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Three-nucleon potentials due to 27 or 2(m+p) exchanges via A and those

33
due to 27 exchange with all effects of S and P wave 7N scatterings are
reduced into sums of irreducible tensors in coordinate space. General ex-
pressions for the matrix elements of these three-nucleon potentials with

respect to the triton wave function are presented.
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§1. Introduction

There have been a number of calculations on the triton bound state based

on the Faddeev equation, either in momentum space or in coordinate spacel'2'3l

using realistic two-nucleon interactions such as the Reid soft-core potential4)
and other equivalent potentials. It is well-known by now that all these
realistic nuclear forces underbind the triton by approximately 1 to 1.5 MeV.
There is also a well-known discrepancy between the theoretical electromagnetic
form factors and the experimental data. Efforts have bheen made to

reconcile these difficulties as due to three-body interactions and other meson
degrees of freedom, but with a partial success so far. The discrepancy in

the binding energy had been thought to be explaing? by the contribution from

the Fujita-Mivazawa (FM) three-nucleon interaction arising from the process
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resonance among three nucleonss). However, the
7) 8)

of two-pion exchanges via A33

calculations by Hajduk and Sauer and by Harper, Kim and Tubis based on the
Faddeev equation in which the N-A channels are explicitly taken into account
showed that there was a repulsive effect (of the size approximately 0.5 MeV)

in the triton bound state due to a dispersive effect of two-nucleon potentials.
We could think of other sources of repulsive effect, such as contributions
from p-meson exchanges. It became therefore necessary to look for other
sources of attraction not included in the FM force.

In the nuclear matter calculations of Ueda, Sawada and Takagi9), the
contributions from the two-pion exchange three-nucleon potentials were
investigated, in which all effects of S and P wave 7N scattering were taken
into account with the constraint of the PCAC condition. Their result showed
that the contribution from the 7N intermediate states other than A33 was
attractive. In addition, they found that the three-nucleon potential due to
o-meson exchange, called as the SS-F coupling potential in their paper, gave
a considerable attraction at the normal density.

'Based on these considerations, one of the present authors(T.U.) derived
the two-pion exchange three-nucleon(nm-F) interaction in which all the S and
P wave effects were contained with the PCAC condition as was done in ref. 9

but in addition the treatment was extended so as to include the spin-flip
10)

and the isospin~flip parts of the off N scattering amplitudes . This was
different from the two-pion exchange three-nucleon potential of Coon et al%l)_

and McKeller et allz). These authors used Adler's PCAC condition with the

Weinberg condition, which is based on the theoretical hypothesis of the

current algebra and requires the knowledge of the o term which is largely
unknown to us at present. T.U. did not use this condition. Nor did he use

the approximation of setting the Lorentz invariant quantity V equal to zero

as was done in ref. 12. As a result, he found some differences in the
potential from the one in ref. 12, though both were gqualitatively the same.

In addition, T.U. also derived the two (m+p) exchange three nucleon potential
via A33 (2(w+p)-A) in static approximation. This provides means to investigate
the repulsive contribution due to the p-exchange.

In this paper, we present the general expressions of the three-body
perturbation matrix elements of the FM, mn-F, and 2(w+p)-A three-nucleon
forces in coordinate space with respect to the triton bound state wave func-
tions resulting from the Faddeev equation. A similar perturbative calculation

in momentum space has been reported by Muslim, Kim and UedalB)

, which yielded
a rather negligibly small contributions of the above mentioned three-body
forces. The three-body matrix elements in coordinate space, however, turns
out to be very complicated, having both strongly repulsive parts and strongly
attractive parts interwoven. If the finding of Muslim et al.l3) is true,
then we expect that there are severe cancellations among various contributions

from attractive parts and repulsive parts, which point has not been clarified
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by their work, and on which we hope to be able to cast some light by the use
of coordinate representation. There has recently been a report by Coelho, Das
and Fabre de la Ripellel4), in which the Faddeev equation with a three-body
potential was éolved exactly in hyperspherical representation. In our
perturbative calculation, we hope to 1investigate on this point also. Further,
the algebra presented here is directly usable in our future work in treating
the Faddeev equation exactly with the three-nucleon potentials based on our
iterative approachB). Motivated by these considerations, we present in this
paper the detailed derivations of the three-body matrix elements.

In section 2, the matrix elements with respect to our triton wave functions
are described briefly. In section 3, we discuss the reduction of the three-
nucleon interactions into sums of products of isoscalar irreducible tensors
and scalar products of spin and spatial irreducible tensors. The general
expressions for the matrix elements are presented in section 4. There arises
a question of regularization of potentials associated with their use in a
three (or more) -body system. This is described in section 5. 1In Appendix A,
we present a summary on the FM, 7rn-F and 2(m7+p)-A three-nucleon potentials we
specialize in this note. Appendices B to E contain detailed derivations of

formulas presented in the text.

§2. Triton Wave Function and the Perturbation Expression

For the purpose of the perturbation calculation, it is convenient to
express the triton wave function in terms of a single partition, say (12,3)

of three nucleons. The relative coordinates in this partition are

- > > >
X = r21 = r1 -, (2.1)

and

<4
i

k3
|

(2.2)

3,15)

In our method of solving the Faddeev eguation , we expand the triton wave

function in terms of a complete set of products Fa(p,y)!a(12,3)>, where

Fa(p,y) is the normalized spherical Bessel function

F,(0.v) =72 p 3, (py) (2.3)

and {a(l2,3)> is the normalized spin-isospin-angular function

1 .
la(l2,3)> = [(Ij)TMT(lZ,3)>!(LS)J,(SL%)]; JoMg (12,3)> (2.4)
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with T = %. |a(12,3)> is antisymmetric with respect to the pair (1,2). The

orthonormality relation is
@

vy Fopy)<a(12,3) [a (12,3058, (B1,) = 84,8 (p7p") (2.5)

After solving the Faddeev equation, we obtain the antisymmetrized triton wave

function in the following form.

¥(x,9) =] [Tdp F(p,¥) |2(12,3)>8 (q,x) (2.6)
a O

where © (qéx) is the radial wave function in which the air (1,2) has the

energy - 1=—‘— q2 and the third particle has the energy TF_ p2 The relation
between p and q is
lECm | = %3; p? + %; q? (2.7
We write the three-nucleon interaction V(3) as
v3 - v(12,3) + v(23,1) + v(31,2) (2.8)

where, for example, V(12,3) contains the contribution to the three-body force
in which a pion is exchanged between 1 and 2 via 3. Due to the symmetry
property of W(i,;), we can express the first order perturbation energy of V(3)

in the following way.

vy = 35 a3k [ ady vE.HTvaz ey (2.9)
Introducing
Py (Xsy) = fo dp F_(p,y) 0 (q,x) , , (2.10)

we find for Y¥(x,y) of Eg.(2.6)

¥(x,Y = [la(l2,3)>0 (x,y) , (2.11)
o

and hence

<y (vi3 ys= 3 ZJ x2dx j y2ay o (x,y)<a(12,3) [V(12, 3) (o' (12,3) >
a a'l

Ax,y) (2.12)
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§3. The Three-Body Forces and the Reduction to Irreducible Tensors

Each component in Eg.(2.8) is expressed aslo)
5
v(12,3) = v (12,3) (3.1)
N=1
where
> -+ - >
Vl(12,3) = (Tl~12)(cl~02)f1(12.3) (3.2)
> > > ° - 2 (1) > - > Z (2
v2(12'3) = (Tl.Tz)[(ol.53)(cl r23)f2 (12,3)+(0l rl3)(02 rl3)L2 klZ,B)
> N > ~ (2
+(3,0r,) (BT, 087021, (3.3)
-> . > > > > >
V3(12,3) = -(13-lrlxrz)(03-101xc2)f3(l2,3) (3.4)
> > > -> ~ > > ~
V4(12,3) = -(130111XT2)[(02-r23)(03-101xr23)f4(12,3)
> ~ > > ~
-(cl-rl3)(03-102xrl3)f4(21,3)] (3.5)
- > > > ~ > ~ > e ~
V5(l2,3) = —(13-1Tlxrz)(ol-rl3)(02-r23)(03-1r13xr23)f5(12,3) (3.6)

There are other terms but they have much smaller coupling constants compared
to those listed above, and hence we ignore them in this report. 1In these

. > -> . . . .
expressions, o, and Ti are the spin and the isospin operators of the i th

nucleon, and fij is the unit vector along ?ij=;i—§j' The functions fn(ij,k)

are functions of r, r., and (fi ) . Explicit forms of them are given

x © Tik k Tk
in Appendix A together with the values of coupling constants.

To facilitate the Racah algebra, we introduce the following irreducible

tensors of rank F in spin, isospin and spatial coordinatesl7).

T ® P50 = trlPer M e M fF =0, or 1 .7

s ™ Fhi30 = g es M9 e ™ 10T (=0, or 1 (3.8

plBr iy = (B ey B ) {F) (3.9)

< S 6 N jk

ik

Here, I(l%i) and o(lki) are the irreducible tensor operators of rank 1
composed of the isospin and the spin operators of the i th nucleon, and g(O)(i)
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and T(O%i) are equal to 1. Also, Y(ka) is the irreducible tensor of rank L

composed of the spherical'harmonics Yg(g) defined by Egs.(B.4) and (B.27) in
Appendix B. 1In the following, gquantities without partition symbol, such as
T(K’97F), refer to partition (12,3). As shown there, we can express VN(N=1

to 5) of Egs.(3.2) to (3.6) as follows:

(0,0;0)%, K _(K0;K) , (1,1;K) (1)
vy, = =vT 1 000 TR OIR gt R 12,3y £57 (12, 3)
~ K=0 ~ ~
sy ik 3y e{2h2,3) « o PRz, eH2, 9 a1
V. = -6?(1'1;0) g(1,1:0)

f3(12,3) (3.12)

v, = 6nI L0y g KK R d TRy R LR g (B iR 22,3y 2, (12,3
N KK' N B

K'U(l,l;K%

=(=) 11.3)f4(21.3)}) (3.13)

ve = vIZ T30 g K 7 KEL (K LE) g K E) £ 12,3)  (3.14)
T ) L S w

where, for V5 , we have defined

/1 1 K\

W(K:F) = 4n/3 ﬁ 2 'z <1010!§0><lglol£'0><l 1 l> U(EE';F)(12'3)
- £=0,2 £=0,2 g g e gl ~
(3.15)
where
AO = Vig , and A, = V8n/15 (3.16)

§4. Matrix Elements

‘From Egs.(3.10) to (3.15), we see that the matrix elements in Eqg.(2,12)

are all of the following form.

I1’ 1, .
<a|v_]a'> = C 1 Jo<(LS)J, (23)F:T M, |
N ‘ NN terms c 00
(ir;l;E) (g,g';f‘) - ' !’i 1.
x (S 'g(ij;3) EI(L'S")J', (2 2)3 ,J0M0> (4.1)
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where (i,3)=(1,1),(2,2) or (1,2) and tegms indicates sums over various terms

in Egs.(3.10) to (3.15). We have also introduced, for N=1 and 2,

TII' - <a|T(0'0;0)|°">
N ~
=1 <(I%)T1|T(O’0;O) H(I'%)T> , (N=1,2) (4.2)
V2T+1 =
and for N=3,4 and 5
TII' - <(]|T(l'1;0)|a'>
N ~
— <(I%)T [t A N N AE T S (N=3,4,5) (4.3)
V2T+1 -

Explicit formulas of réf
of the operator g(g,g ;F%ij;B) and the function f can be identified by
comparing Eq.(4.1l) with Egs.(3.10) to (3.15).

To calculate the spin-angular matrix elements in Eg.(4.l1), we transform

are given in the following subsections. The forms

from the jj-coupling scheme in Eq.(2.4) to the LS-coupling scheme.

| @) 3, (1) 5:0,m > = § n'oSo) [a> (4.4)
0 0’ Lg ©
0~ 0
where the spin-angular state in the LS coupling scheme is denoted by
la> = |(LO)L (s3)s ;I.M > (4.5)
o’ 2°70'700
and the transformation coefficient N(L ) is given by
L ¢ L
(LySg) _ 3527 2 1 0
N, 0707 = JjLys, (S 5 Sp , (4.6)
J 3 J0
where we have introduced the convention A = vZA+L . Thus we find
i . (R,H:F . (gg F) ll
<(LS)J, (£5)3: T M | (S Uisi; 3))fI(L §J', (21531 My>
Yo - T mem
= 1 ] nlPoSo'n(k0S0) g (s K miF) Lyt 3 gy |50 (4.7)
LS, L'S! © Vo - ~(13:3)
0°0 0
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where (see Eg.(C.91) of reference 17)

(R,0:F) | (E,E":F) gy =4
S Uiy Dlet

(_)J0+50+L6 {L(')F L0}<(S-]:)S “s( rn7F)“(sv}_)s|>
849,50 2" 702 2'70

(glg';ﬁ)

x <(L£)L0Hg(ij;3) EINL 2 Ly> (4.8)

Substituting this into Eg.(4.7), we obtain for the matrix element (4.1) the

following expression

L -
<0L|VN|a'> CNT;II 2 2 N(;‘QSO'LOS(S) ) {g(‘)g gé}
LSy LgS @ terms ~0°070

x <(S%)SOH§( i )H(S'%)Sa><(L2)L0HgE§§i§$) £l (L'eLy>

(4.9)

where we have defined

n(L0S0.L§S) - (LoSo)y(L4Se) (yJo*So*Lo (4.10)
aa a a

The spatial matrix element in Eg.(4.9) involves a four dimensional angular
integral over X and y. This integral can be reduced to a one dimensional
integral over the cosine of the angle between X and § by transforming from
an arbitrary chosen space-fixed reference frame used so far to a body~-fixed
reference frame, in which the z-axis is chosen along the vector X and the xz

plane on the plane of the three particles. As shown in Appendix C, we find

canngluitE P efnreny>

(13:3)
n,d nFd, (1. °(E,E:F)2 -A 2
=71 A N e ) [T odu u iz i E Y T(y) (4.11)
ndKaa ,FAA)\O 1 A(ij:3) n
where
'3 2'n¥
n,d _ = 0,0 0, Lteg's % &'n 22 L L'd e
K o8 s =/ rpgrgee’ (-7 THA(y o 0at(g g )| LokoF (4.12)
L L'd/
° Vo ° °
In Eg.(4.11), u=cos 6, and the quantities g§§§§3;F), f and y refer to the

body-fixed reference frame difined above.
In Appendix D, we show that, starting from Eg.(4.11) we can derive the
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16
following expression with the help of Moshinsky's formula ).
(E,8';F) very L
<(L2)L0Hg(ij;3) £il(L 2" Ly>
& & _a+a' b+b' a a'y _(aa' (5" £
= z z x y pP. P. z R( ! [ du —=P_ (u)
a=0 a'=0 1 J h ac’ Ig E h
(b=£-a) (b'=E'-a') i3 33
(4.13)
where =1 =1 (see Eq.(D.3)), and
pl 70 P25 7 qg. . v
1] L} - ] g E'E
(aa',EE',h) 1 .£f,aa' Ry _P~P' b b'c ~2 a a'g
R 5 = — = Hici{-) ( )Z(-) g ( ) (b b'c
(aa',F) 8T 'F P 000 g 000 aa'g
n ~ghd ,cnh ghd
x 3 K n(g 00 %Goolaf e . (4.14)
n,d vw
n,d _ . Eg' ,aa’ (
Here, E;aa',F is given by Eq.(4.12), and T2 by Eg.({D.9)
', 28+ 28'+1.1/2 00, 02,8
rEf1e <, G5 Y22ETH Y2 ppreE (4.15)
with AE defined by
A, = /BT, a =/, a, =v3I (4.16)
For the spin matrix element in Eq.(4.9), we write for simplicity
(K,n;F) _ 1, ne(K,n;F) 1.,
Z(sso,s's(')) = <(s3)8lls Il (s'35)s)> (4.17)
As shown in Appendix E, this is given by
| (K,n;F) s 24 §.% 56\ 222 '% % f' vZ, for n=0
Z(ss .s'sry = S5oFSg (K n F )6sSks'{l 1K "{,/g' for nel (4.18)
0 0 sis 11l
2 70 2 2
As special cases of Eq.(4.18), we obtain for the isospin matrix elements
1 - ]
ot =L 20,0700 = 217, for N=1 and 2 (4.19a)
2 (1x,1'%)
2 2
= L gL L0 oI for N=3,4 and 5 (4.19b)

V2 (I—I' )
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where we have introduced the notation
II1' II1’

Ta and g - The values of these
matrix elements are given in Table 1. E\\RJ 0 1 £\<£j 0 1
Substituting Egs.(4.13) and (4.17) 1
into Eq.(4.9), we find for the matrix 0 /3 0 0 0 -/2
element 1 0 -14/3 1 /2 0
Y% , =<alv_|a'> II! I’
N,oa N
y O TA TB
] ]
= o o 5 N (L0S0,L§Sq)
N N LS L's! ao i1
070 7070 Table 1. The matrix elements T, and
T%I of Eq.(4.19).
terms 0 0 0 0’ 0
N % Ez' Xa+a1 b+b* aka' ‘i . (aa"gg',h)}l du o P. (u)
azo als PiPj (aa',Fy 1 T TET < By
‘ i3 33
(b=£-a) (b'=g'-a")
(4.20)
In this expression, z means the summation over all terms that appear in

terms
Egs.(3.10) to (3.15) when they are expressed in the form of Eqg.(4.1). We

shall identify U(E £':F)

U(i5:3) , £, and S(K n;F) for each case below.

(1) N=1
i 1 3 = RmreRasl = V= (010;0)-
Comparing Eq.(4.1) with Eq.(3.10), we find Cl-3, K=n=F=£=£'=0, U =1
and f=fl(12,3). Hence, we also have a=a'=b=b'=0, and
(00,00,h) _ _1 h,h _\h
R(aa',O) Ei ) (4.21)
Then, we find
= (1) gt £
V1 aa ¥ Diwat,h) L7 du £,(12,3)P (u) (4.22)
where
(1) 3 _IT1" (LgSq,LoSo)
D,y .y =51 I 8. -4 8g a1 8gq N 070
(aa',h) 2 A LoSo LOLO SOSO SS' aa
LoSo
L0 L., (=)P hh (0,0;0)
x {20 0} ———-E; . Z,.00" (4.23)
SOJOSO /e oa',0 (SSO,SSO)
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(ii) N=2

By comparing Egq.(4.1) with Eg.(3.11), we have C2=-/§, n=0, K=F=K, E=£'=1.
Thus, Eqg.(4.20) becomes

o
1 1 £{1)12,3)
' b+b! a a' (1 2 ’
v, .= 3§ 7 x2y J{p?p> [* du 4—n—— P _(u)
2,00 a=0  a'=0 h L2 -1 F13F23 B
(b=1-a) (b'=1l-a"')
°(2% °(2{
; £ 12,3) ' b 21,3)

+ pata 1 du—z——————— P (u)+Pa+a fl du 2 P, (u) }

1 p) h 2 2 h
-1 13 -1 23
(2)
* D(aa'.aa',h) ) (4.24)
where
(2) - IS (LgSq ,L3SH) K ,LgK L§
D,<’, , = -/3 1 ¥ y o N220°0 DG B }
{(aa',aa’', h) A L.S L's! ac K SoJoSo
070 0
(K,0;K) . (aa',1l1,h)
X z(sso,s'56) Riaa’,K) (4.25)
(iii) N=3

Comparing Egs.(3.12) and (4.1), we find C,=-6, R=1, n=1, F=0, £=£'=0,

-] v o ' ]
0l88" Ly ana £=£,(12,3). As for N=l, Rﬁii,’%% 'R pecomes nggzog;h’ of

Eq.(4.21). Thus, we find from Egs.(4.20) and (4.21)

V3 sar T g {3, {i du p_(wf;(12,3) , (4.26)
where
, 0
th;',n) - '3Té1 Lgso L.éé NéEQSO'LOSO)SLOLédsOsa{igJogg}
« z(1,1;0) _ij{E;n,n (4.27)
(SSO,S'SO) /e aa';0
(iv) N=4

From Eq.(3.13), we find for Eq.(4.1), K=K', n=1, F=K, £=£'=l. Thus,
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Eq. (4.20) becomes

1 1
+a' b+b"* a+a' ;1
\Y . = ) ) xTqy yip J© du p_(u)
4,00 a=0 a'=0 ho 2 -1 h
(b=1-a) (b'=1-a"')
° ¢,(21,3)
£4(12,3) _(43) __a+a' (1 £4 (4B)
* T 12, leet,aat,m Rl {l du Ph(u)_';gg_'—D(aa',aa',hﬂ
(4.28)
where
(4A) '
D(aa',aa',h) LK LA (-)K'\
2 S W W M LA LD Ko Be)) K' (g1 1)
D(4B) LgSy L3Sy x ~0°0°0 K’
(aa',aa’',h) 1
(K',1;K) _,(aa',1l1,h)
X Z(sso,s's') R(aa',K) (4.29)
0
(v) N=5

From Egs.(3.14) and (3.15), we find for Eg.(4.1), K=K, ﬁ=1, F=F, £=0 or 2,
£'=0 or 2. Thus, from Eg. (4.20) we have

g g’ ' '
Ve yar =L ) S SA A U A S
, Q0 €=0'2 E':O'z a=0 a'=s h -1
(b=g-a) (b'=g'-a")
5 £5(12,3) 5(5)
RNy (ac',aa',EE"',h) (4.30)
13723
with
(5) : _ . II', 6 <1010|£0><1010}/€'0> (LgSq,L§S))
D(aa’,aa',£6',n) ~ °Tp 4T Y Lo L Nt

LoSo LoSo

(58,,5'53) 'S3T,S 1P2 ®(aa',F)

: 11K ‘
o - : LoF L ' ' '
% ZKZ(')l F Z(K,l,F) (20 6} 111)p2 a R(aa ,E8',h)
07070 |E E'F (2.31)

§5. Regularization
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The regularization of the Yukawa function normally required to accomodate
meson-nucleon vertex form factors is discussed in Appendix A. This problem
can be treated with the introduction of one or two cutoff masses per meson.

The problem of regularization we wish to discuss in this section is of
entirely different origin to this. It is required by the u-integrations in
Eq.(4.20) in the three-body matrix elements due to the use of Moshinsky's
formula. This problem, however, exists whether we use Moshinsky's formula or
not, only that it is made explicit by the formula. Furthermore, this problem
will persist in more-than-three body problems in exactly the same degree but
not worse than we encounter here.

The integral in question takes the following form:

o

/*au P (1) L (i,3=1 or 2) (5.1)
- S rt
i3733
When y-»% and 6 - 0(or w), r13(or r23) approaches zero. In order to have
o

finite values for the u-integration, f, and hence various Yukawa functions

in it, must be appropriately regularized. For £=£'=0, the usual regularization
is sufficient for this purpose. However, since £ and £' can take values up to
2 (which is due to the fact that the three-body forces of Egs.(3.2) to (3.6)
contain spatial tensors composed of f13 23 of rank up to 2), Eq.(5.1)
demands a much severe cutoff. In fact, inspection of u-integrations in detail
(in Eqs.(4.24), (4.28) and (4.30)) shows that we need to introduce four cutoff

masses if we were to use the regularization procedure of Eq.(A.l13). Even if

and/or T

we did introduce four cutoff masses, the choice of heavier cutoff masses must
be quite arbitrary. Then, one might as well introduce a simpler procedure.
The method we propose is as follows.

We have certain confidence in the cutoff masses already present in the
OBE potentials, in that they determine the two-nucleon interactions for the
region, say r>l fm. Therefore, whatever OBEP we employ, we wish to preserve
its r-dependence beyond the OBE region, or othrewise we shall destroy the fit
to the two-nucleon data. For inner region, however, let us assume Gaussian
forms for all functions of Tigr Ly3 OF Iyg that appear in the three-body
matrix elements. Take, for instance, the mT-F coupling constants in Table A

of Appendix A, and let us use two cutoff masses (Kz and «, in Eq.(A.13)).

3
With the conditions

al + a2 + a3 =0 (5.2)
and
2 2 2 _
alKl + 32K2 +a3K3 =0 (5.3)
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with al=K1=l, we are going to change the inner part r;Rc by assuming a Gaussian
form Ce~Ar2 for each one of J(Z)(r), Z(Z)(r), J'(r)/r, J(Z)'(r), Z(Z)(r)/r and
Z(z)(r)/r2 that appear in the matrix elements. The constants C and A are
determined so that the values and the first derivatives of J(z)(r) etc. at

r=RC are correctly reproduced. The point r=R, where the outer (regularized
Yukawa) form is joined smoothly to the inner Gaussian form is treated as a
parameter. This procedure guarantees the convergence of the u-integral of
Eg.(5.1). In other words, instead of introducing two extra heavier cutoff
masses to each and all mesons, we introduce just one common parameter Rc'
Beside the simplification, this procedure also guarantees the same r-dependence
for rch as the original force, whereas the introduction of cutoff masses will
inevitably affect the outer region to some extent. The result may or may not

depend on the choice of Rc. That, we shall have to see.

Appendix A Functional Forms and Coupling Constants of the Three-Body Force

For the Fujita-Miyazawa (FM) force and the ww-F force, the functions fl

to £. of Eqs.(3.2) to (3.6) take the following forms'®).

5
£,12,3) = 6, (-0phz e -0 P 3 12Pe, -0 ke 00 (A.1)
£ith2, 3 - GW[DI-J'(rl3)J'(r23)-D;{J(2’}rl3)J'(r23)+J'(r13)J(2)Yr23)}

-Dg-(213-;23)Z(Z)(rl3)z(2)(r23)] | (A.2)
f§2%12,3) =6, (-Dofz e ) (2P, )+ Phe, 0 (A.3)
£,(12,3) = G, 5 E‘{z‘zlrl3)—JF2}rl3)}-{z<2¥r23)—3(2¥r23)} (A.4)
£,02,3) = 6 2 e (-2 % 2 Pe, w0 Phe 2 Phe, (A.5)
£.(12,3) = 6 - 2 %hr 2%, ) (A.6)

The overall factor G1T is given by
92 1.,1,2 2

G, = - 7% (35 m C° = -0.8818 MeV (A.7)

. + + + - . .
The coupling constants Dl' D2, D, and E are given in Table A. The
(2}
r

functions J°'(r), J(zkr), J(z) and 2 ) are defined by
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' - 1,
J'(r) = —E a, (F + x)Y (1) (A.8)
ke M
(2}, _ 2 -
3%y = 1 ax? Y. (x) (A.9) A
1 Dl ) ~0.91%0.14 0.
+
’ D -0.76x0.12 0.
3y = - T axid vy 2
i D" -2.3620.10 -1.02
(A.10) -
" E -0.92+0.015 ~-0.26
Z(Z%r) = E a.w?{l+—z—+———§——}y.(r), Table A. Coupling constants D{,D+,
i t1 kit (Kir)2 1 D; and E- in Egs.(A.l) t&
A 11 (A.6)10) in units of the
(a.11) pion mass.
where
Y. (r) = e “ifyx (A.12)

with r given in units of u;l=h/mnc = 1.420 £fm, <l=l and Ki=Ai/mTr for i>2
(mnC2=l38.7 MeV). Also, al=l. The coefficients a; and the cutoif masses Ai
are introduced for the purpose of regularizing the Yukawa function. For n

cutoff masses KoK , we inpose n conditions

..k
3’ n+l

L aiKi =0 , N=20,11,2,...,n-1 (A.13)

[aete]
[
2

with a,=1 and «,=1. The question of cutoffs, however, has to do with the

1 1
convergence of angular integrals in the three-body matrix elements also.

This is discussed in section 5.
For the two(m+p)-A three-body force, the functions fl to fs are given as

followslo).

£1012,3) = ~gl{y,=2,) (7,2 ) +(y,~2)) (7,-F,) ) (A.14)
£iM412,3) = —4(F) 508,50 {2,242, 2 ) (A.15)
£12012,3) = ’%{(y2-22)§l+zl(§2—22)} (A.16)
£,421,3) = Yz, (3,7 +(y,-2))2,) (2.17)

-1 = _z _ = _z
f3(12.3) = —9-{(y2-22) (yl zl)+(y1 zl) (v, 22)} (A.18)
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where yi=y(r3i) and zi=z(r3i).
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l -
§{zz(y

|
N
N
+

1

~zy)+(y;-2))2,}

%{(y2_22)£1+zl(92-22)}

Similarly

z(r), y(r) and z(r) are defined by

(ST

y(r)

z(r)

]
Wi

y(r)

1
Wik

W+

E(r)

=
=~
[\S}
—~
)
]

a)
1l

[a}
1]

1l

Z;Z{r)

The coefficie

frfn
4

2

Erfq 1
4m m%

frfq
47

J%JH

fnf; 1
47 ;g

quu(r)

uzzu(r)

quu(r)

2
Z
1 u(r)

nts mgu)
]

¢ (2
M

7 (2
m
T

and Sgu) are to be determined by the conditions

Explicitly, they are given by

w(u) - l;[I' ‘U2+Q%
] i=1 -n§+93
i#3

and similarly for Bj

(u)

with N+1 instead of N.

Eq. (A.12) with K =Hy and

for §i and Ei.

bey + 2 fefo 1,02y,

3 a1 L2 m !

o

1 fofp 1 (2

)(r) 3 4'"' r? zm )(r) r
p p
£ £% -

() + 2222 L5 7l2hy
m my P @,
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(A.19)

(A.20)

(A.21)

The functions y(r),

(A.22)

(A.23)
(A.24)

(A.25)

(A.26)

(A.27)

(A.28)
(A.29)

(A.13).

(A.30)

The function Yu(r) is given by
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Z,(r) = (1 + 3 .3 5) Y, () . (A.31)

Y (ur)

Also, in Egs.(A.24), (A.25), (A.28) and (A.29),

2 —
QN+1 = ZmA(mA m) (A.32)
and
§ = 2m,/{2m, (m —m)-mz} (A.33)
g A AYTA g -

where mA is the A mass (1235 MeV) and m is the nucleon mass.

The coupling constants are given as follows: From Ueda-Green I modellsz

£2 £2
T =0.0777 -0 = 4.26 (A.34)
4w ° ' 4T ° - °

From the A decay width TI'=115 MeV

T_ = 0.28 (A.35)

19)

*
The value of f, is obtained from the quark model There are two alter-

native choices:

*2

£
. = 14.9 and 12.3 . (A.36)
4T :

Appendix B Irreducible Tensor Representation of Vy

We define the irreducible tensor of rank 1 composed of a vector A=(a

xl
17)
Ay' Az) by

a1

1y _ _ 1 . (1) _ - 1 s
A = ﬁ(AX+1Ay) ’ A a, . -1 ﬁ(AX lAy) ’ {B.1)
and write Q(l)z(A{l), Aél), Aii)). Applied to T and ;, we have
1y _ _ 1 : (1) _ 1y _ 1 s
T = (Tx+1Ty) , T =71, T < /j(Tx lTy) (B.2)
(1) _ 1l x .y (1) Z Ly _ 1 ,x _.y
Yl = /f(r +1r) ’ YO T’ Y-l = /E(r lr) (B.3)
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Y(l) igs related to the spherical harmonics YT(6,¢) by

=

(1y~, _ ,4m m
v &) =3 v, (B.4)

Let ?(kl) and g(kz) be two irreducible tensors of rank ki and kj,

respectively. Then, the irreducible tensor product V(K)=[T(k1)®U(k2)](K) has
17) - - -
the components
ARIEI) <k, k,ya, [k KL gk (B.5)
4,9, 9 2
Inserting the values of the Clebsh-Gordon coefficients <qul,k2q2|KQ>, we
find from Eq.(3.7)
p(0:0:0)35,3) = - L(7 .7) (B.6)
It /3 I "2
Using Eg. (B.5), we can show easily that the rank 1 tensor g(l) corresponding
to C=i(AxB) is
C(l) - /5[5(1)X§(1)](l) (B.7)
Then, it is easily seen that
p(1:1i0)1p 3y = - L i(F xT )7, (B.8)
- /5 1 2 3
Similarly to Egs.(B.6) and (B.8), we have
s(0:0i0ky5 3y = - L §(3,-3) (B.9)
p /3 1
s(1:1:0k12,3) = - L i(5,%5,) 3 (B.10)
- _ /e 3
The scalar product of T(k) and g(k) is defined byl7)
~ ~ o) Q -Q
In particular, (T(l)-g(l))=(%-ﬁ). Using Egs.(B.5) and (B.1ll) we find
2 K,.(K,0;K) (1,1;:K) N
T (=) s it 12,3y cut T T ITH12,3) = (001 4) (0y0T,5) (B.12)
K=0 < ~ 1 713 3
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Also, using Egs.(B.5), (B.1ll) and (B.7) we obtain

~

V2 LN

- Kt iKY 31, 2y g 822, 3))

It >80

L > ~ >
(ifo xcl]-r23)(o2

3 )

(
K=0

[}

> . > ~ > ~
(03-101xr23)(02-r23) (B.13)

By changing the order of coupling in Eq.(3.8), we can show that

s LiF31,0) = 7%k ey 1 s P2, (B.14)
K' N '
where K =/2K+1 . Thus, from Egs.(B.13) and (B.14), we also have
- .,—> ~ - ." _ - K+K'A| 11K (K',l;K) . (l,l;K)
(83788 xT53) (§,°F55) = 8 [ [ (5)° 7 K'{g.) 1}(S (12,3) -y (22,3))

K K (B.15)

Equation (B.7) tells us that the rank 1 irreducible tensor corresponding to

L(E) By, is /ilg(l)(£l3)®g(l’(223)](l’=/§g(l'l’lllz,3). Thus
(§4-18, %,y = V2 May ot tilhig, ) (B.16)

Using Egs. (B.12) and (B.1l6) we find

> A +> A > A ~
(Gl-rl3)(02-r23)(03~1r13xr )

23

, |
vz 5 (K B0iK)yyy 5y glEi ik g5 5y
K=0 -

X

0 M3y -t iz, 3) (B.17)

On the other hand, we can show by Eg.(B.5) that

z(_)Kz(_)K+F+l(§(K,l;F%12'3)_[U(l,l;K}12’3)®U(l,l;l%12,3)](F))
K F - -

= T X (s ®rO0iKY1p 3y.g Lt biRhyp 3y) (o M3y ot ithaz,3))  (B.18)
) s U o U

Thus, introducing the notation

W(K;F%

12,3) = (vt ¥z, 3yeu!t L7112, 3y (F) (B.19)

we find from Egs.(B.17) and (B.18)

(31-F,9) (3,8, (5418 4xT, 0 =/2] (0 KL () KT s K17 F 12, 3) . BiF 12, 9))
K F

) (B.20)
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Next we show that W(K7F%12,3) as defined by Eg.(B.19) can also be written

as
(K;F <1010|Eg><1010[&" o>'~jl 1K (E,8';F
w®iFliz,3) = 43 10]Eg><101 11 1) 08 8"iF) o 3
£=0,2 £'=0,2 £ g e £'Ff ~
(B.21)
where Ag is defined later by Eq.(B.28)'. Using Eg.(B.l19) with Eq.(B.5) we

can write

W(K:F

{KiFY12,3)

I <kaib|masult ¥z, 3yt itk 3
a,b

<Kalb|FA> J <lqlq'|ka>y‘% )y (l%r ) J <lmlm'|lb>
a q 13 23 .
mm

qaq’
(1)~ (1}~
x Ym }r13)Ym,{r23)
- 4, 2 3
= ) <Kalb|Fx> I <lalg’|ka> ] <lmlm'|1b>(5)" ] —=—<1010]|¢o>
ab aq' mm' EMYaTnE

<1010|&'0><lg'im' |&'M" >y (r 3)

x<lqlm|£M>Y%(fl3) £
5 g* M'/4ng

(B.22)

where we have used Eq.(B.4) to convert Y;lkﬁ) to YT(E). Now, we avail our-
17)

selves of the following formula .

A2 J12J34J I139,,7 [31 33 91
J ( )(M M M) i3 3, J34
JM My M3 M My My, 19739547
- 313595\ (353 ) (j jLJ ) [353,9 )
= ) 1-2-12} |~ 3-4; 3 173513 2-4,24 (B.23)
1m2m3m4(mlm2m12)\m m mymaMis) AmpmyMyy)

The sum over (q,q',m,m') in Eg.(B.22) then becomes

] <lglqg'|Ka><lmlm'|lb><lglm|E{M><lg‘'lm'|E'M'>

qq‘m'
11 g|
= (yTaTh-M-M'p men, 29 ‘Kalbg)‘EMEM g)ﬂé é 1? (B.24)
‘g

On substituting Eqg.(B.24) into Eg.(B.22), the sum over a and b becomes
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~a-b, K1 g, _ (=)F
) <Kalb|FA>(-) (cap o) = = S

§
a'b F,g A,w (B.25)

Thus, with Egs.(B.24) and (B.25), we find for Eq.(B.22) the following expres-

sion.

. 11K ,
w(KiFY12,3) = 4n/3 | <1010|£0><1010|£" 0>KF(-) " <1 1 1& (=) 8FEHE
gg’ £ £'F|
< J T v Yy (2yy) (B.26)

MM'

We now define the irreducible tensors of rank 0 and 2 by

¥(2)

v%e) =1 ana ) = v Moyey Ty P (B.27)

Using Eq.(B.4), we find altogether the following relations between the
irreducible tensor Yégkﬂ) and the spherical harmonics Y?(Q) for £=0,1 and 2:

a YY) |, , (B.28)

(€
FARLE e Ve

where

»
ok

’ and (B.28)"

Therefore, Eg.(B.26) can be written as

: vgs ~ JL 1K
w{K,F%12'3) ) <1oio|50><1oio!£ 0> ¢ (1 1 1> T <EME'M'|FA>
gg’ 3 g’ & g'FI MM’

X

(€) (E")
Yy (E3) Yo %r23)

4ms3 y <S1010]€0><1010|£'0>
ger B¢ B

=

11K .
111y v dey &g )
13 237
£ E'F

(B.29)
which, by Eq.(3.9), proves Eq.(B.21).
Now we are ready to write down Vi of Egs.(3.2) to (3.6) in terms of the

irreducible tensors defined above. Using Egs.(B.6) and (B.9) we find for

vy of Eqg.(3.2)

v, (12,3) = 3 ?(0'0’0%12,3) 50:0:0k15, 3 £.012,3) . (B.30)

From Egs.(B.6) and (B.12), we obtain for Vs of Eq.(3.3)
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v,(12,3) = -/3 1'% 97%q2 3 Z ()% (s K0 K12, 3) . (uL-LiKY g2, 3)fél%12 3)

g(l'l‘Kl11,3)f§2R12,3)+g(1'1’K¥22,3)f§2%21,3)}) . (B.31)

Using Egs.(B.8) and (B.10), we find for vy of Eq.(3.4)
v,(12,3) = -6 T 02,3 s li0%a,5 £ 12,3 . (B.32)

For V4 of Eq.(3.5), we can use Egs.(B.8) and (B.l15) to find

v,12,3) =6 701 0%, 3] 1R D By,
- K K' -

wh ¥ 22,5 02,3 - X o ¥, e 210 L B.33)
Finally, for V5 of Eg.(3.6), we use Egs.(B.8) and (B.20) to obtain
v (12,3) = /12 11102, 3)2( ) Z( TR E ek SPRE TR AL LR S P TR

x f5(12,3) (B.34)

where @(K;F%l2,3) is given by Eq.(B.21).

Appendix C Spatial Matrix Elements in a Body Fixed Reference Frame

By the Wigner-Eckart theorem, we have for the spatial matrix element in
Ea. (4.8)

<@y 12,3 v S iy el e az, >

= L, (=) <(L2)L0K lu (5 & F{lj ;3 £ (Lre ) LyKy>/<LoKg FCIL

ofo”
(C.1)

0

Transforming to the body-fixed reference frame in which the z-axis is along

X and the xz plane is on the plane of X and §, we utilize the following

transformations.
M (L)

YL(x)

’ (C.2)
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m - (2) k A
Y, (y) = E D" (w) Y, (¥) - (C.3)

Here, w is the Euler angles of the transformation, and the quantities with

the symbol ° over them refer to the body-fixed reference frame. We thus have

) (L) L (L), (o k 2
| (LL) L K> {<LM1m|L Ky>Dgy (0) == ) Dy (w)Yg(¥) . (C.4)
Mm k
Further,
vl 8" FYi5;3e =7 D ‘“( ) glEe8TiE) (C.5)
¢ a d .
Substituting Egs.(C.4) and (C.5) into Eg.(C.1l) we find
<(L9,)L0<12,3)1|u(E £ F 193 €]] (LraLy(12,3)>
Lo (-) 2F - >y
= 0 ] ] <IMim|L K ><L'M'2'm'|LyKg> %—
Ly OFclLO 0> Mm M'm’
x [dw Déa)( ) I D (2)(m)D(F} )D(“ ’(m)DOM.%m)[ d(cos 8)
kk'd
x v gl Fisnt Ko . (C.6)
On account of the following three relationsl7)
J <tmam |z K >DoEY () D) (w) = <L02leOk>D(LO) (@ (C.7)
Mm
(F) (Lé) - [EEEE-F-NE R " ' (Lﬁ)
Dy o(w)D o(w) = [;<L0k Fd|Lg k' +d><LOK0Fc.LO,K0+C>Dk}+d’K§C(w) ,
0 (C.8)
and
dw 00 Tw)pL0) (0) = Lag 8 5 (c.9)
J Kk, K, WPk wa, ke T 72 %k, kd °Ky,Kie CLg Lo .
Ko 0 L, 0 0’0

Eqg. (C.6) becomes

<(L2)Ly (12, 3 || utEE’ FYi3;3) €] (Lrar )T (12,3) >
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11, 1 A0 "L T 'k ' S<T.'k'F
I <LORk|L k><L'0L'k |Lgk ' ><Lik Fd|L k>$

kk'd k,k'+d

i
|

X

1 k* 2. °(E,E F) .. 5 2.k" (2
j_ld(cos 0)Y, (904 (13:3) £Y,, ()

2 any ) ~n ° VL °
=8 LLL 7 72X <r02t0fno>[l) d(cos @)Y (DU LI EEPE I
L0 d,nvvy4m n
- k ' (R et A= - 1t
x kg'( ) Sk’k}+d<IDQkILOk><L 02'k"' |Lyk ' ><Lgk Fd|Ljk><2-k&'k’ |nv>
(C.10)

Using Eqg.(B.23), the last sum over k and k' in Eqg.(C.10) becomes

T (-)X<poRk|L k><L'02'k'|Lik'><L'k'Fd|L k><2-k&'k'|nv>

Q,Q,ng

N L'+27 2“ A nF g, LL'g

= (=) Z —v-d 0 0 0 o \Eolof (C.11)
L L'g

Using Eg.(C.ll) in Eg.(C.10), we find

<@g 12,3) [ u'E E R £ ez, 3>

= o
=] IR 1t %) [} dteos oru{E S iFYiy; 3£ V), (C.12)
ndJd AY)
where
2 2'n
n,g ~ -2~ % 2'n, .2 L L'g

E;aa,;§ = /FLL L0L012 Sk Ny 909 G o o LoLyF ) . (C.13)

L L'g

Appendix D The Matrix Elements and Moshinsky's Formula

We reduce G(E & F)(ij;3) by the help of Moshinsky's formulalG) in this
appendix. From the definition (3.9) and by Eq.(B.28)
2 (E,E"iF) . .3y = 1y (E)3 (g") (F) _ By (g (£') (¢
GN Vigin = x'®Az, ey i = M£'<€ME w By e oyt @y
= A AE, ) <EME'M' IFX>Y (r ) '( 3 ) (D.1)

g'

(Al

MM’

The vectors ?13 and T are given by (see Fig. 1)

23
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N X
- _ -+ - ->-_ X A
rl3 = r3 rl vy ? 5
. (D.2)
> _z _ _ " X N
T23 T T3Tr2 T YT 3 v
We write these vectors as 9
. > 3
- _ - > _ 1 _ 1 2 X 1
Lij3 = byX ty o (Pl-‘ 7+ Pr® 3 ) Fig. 1 Body-fixed reference
(D.3) ’ frame
Then, Moshinsky's formulalc) as applied here in the body-fixed reference
frame becomes (for i=1 and 2)
€
M ~ .1 25+1,1/2 a b M 2
YF,(ri3) i _2. ( 3a ) (pix) v <a0bM|gM>Yb(y) (D.4)
b o a=0
(b=g-a)
where we have taken advantage of the fact that X is along the bodv-fixed
Z-axis. With the help of Eqg.(D.4), Eg.(D.l) becomes
o Y & &' 2 2£'+1,1/2
U(EIE 'F)(ij;3) = A A,.,—l— ]—.' E 2 ( E+l)l/2( £ 'l) /
A £g' £ £ [ e 2a 2a
23Ty a=0 a'=0
(b=£-a) (b'=g'-a"')
] 1 L]
p?p? xata’' bbb y <gMg'M'|FA><aObM|EM><a'0b'M' |£'M'>
PiPy i’
M, 2, M2
x Yb(y)Yb.(Y) (D.5)
With the relationsl7)
] s ° AA' 2
@Y, (@) = ] == 221 <b0ob0]co><bMb M [cy>¥ ) (§) (D.6)
Sy vam © c
and
] <EME'M'|FA><aObM|gM><a'0b'M'|[£'M'><bMb'M' |cy>
MMI
: g+a-b+g'+a'-b'z22 % c+iv 22, F C g aa'g £ £'F
=68, () Feg'c(=)" ") 97(_, ;55 o 9)¢{p P'c
Yr g a a'g
(D.7)

which can be obtained from Eq.(B.23), we find for Eqg. (D.5)

o rt L. ‘El ] ] E 1 ] ]
U;E’ .-%1];3) R | - 1E % Z Lara yb+b Fﬁg ,aa pipf
VI ri3rj3 a=0 a'=0 4

(b=g-a) (b'=g'~a")
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~ - . g
a

AL
2xr0 00 ¥ (D-8)
c g

where

£',aa’ _ 2E+1
AEAE'( 2a

|

oy

1/2 (25 +1 1/2 SRS

) 25" EE'F (D.9)

When Eg.(D.8) is substituted in Eg. (4.11), the sum over X becomes

N R
A

g, oA 2R
Yc(y)Yn(y)
000 '%nFc PpW (D.10)

where u=cos %; . Therefore, we obtain for Eq. (4.11)

<(Leyng(12,3) || u e 8 F iy g e ey (12,3)>

n,d _¢,n Fd °(g,E';F -1,2.°
= zdiiaa';F §(X X f duU }1] 3)Y (y) £
§ & b ( ,h) £
a+a' b+b' a a' aa'
= ) xT ¢ e ) EETR) L gy E L au
a=0 a'=0 i%3 (aa',F) 1 h r€3 53
(b=g-a) (b'=£'-a") 123
(D.11)
where we have defined
£ £'F
{aa',£E',h) _ 1 £g',aa’ 'g . \
R, = r Y (=) “<bob’ o!co>2 g2 2 b b'c)
{aa',F) (am3/? °F 5 000\, g/
9 n,d ghd ,cnh ghd,
9 nzdgiaa' 5()"ERRY(F 9 (G 5 0 (2 F o (b-12)
S o g EE',aa' n,d _ }
in which Tz and K:aa’;F are defined by Egs.(D.9) and (4.12),

respectively.

Appendix E Derivation of Eqg.(4.18)

From Egs. (4.17) and (3.8), we find
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ll ]
= = = A An S'7 So 1 (1 (R
JEME) SR (R R F ) <s(1,2) ] o Mnesth2y 1B s 1,2y
(SSO,S SO) 0°"0 slg e ~
5 70
1 n), 1l
x <z I3 (E.1)
For E=0, the last reduced matrix element becomes
1 (m)yl. _ 1 1. _ ‘
G ez = <5tz =2 . (E.2)
For n=1,
1 (n)y1. _ 1 (1) 1. _ 11 11 11 11, _
Sz = <zlla 3 = V23 3loglz /g z 07 > = /6 (B3
Further,
11g.
7 Ann 12 2 _
<s(1,2) 1] to Myes M2y ® 1 seq1,2)> = SKS'/l 1R ) <2y 2.
- - 11 -
738 (E.4)
Thus, combining Egs.(E.l) to (E.4), we obtain
s‘-l- ! 11, -
= = = ~ an 2 70 ~nn 2 2 v2 , for n=0,
z (K/niF) =5 Fs'{RnPF J6SES'{ 1 1 K px { - (E.5)
(sS.,S'S}) 070 V6 , for n=1 :
0°° %0 sls L1lg|
270 2 2
References

1)

2)

3)

4)
5)
6)

7)

E.P. Harper, Y.E. Kim and A. Tubis; Phys.Rev.Lett. 28(1972) 1533;

R.A. Brandenberg, Y.E. Kim and A. Tubis; Phys.Rev. C1l2(1975) 1368.

C. Gignoux and A. Lavern; Phys.Rev.Lett. 29(1972) 436; A. Lavern and
C. Gignoux; Nucl.Phys. A203(1973) 597; G.L. Payne, J.L. Friar,

B.F. Gibson and I.R. Afnan; Phys.Rev. C22(1980) 823; G.L. Payne,

B.F. Gibson and J.L. Friar; Phys.Rev. C22(1980) 832.

T. Sasakawa and T. Sawada; Phys.Rev. C19(1979) 2035; T. Sasakawa,

H. Okuno and T. Sawada; Phys.Rev. C23(1981) 905.

R.V. Reid; Ann.Phys.(N.Y.) 50(1968) 411.

J. Fujita and H. Miyazawa; Prog.Theor.Phys. 17(1957) 360.

M. Sato, Y. Akaishi and H. Tanaka; Prog.Theor.Phys.Suppl. 56(1974) 76.
C. Hajduk and P.U. Sauer; Nucl.Phys. A322(1979) 329.



8)
9)
10)
1)
12)

13)
14)

15)

16)

17)

18)
19)

125

Souich ISHIKAWA, Tatuya SASAKAWA, Tatsuro SAWADA and Tamotsu UEDA

E.P. Harper, Y.E. Kim and A. Tubis; Phys.Rev. C19(1979) 1450.

T. Ueda, T. Sawada and S. Takagi; Nucl.Phys. A285(1977) 429.

T. Ueda:; unpublished note (1980).

S.A. Coon, M.D. Scadron and B.R. Barrett; Nucl.Phys. A242(1975) 467.
B.H.J. McKellar and R. Rajaraman; "Mesons in Nuclei" Vol. 1l (eds.

M. Rho and D. Wilkinson, North Holland 1979) p. 357.

Muslim, Y.E. Kim and T. Ueda; Nucl.Phys. A393(1983) 399.

H.T. Coelho, T.K. Das and M. Fable de la Ripelle; Phys.Lett. 109B(1982)
255.

T. Sawada and T. Sasakawa; Sci.Rep. Tohoku Univ. Ser. 8, Vol. 3(1982) 1;
T. Sawada and T. Sasakawa; Sci.Rep. Tohoku Univ., (to be published).

M. Moshinsky; Nucl.Phys. 13(1959) 104; N. Austern, R.M. Drisco, E.C.
Halbert and G.R. Satcher; Phys.Rev. 133B(1964) 3; P.E. Shanley; Phys.
Rev. 187(1969) 1328.

A. Messiah; "Quantum Mechanics", John Weiley, New York(1965) Appendix C.
T. Ueda and A.E.S. Green; Phys.Rev. 174(1968) 1304.

M. Ichimura, H. Hyuga and G.E. Brown; Nucl.Phys. Al196(1972) 17.



