 . 1 .
=TI > SOS ’
Y L L’ +a'+l ,b+b'+l_aa’
S voryy (PARP') = I : p° p' R92 Y, .. '
(Le,L'2")L as0  a's (Lg,L'8")L
(b=L-a) (b'=L'~-a"') (C.5)
where
| 1/2 1/2
an A~ 2L+1 2L'+1 . '
aa'Y =AAUAA| ' ( ) ( _!—_ a,_ b a l.b
RigarLrann, “H'ILB0 Y { 5 at)  PEEDPME (3
x PATRIALELY G IAFLRA o )CCca0a"0]c0><20c0 [v0>
c
L 2 L
; g b' °©
xZ<b0y0lg0><2'0b'0Ig0>{L, L a'} a c a' (C.6)
g o
b v g .
The function Xza' (p,p';x) in Eq. (C.2) is defined by
XY ( 'sx) = fl du P (u)T (Ax) [ (A*X' 'Y + A ,(gq") (B)(k' )1
La' P/P i -1 Y i Pyt r o' q Pyt 2°
(C.7)
where
(a) R 2., 2
] ] — ] ) 2 1] 1] ] 1
gty = g x'Taxt 3 (') B, (q'x") (c.8)
and
o (B R 2 . » ~(+
Pariay = - rp xfaxt i vxon Mk (c.9)
o L'
Here N -
- '
I=-8-3 and =p+ £ (C.10)

are the relative momenta of the interacting pairs (1,2) and (2,3), réspec—
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(B)

tively, off the three-body energy shell. The function Pt (A)g') can be given

analytically. For \' not too close to gq', we have

1

B _ 2,27 D) 27 Y PS
oM (et = - LTI eI SRR CE I S MO SERMNCE SRS
) (C.11)
For A' = g', we better use
2 3., (A'R) - 3, (Q'R) .
(BY v vy = _ R 2 Jn L' (+)
pa.)()\;q ) = R {q"' - - - hL'—l(q'R)
A'- g
S0i VR = 3o, (@'R) .
L'-1 L'-1 héf’(q'R)} . (C.12)
A.' - ql
For A' = q', we have
(8) R 2 22 ~(+4)
' 1 = - = - ) t i '
Pur (a'ya') = - 3 {(=(2L + D)3, (@'R) + Rip,_y(qa'R))hy, 7
A ey (F)
+ Rj;,(@'R)h;,{q'R) . (C.13)
In the above expressions, we need the following functions for L = 0,
2 - o (+) - 10+
b (Ax) = Ano( X), h_l (gx) g ho (gx) . (C.14)
(A% v ot (B) (44t : f g ; Y '
Both Por A',q') and Py (A1g') have no singularities. The function YL(p,p ;

x) in Eq.(C.2) is defined by

1 .
¥ 3 ® 2 l"\ L " + )
2 (p,p'sx) = J_jdu P (w) 3 0x) Sgx'lax'ip, (A'x)hT) (@x).
(C.15)
If we use the formula given by Fudalg),
Px2axt 5o, vk Thgrx) = 1
o L L " 5
2o (q'? o+ ie)
= s (C.16)
ME/RA® - p“~- p'“ - pp'u + ie

which may be identified as (-1) times the free three-body Green function G, =
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(h®/M)/( E - H_ + i¢ ), we find

- 1 ) jL(}\X) '
Yl(p,p';x) = - ., dup (u) 5 —— (c.i1)
Y ME/A° - p“p'" - pp'u +ie
3, (ax)
= -2 aue L c.18)
PP’ Y (u (p,p')+ie) - u '
Here we have defined
ME/h2 _ p2 _ p'2
u_ (p,p') =
o) ' . c.19
pp ( )
We decompose YE into two terms
I, 0% = 5. (0 x)
Yi(prp';x) = -1 { ffldu P (u) 2 L o (C.20)
pp' Y ug, - u
+ 2JL(AOX)QY(uO + ie) 1. (C.21)
Here we have defined Xo by
Ag = Alu =u,) =a for 0 < p < p, (C.22a)
= A{u=~-1) = [% - p'| for p > P. - (C.22b)
The second Legendre function QY(Z) is defined by 20)
P (u) ) '
Q(z) =3 /1, —L1—au (C.23)
Y Ttz -
_ 1 Z 1 B
5 PY(z)zn R WY_l(z) ' (C.24)
where
-1 1 Ytk
Wtz = p ZREDLLI=UN 1, Gy v D), (C.25)
Y k=0 (y - k) (y + k + 1)
and

W_ (z) =0, W (z) = 1. (C.26)
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The function Q (z) has logarithmic singularities at z = + 1. Therefore,
Y . . . L . .
Yi(p,p';x) has logarithmic singularities on the curves defined by u, + 1 =

+ 1. The roots of these equations are

p' =vlp,s) = - B+ (C.27a)

P’ =u(ps) = B+ s (C.27b)

p' = - v(p,s) (C.27¢)
and

p' = - yu(p,s) , (C.274)
where

s = /b" - 92 r b= /pi + ig . (C.28)

For real positive p and p' in the limit of ¢+0, these roots are given by the
curves in Fig.l13. Since -1 < u, < 1 within this crescent shaped region, the
integrand in Eq.(C.18) has poles at u = u,- Since u runs from -1 to 1 con-
tinuously, these poles constitute a cut running form u, = - 1 to 1. The dis-
continuity of Qy(uo) across the cut is easily obtained from Eq.(C.23) to be

L
p,p'ix) is complex within the crescent shaped region with the imaginary part

-~ inPy(uo), which is twice the imaginary part of QY(uO + ie). Therefore, YY(
given by

Im ¥ (p,p'ix) IL(AGKIP (e = u ). (C.29)

=
pp'
Of course, this can be obtained directly from Eq. (C.18).

For ¢ = i|g| (negative two-body energies), p 1s greater than Per and
there is neither logarithmic singularities nor imaginary part. Since qg =1
g, Eg.(C.22a) is inappropriate because EL(qx) would diverge as x-+~. Hence,
we switch the definition of Ao to Eg.(C.22b). This is to take care of the
most dangerous contribution to Eg. (C.20) from u = - 1 where the denominator
ug - u takes the least absolute value (uo < - 1 here). For p sufficiently
far from p,, we may use Eqg.(C.18) directly instead of Egs.(C.20) and (C.21).

The terms - {¢d> 2<¢d Vv and - P(|{g|)V in W% for the 3s + 3D

2 1 1

q° + qg
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state are exceptions to Eq.(C.l). As explained in Appendix B, P(lq‘)v is
treated by interpolation using the value at ‘ql = 43 given by Eq.(B.6). For
the second term - I¢d>—§——l—§ dlv, the asymptotic form of ‘Za (x)> takes
the form 4 *+ 94

2, 0> Ay (gD h{Thig x) (c.30)
(h£+%ilq|x) is a real function of a real variable lqix). Therefore, all the

formulas from Eq. (C.2) through Eg.(C.16) can be applicable with iqd in place
of g'. Since x'z - q'2 now reads X'Z + qé, which is not only positive defini-
te but also not even close to zero, we may perform the integrations in Eq. (C.
15) without worrying about singularities. (There is no need for Egs.(C.12)
and (C.13) either.) ‘

The only true exception, therefore, is the first term [% ><wpl)| in Eq.

(B.6) evaluated at |g| = To treat this term, we shall have to compute and

d4-
store inadvance the integration

9

2.4 , L
oL, dx'Jp . (A 'x") Y lggx") . (C.31)

This has no singularities., Since |Zq,> is given either by Eq.(6.8) or Eg. (6.

(1)

ibuti 'y i to (F |Q|F takes the f
13), the contribution of ,¢0><¢p | in P(qd) o | %|Q| %.Z%,> akes e form

Y (el au PY(u)gL(Ax)BL.(A')<wél)|Vln, or > . (c.32)
L S

Appendix D  Reduction of (F%|Q1a0¢dx>

For the zeroth order term of M of Eq.(5.16), we must compute (F lQloa by
x> » Where |x> is the i-th iteration ]g(l)> when we are solving Eg.(5.3), or
|x> is the elastic component |F> when we are computing [¢> of Eq.(5.2). 1In
either case, |y> is a distorted spectator wave function. The formulas to com-
pute (F |Q]a‘¢dx> have already been presented in ref.4; There are, however,
some errors in the phase of these formulas, which result in an extra phase
factor (- )L+L * Ythat should be multiplied to the coefficient R(Ll Ltor )L .
Below we summarize these formulas with this correction.

(LOSO) LO

(F%lola'¢dx> =2 ] N ooP e (x) (e =ag) (D.1)
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(LOSO)
with Naa' given by Eq.(C.6), and
L L . . .
m Q) = soyiay u (U 0y (.2)

L
For uz(p,y), see Eq.(5.7). Ua:.(x,y)’is given by

Ll 94'
L , ' ‘ .
o _ a+c_b+d_ g’ : acgo
U " ,(x,y) = X y K¥ (x,y) R . (D.3)
aQ a ; 0 c E 0 g o (Lg,L R")LO
(b=L'-a) (d=g'~-c) - .
where s L 4+ ganon 0“2““(2L'+lj/2 2£.+lj/2
= - _l 1 -
R(LllL,'Z')LO b ( ) .0 LL'gg'( ) o bd 2a ( 2¢c
l.a,,,b 3,¢c 1.4 L A o\ /2 o\"2 22ja c A\ /b d
(=7 M7= p TR {B(o 0 o)(o 0 o)p » (o 0 0 (00 8)
abl’
X Ao L . .
{2 o p} cd g (D.4)
o AP L
o}
and
o' _ 1 ! 4 Xy™ .¢d(x") ~
Kc (x,y) = 5 f—l (cosexAy) yuﬂ' x"L. P.(cos eX y) . (D.5S)
Here
fre-lieg , gre-33-1y . (0.6)

Appendix E  Iterative solution of Eq. (5.3)

The stationary solution |g> Qf the elastic ghannel satisfies Eq. (5.3).
£> = 3> + B&_<o41Ta( 1 - 1) Lo e> . 1 (E.1)
Introducing the non-local potential U by Eg. (3.14)
U= <ol 1 - To) e (E.2)
we express Eg.(E.l) in a compact form of Eq.(4;5).

[g> = |3> + PEOU|g> . (E.3)

In this form, we can employ the iterative scheme of ref.7. Starting with
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1205 =35, 19 = jg> ana U9 v (E.4)
we construct successively for i =0, 1, 2, ...

MEIPICISPICITICS

g+l oy (@) - . (5.5)
<f(l,)lU(l)if(l’)>
|3, 2 pe vt e ()5 (E.6)
U(l+l) is orthogonal to all |f(3)>, 0<3j<i. Wecan reason that7) at a
certain stage we may set with good accuracy
e Ms = g™, (E.7)

Then, by going backwards using

(i) (i) (i)
. . . <f U f >
[g(l)> = |f(l)> + |g(l+l)> l I

W) ) (1)) (e,
(E.8)
we find

lg> = |€(0)> .

This method has been tested in a variety of cases, not only for non-local
potentials but also for local potentials. Despite the fact that this is an
iterative scheme, it works beautifully even for potentials deep enough to have
a number of bound states. This method amounts to replacing the original
potential U by a sum of a finite number of separable terms. Nevertheless, it
works for local potentials as well. This opens up a very interesting possi-
bility of effectively approximating a local potential by a finite number of

separable terms, in spite of the argument against itzl).

The method of continued fraction (MCF) for the scattering matrix7) is a
sophisticated version of the above method. The MCF works very efficiently
for the case when the potential is simple eneough to allow storage in the
computer memory. Our non-local potential U, however, is extremely complica-
ted with the operator (1 - I‘Q)-l

amounts to solving the three-body problem itself. Therefore, it is out of

in it, the operation of which esentially
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question to store U itself. Instead, we go back to the original method. This
requires the storage of |f(l)> and U(l)lf(l)>at each iteration. This is much

easier in practice. Thus, we proceed as follows.

We need semi-permanent storage places for if(l)>, U(l>[f(l)> and Uki =
<f(k)iu(k)]f(l)> for i < N, k < i, quantities which are needed until the end
of the process of iteration. We also need a temporary memory space for U(l)
|f(1+l>>, the space which can be used repeatedly for all iterations.

To begin, we compute and store

£, wl@ @ angy (E.9)
00
from which we calculate
!f(l)> = PGOU(O)if(O)> , U(O)If(l)>, and UOl (E.10)

Then, we repeat the following computations from Eg.(E.l1l) to Eqg.(E.l17) for 1.
i < N-1.

A

U(1) If(l)> = pli-1 1f(1)> (i-1) !f(l—l)> i-1,1

- U (E.11)
U. .
i-1,i-1
U.. (E.12)
1x
(e = pg p (D) £ () (E.13)
g0 g G+, (E.14)
U0,1+1 . (E.15)
For 1 < j < i, we compute
. . - . . L Us 4 .
g3 g A+l o G- g (d+l) (3 DegG-1, 3-1,d41 (E.16)
Y5-1,3-1
Uj,i+l (E.17)
Having completed the above calculations, we re-set
and
<@ g™y oy, for 0 <3 <N - L. (E.18)

JN
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For N - 12 j 2 1 downward, we compute from Eg.(E.19) to Eg.(E.21)

o - Y5 : = (E.19)
] Ujj _ <f(J)lU(J)lg(Jﬂ)>
‘E(j)> _ lf(3)> + |€(J+l)>cj (E.20)
and for 0 < k < j - 1
(k) k), _(3)_ _ (k). (3+1)
|U lg > Ukj + <f ]U | & >Cj . (E.21)
Finally, we find
16O = 10, 4 D, U?g) T - (E.22)
Upo ~ <f U lg >

Of course, we must check the convergence.
During the whole process, the major task is the calculation of U(O)
]f(0)> and U(o)lf(l+l)

> in Egs.(E.9) and (E.l14) which requires the operation
of (1 -TQ )'l as explained in section 5. The rest of the calculation is

very minor. The computation of |f(l+1)> of Eg.(E.13) can be done most easily
by solving
2 . . .
[ d + g d_ _ {8 + 1) + p2 ]|f(l+1)> - U(l)lf(l)> (E.23)
2 y dy 2 o
dy Y
i+l)

with the boundary condition that [f( > be regular at the origin and

4 . .

]f(l l)> — P, |n (p y)><] poy)lU(l)lf(l)>
Y>Ry

where RU is the range of U(l). Let yy be the matching point of the inner

solution ( y <yM) and the outer solution (y > yM) Also, let ]f > be the

regular inner particular solution of Eq.(E.23), and ]f

(E.24)

t> be the outer

particular solution inwardly solved from outside startlng with fo £ = fgut= 0
at RU. Then

£ G* s = g3 o y)> + [£5,> , for v < vy (E.25)
and

£ s = ain (o y)> + [£5,.> 4 for ¥ > vy - (E.26)

out
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By matching the values and the derivatives of inner and outer solutions at y =
Yy we obtain @ and B. It can easily be shown that ¢ thus obtained is in

fact equal to <j2(poy)lU(l)lf(i)>_
Appendix F  Operators (®- 1), (% - 1) and GV

As stated in Appendix A, we treat the negative energy PST by the Sturm-
Liouville functions. As a result, the treatment of ( 4, - 1 ) and GV for the
negative'energy states is identical with that of ref.3, and we shall not
repeat it here. We wish to comment, though, that if we did not use the
Strumian PST but a more general source function PST, the treatment need be
modified slightly since then we do not have the relation <$|Vw = <$|V. This
relation applies only to the Strum~Liouville function |$>. We also should
point out that the asymptotic form of the interactiong pair is better to be
made proportional tq ﬁ£+)(i]q|x) of Eqg.(2.18) rather than hé%fq[x) of ref.3.

As we have stated in section 5 and in Appendix A, the only state that
should be treated as the unperturbed part in ' is the lso state. Therefore,
(w -1 ) and ( a - 1 ) are needed only for this state. For the lSo state
with positive energies, weAhave also stated in Appendix A that we can use the
Sturm-Liouville func}ion |Y> with the largest eigenvalue A with the source
function s(x) = - V[¥>/A of Eq.(A.1l).

To compute (W = 1 )|x>, where |x> is a given function of x that is

regular, let us define
[x(x)> = (0 -1 )]x> . (F.1)
Using Egs.(A.3) and (A.4), we find

~AA

| = gw|x>

[ Gy + [e><3] Tw]x>

[ G, + [e>< 3] 1Vl x +x> . (F.2)

The corresponding differential equation is

2

d 2 d L(L + 1) 2
[ ———7 + ; a;(- - —2 + q - V(X) ] X(x)
dx X :

= - ﬂxka\dx+x>-kvmu(x). (F.3)
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Here X(x) should be regular. TIt must vanish at x > R (See, Eq.(A.5)).
H

Let us denote the homogeneous regular solution for x < xy by Xin(x), and
. . . . P
£ Il
define the inner and outer particular solgtlons Xin,out and in,out by
2
d 2 d L(L + 1 2
{ ;—- t 2 ax " —i——j*—l + 4% - Vix) ] X?X) = - s(x) (F.4)
X X
and
[ gi_. + g_d_ - E‘_K_L;l_)_ + 2 - V(X) ] HP(X) = V(X)X( ) (F 5)
dx2 x dx X2 d X ' )

P P p P
Here, Xin and in are both regular and for x < Xy and Xout and Moye are for

Xy < X < R which are obtained by solving Egs.(F.4) and (F.5) inward from out-

. . P P _ P _ P' _ _ .
side by starting X = X =Q0and [ =1 = 0 at x = R. Then the inner
solution (x < xM) and the outer solution (x > xM) to Eqg.(F.3) are given by

IX(X)> = [XH (x)>c + |XP > + II'[ > for x < X (F.6)
in in”® in” ! M *

X = P £ ;

[X(x)> = ‘Xoufa + Inout>’ Or X > X\ - (F.7)

By matching the values and the derivatives of inner and outer solutions at x

= Xy we obtain the coefficients C and o. The latter coefficient must be

equal to
a = <3F|V|X + x> , (F.8)

which should provide a good check on the numerical accuracy of the solution.
To compute GV|x> with a given regular function |yx> for positive

energies, we can proceed just as for negative energies. Defininig

|2 (x)> = GV|x(x)> , (F.9)
we obtain
2
d 2d _L(L+1) .2 _ ey o
{ c;(—z- t s ax " '—:2—— + q vix) ] 2(x) V{x)y (x) (F.10)

. . S+
where = (x) must be regular, and at x > R it must be proportional to hé kqx).

|2 (x)> ——-——-—-—>|’1:11£+)(qx)> c . (F.11)
X > R
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For a coupled state, ’h(+)> is a 2¥2 diagonal matrix and C is a 2x1 row vec-

-

tor. We define the inner homogeneous solution ~?n that is regular (x <« xM),
andthe outer homogeneous solution Egut for x > Xy that becomes equal to

(+
hL

%qx) at x > R. Using the inner and outer particular solutions I
already defined in Eqg.(F.5), we find ‘

in,out

H
z(x)> = Igin>d + !Hin> , for x <« XM (F.12)
- _ ,._H
|:(x)> = l:out>c + lnout> , for x < Xy (F.13)
to be the solution of Eg. (10). For coupled states, both |E§n> and Iggut>

are 2x2 matrix functions, and C and d are 2x1 row vectors. By matching

smoothly the inner and outer solutions at x = x we obtain the coefficients

MI
C and d which are comlex in general. The coefficient C plays an important

role in calculatng the breakup amplitude.

Appendix G Analytic property of A%

In order to solve our key eguation (5.15)

A =M +S N ,A,, (G.1)
R RRr R R
we must know the analytic property of each term. We follow the method of
Larson and Hetheringtonzz). First, we define Property A and Property K.
A function f(p) will be said to have Property A if it is analytic along the
real axis except a square-root branch point at the physical breakup thresh-
old.

We have to deal with the integrals of the form

£(p) = /) dp'K(p,p') n(p') . (G.2)

The kernel will be said to have Property K if it takes the form of the
Faddeev kernel,

1

K(p,p'} = /2; du P (w) elp,p’iv) (G.3)

ME/‘ﬁ2 - p2 - p'2 - pp'u + ie

where p(p,p';u) is analvtic, and it has the same symmetry property as
->

n(p') when p - p'.
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From Fig.l1l3, we see that there are four critical points where £ (p) might
become singular, even if N (p) has Property A. These points are numbered 1,2,
3 and 4 in Fig. 13. The locations 1 and 3 are where two logarithmic éingular-
ities join together, and the locations 2 and 4 are where the logarithmic
singuldrities osculates the square-root branch point. Nevertheless, Larson
and Hetheringtonzz) have shown that if n{p) is of Property A and if the kernel
K(p,p') has the Property K, then ¢(p) also has Property A. We shall utilize
this characteristic feature of the Faddeev equation fully in this appendix.

Our purpose here is to demonstrate that the solution A = Aa(p) of Eq. (G
.1) has Property A. The outline of our proof is as follows. First, we argue
that Eq.(G.1l) is the Faddeev equation in our representation, in that it has
the Faddeev kernel (as we have shown in Appendix C). As has been shown by
Faddéev, an iterated form of the kernel meets the Fredholm conditions. Thus,

as in ref.1l5, we maintain that the analytic property of A is determined by

that of each iteration of Eg.(G.l). Therefore, all that we have to show is
that all kernels in M as well as in S N%%,A , are of Property K, and the in-
%l

homogeneous term M. is of Property A. Then it follws automatically that the

solution A has Property A.
Let us look at the perturbation series in W% of the inhomogeneous term

M . (See, section 5).
S (W) (m)
M =<1 F '|1Qla_¢.x> + SV <t F |Q|F ,2 "> (G.4)
g T Tttt L a B 8l Q1T %
where
(1)
Z (x)> = W (F |Qla_d.x> (G.5)
’ R R %‘ ‘ o'd .
and
(m) (W) (m=-1)
2 (x)> =W_ S (F_[Q|F ,2', > (m > 2) . (G.6)
I% RE%- %‘l%% =

The zero-th order term of M%, i.e. <T%F%|Qlao¢dx>, obviously has Property A.

This is so because the bound state pole Py lies above P (See, Fig.l1l3), and

because |t _> is actually a function of g rather than p (see Table 1).

In Appendix C, we have shown that (F%IQIF%,Z%,> is given by Eq.(C.2).

> o= Tl ep') [ XL (ppTix) + AL (@Y (P,

(F_|Q|F_ .2 ,
R R R LSy

(G.7)
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Here both Xla,(pp';x) and Yl(p.p';x)‘have the kernel

l&

X (p,p'ix,x") = 21 du Py(u)_SL(Ax) x'ZjL.(A'x') . (G.8)
so that.
Cogy = (R gyt . ety - O3 ()

X{a.(p,p ix) = so dx"clp,p'ix,x") [ 2 ,(q'x") = A (@' )hp, 7 (q'x") ]
and B , (G.9)

YY (p,p'sx) = dx' X (p,p'ix,x" Ao iq'x") (6.10)

LP:P: 6 X (P.P iX, L'.q. . : .
(See, Egs.(C.7),(C.8) and (C.9) and also Eq.(C.13)). When p' » - p', the co-
. Y _. . b+b'+1 _ y+e'+1

efficient Caa.(p,p ) changes its phase by (-) = (=) (See, Egs. (C.
5) and (C.6)). When p' - -p' is acompanied by u » - u in . (p,p';x,x'), A and

A' remain unchanged (See Eq. (C.10)) while Py(u) receives the phase factor (=Y.
Therefore, X (p,p':x,x"') changes its sign by (=)Y under p' » -p'. Thus, cY '
altogether gets the factor (-)2'+l. The function |Za(q,x)> (and therefor:uits
asymptotic form Aa(q)ﬁ£+)(qx)) is a function not only of g but also of p. Its
asymmetry property under p + -p can be seen from Egs.(G.5) and (G.6). When we

2+1

change p to -p there, |Z > receives the factor (-) (W 1is an operator de-

pendent only on g and hence does not change by p ~+ -p). Therefore, |2 ,>

]
changes its sign by (-)1 *+l

under p' -+ -p'. This proves the Property K for
all integrals involved in Eq.(G.4). Since <1 F IQ]ao¢dx> has Property A,
and the kernels are of Property K, it follws that M_is of Property A.

The kernels of the perturbation series of N_, 'have the same analytic
structure of those of M, and hence they all are ¢of Property K. Since M_ has
Property A, it follws that each iterate of Eg.(G.l) is of Property A. This
completes the proof that A has Property A.

We point out that Aa(p), besides having Property A, should become zero
as p - 0. This can be demonstrated explicitly by integrating Egs. (C.20) and
(C.21) over p' near p = 0.

Appendix H Method of acceleration

In solving a linear integral equation

6 = £ + Ko (H.1)
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in the iterative way

¢=1+K+K2+K3+... ( ’ ' (H.2)

the convergence of the series is governed by ||K|| . If it is larger (less).
than unity, the series (H.2) diverges (converges). Conversely, it may be
possible to obtain a faster convergence or even enlarge the convergence radius
if we introduce a different kernel for solving the same equation (H.l). Thus,
we have proposed the method of accelerationlo).

In this method, Eq.(H.l) is expressed with a parameter o as

1

¢ = (1 +gK) —— £, (H.3)
1 - T(a)
where T(a) is defined by
T(a) = (1 - g)K + oKK. (H.4)
Since Eg. (H.3) is written as
6= (1+aK) 1 £= L1 ¢, (H.5)
(1 - K) (1 + aK) 1 - K

the iterative solution of Eq. (H.3)

6= (L+oK)(1+T() + T+ ...) f (H.6)

should yield the solution of Eq.(H.1l) when ||T(a)||[<l. The merits of this
method are two fold. (i) By a judiciously chosen value of a, we may be able to
get a faster convergence. In practice, with increasing number of terms in the
iterative series (H.2), the errors accumulate inevitably in the course of com-
putations. On the other hand, if we get a faster convergence by the series (H
.6), the accumulated error will be smaller. This is very important point to
make the numerical result more accurate. In ref.l0, we have demonstrated

some examples showing the effectiveness of the method of acceleration. 1In
fact, this method was indispensable in our 18 channel triton calculationl7).
(ii) Another merit is that we can enlérge the radius of convergence. We
demonstrate this point in this appendix, taking K as a constant rather than an
operator as in Eq.(H.1l). This is to aid understanding the method of accelera-
tion. If we write this constant as x, the iterative solution of the linear

equation

u =1+ xu (H.7)
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is given by

U=1+x+x%+ ... . ) (H.8) -

This series converges only if [|x||<l. On the other hand, if we apply the

method of acceleration, u is expressed as

1
u = {1 + gx)
| 1= [(1-a)x + ax?] (H.9)
If we write
2
tla) = (1 - a)x + ax” , (H.10)
then the iterative series
U= (1+ax)( 1+t +t@?+...) (H.11)
converges if
2
[( 1 - o) x + ax | < 1,
or in other words, if
-1l<(1-0q)x+ax®<1l. (H.12)
This condition is expressed as the relation between a and x as
X + 1
X<0,-—>a>‘m
L1 . x +1 ~ (H.13)
l)X)O, X<a< m
X + 1

x>1; - % > a > - X =17
Therefore, we can extend the region of convergence to any value of x, although
the suitable region of o becomes smaller with increasing |x]|.

The minimum of -(x + 1l)/x(x -~ 1) is at x = 1//3 , where - (x +1) /x(x = 1)
= 3 + 2¢Y3 and - I/x = - /3. Therefore, for -1 < x < 1, the value of ¢ = 1
is in the region of convergence given by (H.13) for the series (H.1ll).

In the region 0 < x < 1, the series (H.ll) for any value of o converges
faster than the series (H.8) since (1 - a)x + ax2 < x is satisfied as an iden-

tity.
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o p-interval v > [t >
R
Pe < P< P -['ub’) 1 I-%—)‘&lv Closed
lso . _ ( - - . :
0 < p < pc’ -l wé> ‘%<j[vw Breakup
Table 1 A
The unperturbed part in T of Eg.(5.11).
a p-interval W
R
Po <P <P (w = 1) Closed
1 —
S0 P <p GV Closed
0 <p <P (w = 1) Closed
0 <p (4 x igy) | Gv-]¢ N P |[v | closed + Breakup
d d 2+ 2 °7d
3. .3 ? s
$,+°D; "
q = iqd (w=1) - P(Q)V Closed
Others 0 <p GV Closed + Breakup
Table 2

The operator w% in the perturbational part in T of Eq.(5.11).

~ * For P(q), See Appendix B.
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The diagram representing Got'

Diagrammatic representation of the Faddeev egquation (2.8). The diagram
on the left hand side fepresents the function |¢>. The incident deuteron
is depicted by the heavy line, at the open end of which we suppose |¢d>
Or <¢4| is always attached. The first term on the right hand side is for
the incident wave |¢4J>-

The spring shaped curve represents the operator T.

Diagrammatic representation of the relation G t = |¢d>GO<¢d|V + T. The
vertical dashed line in the first term on the right hand side of the dia-
gram represents V.

The relation (3.9), i.e., |F> = |J> + Go<¢d|VQ|¢> is depicted. The
elastic component |F> is represented by the square on the left hand side.
The elastic and non-elastic decomposition of |®> is represented by the
first and the second diagram, respectively, on the right hand side.

The decomposisiton of [, Eq.(5.12), into the unperturbed (separable)

term and the perturbation W is depicted by the first and the second dia-
gram, respectively, on the right hand side. The right-half-circle means
|F v > and the left-half-circle does (1 _F| . The virtical line in the

sedond diagram represents |F )W (F

1 on the left hand

Diagrammatic representation of the operator (L - wWQ)~
side expanded into the perturbation series on the right hand side.
The matrix element A = (tF|Q|p> of Eq.(5.14) is illustrated for the case

when |p> is equal to |¢>.

Fig.l0 The matrix element M = <tF|Q(l - WQ)-l|¢dX> of Eq.(5.16) is pictured.

The wavy line on the right indicates the interaction in |x>.

Fig.ll Diagrammatic representation of the kernel N in Eg.(5.15), N = <tF|Q(1l -

WQ)_1|F0> .

Fig.12 Illustration of Eq.(5.13) for the case when |p> is equal to | o>.
Fig.1l3 The contours of the logarithmic singularities is Yz(p,p';x) of Eq.(C.23)

. The curves p' = u and p' = - v correspond to u= - 1 while the curve
p' = v corresponds to u, = +1. Within the crescent shaped region, -l<uo
< 1, and Yz(p,p';x) is complex with the imaginary part given by Eq.(c.3l
). The bound state pole is indicated by Pq-* The numbers 1,2,3 and 4
show the locations where two logarithmic singularities join together (1
and 3) and where the logarithmic singularity ocsulates with the square-

root branch point(2 and 4).
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