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The models similar to those provosed by Sakashita and Hayashi
to represent the main sequence evolution of massive stars have been
studied for the evolution of moderately massive star. Each of the
models consists of the inhomogeneous convection zone developing
between the outer radiative envelope of initial chemical composition
and the homogeneous convection core of the diminishing hydrogen
content. In actual computation, such an inhomogeneous convection
zone is approximated by the treatment of Sakashita and Hayashi's
semiconvection zone. The models are examined for two cases of
simplified opacity law. Along the evolutionary sequence of such
models, the intermediate inhomogeneous convection zone extends
steadily inward and chemically homogeneous central core shrinks
without changing the outermost boundary of the convection core.
Though it has not been made sure exactly yet, the central homogeneous
core disappears when the central hydrogen content becomes a critical
value which is still appreciably high ané depends on the adopted
opacity law and initial chemical composition. In general, it may
be said that the central hydrogen content at such a critical stage
should be smaller for the star of larger mass. Until arriving at
the critical stage defined here, the present scheme of evolution
does not bring about any appreciable change in stellar luminosity,
radius and the internal run of physical quantities such as mass,
pressure and density except the temperature which increases in a way
of just compensating the increase of the mean molecular weight in
the equation of state for pressure.

Some speculations have been briefly made of the model characters
of the subsequent evolution.
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§1. Introduction

The structure and its evolution of the star with convection core has been
computed under the supposition that the complete mixing of the chemical
elements in the convection core is a very good approximation. Thus the early
evolution of main sequence stars with a convection core has been studied by
many authors. Especially for the stars of moderately large masses ranging from
2Me to 10MO at least, the general character of evolution has been regarded as

D and Kushwahaz) had initially shown,

well established. Namely, since Tayler
the evolutionary behaviour of such moderately massive stars has been character-
ized by that the convection core decreases in its mass as evolution proceeds.
Recently Maeder3-6) has computed the evolutionary models for moderately massive
stars by using non-local expressions of the mixing length formalism to treat
the convection in the stellar core. He has shown that, if the mixing length
is longer, the more extensive overshooting from the convection core may occur
during the main sequence evolution. In his computation, it is assumed that
mixing between the usual convection core and the overshot region is so complete
that the overshot region is kept chemically homogeneous with the same abundance
as that in the full convection core at any instant. Except that the well mixed
homogeneous central core is largely extended, however, the mass fraction in
such a central core decreases as evolution proceeds and the essential evolution-
ary characters do not change from those of usual one so far as the star of mass
larger than ZMG and less than 10M@ at least is concerned. The idea of
instantaneous complete mixing in the convection core and in adjacent overshot
region comes from understanding that the mixing is taking place in the
mechanical time scale of convection element which is much shorter than that of
evolution. So long as one keeps this assumption, however, there appear
difficult situations under which the hypothetical semiconvection zone has to
be introduced when one considers the stars of masses larger than about oM.
In principle, the sweeping effect of the convection against an
inhomogeneity of chemical composition depends on the divergence of material
flow and may proceed with different time scale in each layer of a convective
region. According to the mixing length theory, this time scale may be expected
to be the order of local Kelvin time scale due to convective energy transport
and, therefore, much longer than that of the mechanical time scale of the
convective element. From this point of view, Suda7) and Suda and Uchidaa’g)
have proposed and developed a method to treat the evolving convection core and
investigated the logical scheme to solve the problem. These investigations
have been made basing on the early evolution of the massive main sequence stars
and led them to the conclusion that the structure with an inhomogeneous outer
region inside the convection core, which may be approximated by the Sakashita

10)

and Hayashi's first mocdel , can be formed at an early epoch of the massive

main sequence evolution. This conclusion has been actually confirmed by the

test computationll).
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This is expected to be the case also for the early main sequence evolution
of the moderately massive star. Namely, also for the moderately massive star,
it is expected that the inhomogeneous convection zone similar to Sakashita and
Hayashi's semiconvection zone can be formed just inside of the outer boundary
of the convection core at a quite early epoch of the main sequence evolution.
Therefore, it should be important to attempt to construct the evolutionary
models similar to those of Sakashita and Hayashilo)'torepresent the structural
evolution of the moderately massive star in the main sequence. To get a

preliminary information of the problem is a main purpose of the present work.

§2. General Consideration for Constructing the Models

To facilitate the investigation, we use here a classical way by using the
standard dimensionless variables to construct the stellar modelslz). since we
are considering the case of the moderately massive star, we neglect the small
effects of the radiation pressure in equation of state. We further assume
that the opacity x and the energy generation rate € can be simply approximated
by power laws of density and temperature

K = o<0p°‘T-B , (1)

_ SV
€ = €,P T . (2)

Hereinafter, except special specifications, usual definitions and notations
are used.

Each of the models which are expected here to represent the internal
structure for the early period of main sequence evolution consists of the
radiative envelope and the convection core which is divided into the inner
homogeneous core and the outer inhomogeneous zone. In some quantities which
will appear in following investigation, attached subscript 1 denotes the outer
boundary of the convection core. In the same way, subscript 2 indicates the
outer boundary of the central homogeneous core. 1In other words, subscript 1
and 2 are used to denote the outer and inner boundary of the inhomogeneous
convection zone, respectively.

Not only in the central homogeneous core but also in the inhomogeneous
zone, the basic eguation proper to describe that the region is in convective
equilibrium is

_d_ﬂl_.& - = = _N_ = 3
anP - Vp Vp,ad SN+ (N=3/2 in the present case) (3)
and the relation
1+1/N

P = Kp with N= 3/2 (4)

is applicable in common to both of the central homogeneous core and the
inhomogeneous zone. Thus, the whole structure of the convection core must be
expressed basically by the Emden solution 6(g) of N=3/2.

For a specified opacity law, a particular solution for the radiative
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envelope is characterized by the value of C defined as

a+2 Kos LRB—3G
U2+4 MB-a+3

= _3 k ,4+8
c = 4ac ( HG)

1
(4n) (5)
Here and hereinafter the subscript s is used to denote the surface values of
the attached quantities.

The fitting conditions at the interface between the radiative envelope and
the convection core can be expressed as

Uio = Uyir V9o = Yy (6)

and

vr:a::l,lo = vrad,li - Vad = 1/(N+1) = 0.4 (7)

vhere subscripts O and i are used to denote the just outer and inner
side of the interface, respectively. These conditions are completely the same
as those being used to construct the corresponding chemically homogeneous
initial model. Since, furthermore, the homogeneous envelope solution which
can satisfy these fitting conditions at its inner boundary and, then, can
contact with Emden solution of N=3/2 in the U,V-plane is the unique one, the
models along the sequence under consideration must share the same envelope
solution. Thus, it may be thought that the outer boundary of the convection
core does not move in both of mass and radius fractions following the sequence
of the present models.

In the inhomogeneous convection zone, the temperature gradient (V=4 &n T/

d &n P) and the composition gradient must be so formed that the relations

V=V, +dnu/denp (8)

Vrad >V > vad (9

are satisfied. The first equation itself is identical with the equation (3)

in its meaning. Second condition is necessary one in order that the region is
convective one. Following Suda and Uchidas’g’ll), however, V is very close to
the radiative one (= Vrad) in such an inhomogeneous convection zone. Therefore

we use here the approximation given as

vrad = vad + d &n u/d n P. (10)

This is the equation introduced originally by Sakashita and Hayashilo)

to
represent the so-called semiconvection zone in their evolutionary models for
massive main sequence stars. In constructing their models, Sakashita and
Hayashi have completely neglected the effect of nuclear energy generation in
their semiconvection zones. This would be good approximation for the case of
massive stars as they treated, mainly because of that the original size of the
homogeneous convection core is so large that the location of the semiconvection
zone is in the sufficiently outer part where the nuclear energy generation is

negligible. For the case of the moderately massive star, this should not be
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the case since the original convection core is not so large when we compare it
with the cases of massive stars. Therefore, in this work, we take into account
the effect of nuclear energy generation even in the inhomogeneous convection

12)

zone. Here, following Schwarzschild , we introduce the composition functions

defined as

L=, $=32—2, 4i=2 . (11)
uS

Then the run of Schwarzschild's dimensionless variables in the inhomogeneous

convection zone is given by the relations

danft _ _ - = - -
G " "(Trag *Vp,aa "BV T T(Tpee T 0V, )
. 2,V-2_3
g - sty
x = x (E/E)), (14)
as de
= 248 286
9 = a, %G/ (E25p) cog | - (15)
8 y2s
P pl(7;—) ' (16)
1
t
t =518, 7
1
. 1
_ j fpa+
Vrad =C Ql-a qta+8+4 ’ (18)

2 =1, 3=1, i=1 and £ =1

at the outer boundary of this zone. The parameter D in the right hand side of

equation (13) is defined as

S§+v+1
1 .8 v M

D= () (5% _u———r
4m os' s LR\)+36

(19)

Now, we suppose that a value is specified for Lo and/or Xo which may be
regarded as the parameter specifying the evolutionary phase of the model. Let
us further suppose that a value is arbitrarily chosen for D. Then the equations
from (12) to (18) provide the necessary values for the vériables at the inner
boundary of the inhomogeneous zone.

Next, with these boundary values, the runs of Schwarzschild's variables

in the homogeneous core are given as

Lo = Ry» i, =1, (20)
- 2.5

pC - P2/92 ’ (21)

t =+t_/6 (22)

c 2772 !
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p = pcez.s (23)
t=t.0 (24)
t2
x= (=l (25)
pC (o]
t2(2.5) ¥
q = —S———(-£252), (26)
'Qc pC
‘ S so _ £
£ = (5/2) #3287 0pl M £umor2[ Mgt i g, (27)
0

Let us denote f2i and f20 the values of f evaluated (at the interface between
the inhomogeneous zone and the homogeneous core) from outward integration of

(27) and inward integration of (13), respectively. Then the condition

£i0 = £y (28)

must be satisfied. The value of parameter D which appears in equations (13)
and (27) must be so searched that this condition is satisfied. Thus, since
there must be an unigue correspondence between Xc and D of the model, we may
regard as that the hydrogen content in the homogeneous central core is the
parameter characterizing the evolutionary phase of the model under consideration.

As mentioned above, the characteristic value of the radiative envelope
does not change along the segquence of the models as considered here and the
outer boundary of the convection core does not move in both of mass and radius
fractions. The outer inhomogeneous zone will grow from just inside of such
outer boundary of the convection core toward the center as the hydrogen content
in the central homogeneous core decreases. Until what phase can we construct
this kind of evolutionary models ? This is a main problem to be studied in
the present work.

§3. Properties of the Models

In order to see the effects of the different opacity formulae on the
sequence of the models under consideration, two cases of the electron scattering
opacity (a=0.0, B=0.0) and the Kramer's opacity (a=1.0, B=3.5) are
considered. As regards the energy generation rate, corresponding to the CNO-
cycle reaction at the temperature appropriate to the center of the moderately
massive star, we adopt 6=1.0 and v=16.0 in the approximate expression (2).
Thus, two series of models with decreasing central hydrogen content were
constructed. The mathematical characteristics of these models are given in
Table 1.

i) Critical situations against the construction of the models
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In general, for a specified value for D, there is a minimum criticdl value
for X to which the corresponding integration for the inhomogeneous zone can
attain. Namely, when we proceed the integration toward the center, X decreases
monotonically at first. But the integration arrives at a critical point where
the right hand side of equation (12) becomes just equal to zero. And, when we
further proceed the integration beyond this critical point, the right hand side
of equation (12) becomes positive because of that Vrad becomes less than Vad
and, then, X begins to increase. Such behaviours are illustrated in (X, log q)
-diagram of Figure 1 for various values of D. As shown there, the smaller is

the value of D, the lesser is the attainable minimum critical value of X.

ccB cce
0.8 { 0.8 rf
D=2.122
D=43.1680
o7} - X
D=20,0
X 075}
D=10.0
0.6+ ! h Dl".4
/ !
]
/ a : b
D=0.0, D=0.0,
4 '
' '
1! 1 0.7 i |
-20 -1.0 0.0 ’ -2.0 -1.0 0.0
log'q ' log q

Fig. 1. Profiles of the hydrogen distributions calculated in the inhomogeneous
convection zones for various specified values of D; a) the case of electron
scattering opacity; b) the case of Kramers' opacity. CCB is the outer
boundary of the convection core. Smaller is the value of D, lesser is the
attainable minimum value of X.

From the point of view to construct the model with the specified value of
X.+ the behaviours as mentioned above may be stated as follows. To attain a
specified value of X along the inward integration, there is an upper critical
value for D. Hereinafter we term this as Dcrit' With the value of D larger

than this Dcrit’ the corresponding prescribed value of X can not be attained
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along the integration. So, in order to construct the model with the specified

value of Xc,vnahave to choose the value of Dwhich is smaller than corresponding

Derit:
is the value of corresponding D

Since, as described above, the lesser is the value of Xc, the smaller
crit’ the range of D adoptable to construct the
model becomes narrower as we consider the model of more advanced phase.

When a value is specified for Xc’ the final value of D has to be so
searched that the condition (28) is satisfied. 1In Figure 2a, as an example,
for Xc==0.4 in the case of the electron scattering, the values of log f on the
both sides of the interface between the homogeneous core and the inhomogeneous
zone are plotted against the corresponding values of log D. In the case of
electron scattering, the model could be constructed until the phase correspond-
ing to Xc==0.33. But, when Xc becomes 0.32 in this case, two curves of f20
and f2i
limiting phase along the sequence of the models under consideration. In the

can never cross each other as shown in Figure 2b. Thus, there is a
case of Kramer's opacity, such a change of fitting situation appears for a

value of Xc between 0.66 and 0.65. Then the model presented in the last column
of Table 1lb with Xc=:0.66 is very close to the limiting model in this sense.

log f20

Y -
8 g
-L.o -6.0
| |
0.24 0.29 -0.9 0.0
log D log D
Fig. 2. In the case of the electron scattering opacity and for the specified

values of Xor the values of log f at the both sides of the interface between
“"the homogeneous core and the inhomogeneous zone are plotted against the
corresponding values of log D. f2i and f20 are values of f at just inside
and.outside, respectively, of the interface. a)vXC==0.4, f is continuous
across the interface; b) Xc==0.32, f can not be continuous across the

interface for any value of D.

It should be noted, however, that, for both cases of opacity, the
fractions of the masses contained in the homogeneous cores of the last models

in Table 1 are already very small and the inner boundaries oftheinhomogéneous
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zones are very close to the center. . As a more plausible possibility, it might
be thought that the limiting phase will be represented by the model in which
the inhomogeneous zone has grown to reach to the center. For such a limiting
model, the value of D nmust be so that the value of f following the correspor;ding
inward integrations of (12) and (13) just becomes zero at the center. However,
as well known, it is a difficult problem to attempt to obtain a particular
solution which satisfies the conditions at the center by directly integrating
the equations toward the center. Namely, as integration proceeds nearer and
nearer to the center, solutions of equations (12) and (13) should be more
sensitively influenced by the accumulated mathematical inaccuracies. From this
point of view, it may be rather natural to consider that the situation as shown
in Figure 2b would come from the mathematical inaccuracies. At any rate, in
each last one of the models given in Table 1, the size of the central
homogeneous core is quite small and practically negligible. Even if the
limiting models were-correctly constructed, the corresponding values of Xo
should not be differ appreciably from those of the latest models presented here.

ii) Evolutionary characters of the models

Evolutionary changes of hydrogen distributions in the stars according to
the present model sequences are illustrated in (X, log g)-diagrams of Figure
3. The central homogeneous core shrinks and the intermediate inhomogeneous
zone extends inward. And, though it has not been exactly ascertained yet, the
central homogeneous core should disappear with finite central hydrogen content
which is still appreciably high and larger for the case of Kramer's opacity in
comparison with the case of the electron scattering. This difference appearing
on the value of critical hydrogen content at the center may be understood as
being due to mainly the difference of the size inmass fraction of the original
convection core. -

As can be easily understood by the relations from (14) to (26) and the
fact that the characteristic variables in the radiative envelope and at the
outer boundary 1 of the convection core do not change along each of the model
sequences under consideration, the runs of p, x and p/p(R) against the
coordinate g within the convection core do not change throughout the phases
under consideration. The effect of growing inhomogeneous distribution of X as
illustrated in (X, log g)-diagrams of Figure 3 appears mainly on the run of t.
Thus, the values of Pe and pC/E(R) are kept to be unchanged respectively
throughout the phases of the consideration though the value of tc monotonously
increases. Since, as seen later, stellar radius does not change appreciably,
the changes in the central pressure and density are negligible. The increase
of the central temperature is almost completely compensated by the increase of
mean molecular weight.

From equations (5) and (9), the luminosity, radius and effective
temperature of present model star can be expressed in units of those of the
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ccB

0.8

Fig. 3. Evolutionary changes

of hydrogen distribution in
the convection cores of the
stars according to the

present model sequences.
a) the case of electron
scattering opacity; b) the

case of Kramers' opacity.
CCB is the outer boundary

of the convection core.

ccB
0.8 ¢

0.6 ! 1 1 ]
-40 -3.0 -20 -L.O

log q

corresponding starting initial homogeneous model as follows:

for the case of Kramer's opacity

log L/L, = (19/18.5)log C/C, + (0.5/18.5)1log D/D, (29)
log R/R, = -1/18.5(log C/C; + log D/Dj) (30)
log To/Tg o = (21/74)1log C/C, + (2.5/74)log D/Dy (31)

for the case of electron scattering opacity

log L/L0

log C/C, (32)

log R/R0 -1/19(log C/Co + log D/Do) (33)

log Te/Te,O = (21/76)1og C/Co + (1/38)1log D/DO. _ (34)
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In these expressions, the subscript 0 is used to refer to the initial homogeneous

model. These expressions show that the values of L/LO' R/RO and Te/T depend

only guite weakly on the value of D/DO. Furthermore, since, for eacﬁlgodel of
the sequence, the value of C equals to that of the corresponding initial
homogeneous model, L/LO, R/RO and Te/Te,O should not change appreciably from 1.
Applying the initial and the last model listed in Table 1 to the star of 5 Mo,
we give in Table 2 the corresponding values of luminosity and effective
temperature. As shown there, these quantities do not differ appreciably from

those of the corresponding homogeneous model.

Table 2. Luminosities and effective temperatures of the star of 5 M@

by the initial and last model considered here

a) electron scattering b) Kramers' opacity
initial model last model initial model last model
log L/L@ 2.91 2.91 2.35 2.34
log T 4.34 4.30 4.15 4.14
> Teff
§4. Summary and Remarks

Although the simple approximation formulas for the opacity and the energy
generation rate were used, it was shown that the models similar to those
proposed by Sakashita and Hayashi for massive stars can be constructed to
represent the internal structure for the early period of main sequence evolution
of the moderately massive star. Along the evolutionary sequence of such models,
the outer inhomogeneous zone grows steadily inward and chemically homogeneous
central core shrinks without bringing about any appreciable changes in stellar
luminosity and radius and the internal spacial distributions of mass, pressure
and density except the distribution of temperature which increases following a
way of just compensating the increase of the mean molecular weight in the
convective region. Though it has not been made sure exactly yet, the central
homogeneous core should disappear when the central hydrogen content would
become the finite critical value. Such a critical value would be still high
and should be smaller for the star of larger mass. This character is in a
contrast to that for the case of massive stars as treated by Sakashita and
Hayashi. In their case, there still remains a central homogeneous core of
fairly large size in the mass fraction even when the central hydrogen content
becomes nearly equal to zero. In constructing their models, Sakashita and
Hayashi have completely neglected the effect of the nuclear energy generation
in the inhomogeneous zone. This effect, however, would be negligibly slight
in the case of massive stars as treated by them. A main reason causing the
difference as mentioned above should be due to the character that the radiation
pressure is important in the massive stars but not so important in the

moderately massive stars as being considered here.
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At any rate, according to our scheme of models for the early main sequence
evolution of moderately massive star, there should exist a critical stage at
which the growing inhomogeneous zone just reaches to the center with a finite
central hydrogen content. Until this phase, the star should not show any
appreciable movement of its position on the H-R diagram. Dueto a gentle slope
of hydrogen distribution, the time elapsed until this critical stage should be
fairly shorter than that estimated, at the phase of the same central hydrogen
content, from the corresponding usual standard model sequence.

How is the character of the subsequent evolutionary model sequence ?

We proceed the description using a simplified opacity law and following a
classical way of model construction as adopted here. In each model along such
a subsequent evolution, the value of C characterizing its radiative envelope
must be larger than that used in the corresponding models as treated here and
increase as evolutionary phase proceeds. Then, we have to introduce a radiative
inhomogeneous zone between the radiative homogeneous envelope and the
inhomogeneous convection core which is basically represented by the Emden
solution for polytrope of N=1.5. This means that the outermost part of the
inhomogeneous convection core will change to be radiative. As evolution
proceeds, such an inhomogeneous radiative region will extend inward and, at
the same time, the profile of the hydrogen distribution in the inhomogeneous
convection core will be steadily modified. (It should be noted here that, in
an innermost part of the radiative inhomogeneous zone thus expected to extend

13)). Such a

inward should be overstable in a sense as pointed out by Kato
modification will continue until the hydrogen exhausted central core will be
formed. If such an expectation would be realized, further subsequent
evolutionary model sequence should be the refined modification of the sequence
of the models with isothermal cores as studied by Hitotuyanagi and Sudal4'15).
The sequence of the models as mentioned above will represent the extremely poor
case of the mixing efficiency of convection against the standard evolutionary
model sequence which has been usually adopted.

Ve would like to thank Miss. M. Nakamura for her help in preparation of

the manuscript.
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