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The limiting-amplitude of hydrodynamic models for cepheid
variables is searched by checking the intrinsic growth-rate of the
oscillation derived by the pumping-up. The procedure is scarcely
affected by the initial values. The modulation of oscillation
appeared at the earlier stage may be enhanced by the overtones in
resonance.

Keywords: Stellar pulsation, Hydrodynamic model, Resonance.

§1. Introduction

The hydrodynamic models have been used to investigate the stellar pulsation
since Christy's pioneer work on RR Lyrae starsl). So far hydrodynamic models
themselves have been developed by several authors and the main features of
classical cepheids pulsation have been reproduced precisely. Very recently
A.N. Cox and his collaborators have the DYNSTAR code, Stothers and his collabo-
rators have another code, and the DYN code is used by Davis and his collabora-
tors. Fadeyev and Tutukov have made their own code.

It has been a problem that the possible change of opacities could affect
the properties of models. So it seems difficult to compare directly the
theoretical models with obseryation for evaluating physical and chemical
properties of cepheids accurately without thorough considerations. On the
other hand, the non-linear behavior possibly concerning with resonance has not
been studied so sufficiently except for bump features of models which may be
interpreted as resonance between the fundamental mode and second overtone. SO
in the papers of present series, we shall focus our study on the resonance
phenomenon of the hydrodynémic models for classical cepheids. In the first
paper, we shall describe a technique to search the limiting-amplitude promptly
and discuss the modulation in the maximum kinetic energy of pulsation during a
period briefly. The behavior of models in resonance will be presented in later
papers.
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§2. Models

The hydrodynamic models we used here is one constructed originally by

2) and modified partly by Adams and Castor3). As

4)

Castor, Davis, and Davison
described by Davis, Moffett, and Barnes °, the code has been constructed by
using the non-Lagrangian, continuous rezoning on dynamic zoning method. The
procedure makes the light- and the radial velocity-curves very smooth. Although
convection is ignored in the code it is not so serious for our purpose, because
our study is not intent to compare the theoretical result with observation
directly. The Los Alamos opacities are used in the form of Steliingwerf‘s
analytical expression. The problem caused by the difference between the Los
Alamos ones and Carson's one is beyond the scope of our purpose.

The artificial viscosity expressed in usual von Neuman-Richtmyer's formula
(e.g. see Christys)) is used.

The outer atmospheres are solved by using the diffusion approximation.
Our code works quite well and so no difficulty is found in simulating the
pulsation with the amplitude nearly equal or less than the limiting amplitude,

for classical cepheids.

§3. Intrinsic Growth-rate

The cycle-to-cycle behavior of hydrodynamic model was investigated carefully
by several authors. Christyl) has found that the RR Lyrae pulsation converges

6)

cycle by cycle as non-essential in the course of getting the stable limit-cycle.
7)

smoothly to the limit-cycle and Cox et al. regarded the small changes appeared

Stobie used the pubp up technique to shorten the time for computation, but
the cycle-to-cycle change of the kinetic energy of pulsation was only used to
judge whether the pulsation reaches to the limiting-amplitude or overshootes
it. 1In the present work, we shall study the growth-rate in the individual cycle
carefully.

The total kinetic energy of pulsation K of hydrodynamic models is described
as following:

K = I =ulaM, , (1)
2 i

where uy; and AMi are the velocity and the mass of the i-th shell respectively.

We denote the maximum of K by K The maximum appears twice a cycle, but we

max "’
max only for the case that U(t=2/3) > 0.

In search for the limiting-amplitude, we usually use the pumping up that
u; is multiplied by the factor (ld—ne)”“ at the instant that K reaches the

maximum. For a cycle the pulsation is pumped twice and so the growth-rate of

pick up K

K ax associated with the pumping up procedure is given by n,. We define the

resultant growth-rate n' by the ratio of successive Kmax minus one. In general,
n' is not identical with Ne because the model has the excitation or dumping
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according to the characteristics of model. So we have the intrinsic growth-rate

n defined as
1 +n=(1+n")/Q+n.). (2)

The extremum n at the infinitesimal amplitude is the vibrational or pulsational
instability studied in the linear theory. When we let the model pulsate without
pumping up, ng=0 and then n=n'.

When we find the pulsation with n=0, it is in the limit-cycle. In the
case of dn/deaX> 0, the limit-cycle is unstable, and on the cont'rary,
dn/deax< 0, the limiting-cycle is stable.

Even though Stobie7) and Karpa) used the pumping up technique, they checked
n after putting Ne to zero, i.e. in the state that the pumping is stopped
tentatively. If the diagnostic used in the state of pumping-off will be
applicable in that of pumping-on, we can 'survey n for the wide range of Kmax
promptly. So we shall see the behavior of n accompanied by the pumping and

compare it with the result in the pumping-off case.

§4. Results and Discussion

In Fig. 1 the result obtained from the model E AQL 4A2 of Castor, Davis,

) is described. The physical properties of the model are as follows:
the stellar mass, Mg =1.84x 10 g,
the liminosity, L=1.59 x10% ergs/sec,

and Davison2

the effective temperature, TeFf= 5610 K,
and the chemical composition,
X=0.7, Y=0.28, and 2=0.02.

T T T T T
&
9.0 ~°
' (r>° 7 Fig. 1. Intrinsic growth-rate n. The open
_ { circles combined with solid lines indicate the
E: >° successive results for pumping up. The crosses
E °£:>o show n averaged for the results without pumping.
‘g o< For the case of RIMAX=0.1, n=6.3 and CQ=1.
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The inner boundary of model is calculated by putting the parameter of program,
R1IMAX to be 0.10. This means that the radius of the innermost shell is just
less than 0.10 of the stellar radius. The initial value of uy is given by the
formula,
_ n

ui-uo(ri/R) ’ (3)
where ry is the radius of the i-th shell and u, is the parameter and R, the
radius of the outermost shell. = 6.3 and u°==—10 km/sec are chosen for Fig. 1.
The ordinate is log(Kmax/Ms) where Kmax is expressed in ergs. The abscissa is
the intrinsic growth-rate n. The open circles indicate the growth-rate n for

a cycle with pumping (ne==0.1038). They are combined in order by solid lines

to. indicate the successive results and have the values of Koax in resultant
state. The crosses show n averaged for a number of cycles without pumping
(ne =0).

n with pumping is spread compared with the averaged pumping-off value.
The diagram, however, gives us a clear implication that n is not affected by
the pumping-up procedure in its global appearence. Near the pulsation of
log(Kmax/Ms)=:8.5, n is so close to zero that the e~folding time of K is more
than 30 periods, and near log(Kmax/Ms)==8.9, the e-folding time reaches 230
periods and more. So the search for the limiting-amplitude requires rather
.great computation time unless we use pumping-up.

In Fig. 2 the result of another model,
which has a different parameter R1MAX, is

-

Lol T ]
o |
0<:
Y
K;

illustrated to check the result shown in
Fig. 1. RIMAX of 0.05 is chosen here. The

o0 model has a little smaller radius of the
ot

innermost core for the wave. The difference
of the time required to travel between the
envelopes may cause the different result in
the =K .« diagram. Although the diagram

shows certainly different pattern compared

log (Kmax/Ms)

85l with the former one, the correspondence
between the pumping-on and -off cases is

still held quite well. The modulation

2N

TN VT

(o]
o
nN

appeared in the n-log Kmax diagram will be
discussed later.
We shall study the dependency of n on

8.0 1 1 1
-.02

the initial distribution of u; to confirm
n the adequacy of the technique described
above. First, the index n in equation (3)
Fig. 2. The same as Fig. 1 is changed to check its effect. n=6.0 and
except for RIMAX. 6.6 are chosen in Figs. 3 and 4. The

RIMAX=0.05, n=6.3 and CQ==1. increase of n enhances the amplitude of
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Fig. 3. The same as Fig. 2

except for n.

R1IMAX=0.05, n=6.0 and C,=1.

Q

modulation.
the effect of the initial distribution

General trend of the diagram is, however, unchanged.
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Fig. 4. The same as Fig. 2
except for n.
R1MAX = 0.05, n=6.6 and CQ=1.
Although

of u. should not be ignored, the above

1

technique works efficiently to search the limiting-amplitude and the limit-cycle
oscillation will be found after sufficient numbers of trial oscillation starting

near the limiting-amplitude oscillation.

on the value of Ne-

The shortage of machine time depends

Next problem on which we shall discuss is what the modulation appeared in

the n-log K diagram is.

max

K strictly, so the problem is none other than the modulation in K .

max

similar modulation in K
n in K

computation over 50 periods for the model we used for Fig. 1.
u(t = 2/3) diagram is illustrated in Fig. 5.
to the x - x, phase-plane diagram in the oscillation theory.
the three-period modulation just like the modulation in n-log K

was found for model 4e by Stobie™’.

The modulation shows the cycle-to-cycle change of

max A
We have tried

The r(t=2/3) -
The diagram is apparently similar

9}

The diagram shows

iagram.
max diagr

The behavior for each three cycle is quite similar, so the limit-cycle is
approximately established involving nearly three periods.
The eigen-period of the model used in the present study is tabulated in

Table 1 with both 0.10 and 0.05 for R1MAX.
model does not seriously affect the periods.

periods is checked as follows:

The difference in the depth of
The commensurability in the
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4Pl/3P0 = 0.99818, 1.00342,
5P2/3P0 = 0,99348, 1.00315,
6P3/3P0 = 0.95959, 0.97154.

PHASE PLANE E AAQL 4R2

50. T . .
300 - -
Fig. 5. Phase-plane diagram
v for the shell of 1=2/3. It
Z 10.F - comes from the results without
: pumping which are indicated by
5‘_10. i i a cross near log(Kmax/Ms) =8.9
o in Flg. 1l
-
w !
> N z
-30. ‘ -
-50. a“ 1 . 1 "
4.2 4'6 S.O 5'4

RADIUS (10#*=12 CM)

Table 1. Eigen-periods of the models.

R1IMAX of model 0.10 0.05
Py 619.208 620.587
P, 463.563 467.031
P, 369.102 - 373.526
Py 297.093 301.464

*the period is in 1073 sec.

Two values in the right-hand side are the ratios for RIMAX=0.10 and 0.05,
respectively. The result suggests that resonance among the fundamental mode,
the first overtone, and the second overtone may be realized. The modulation
in K .. which has the period of 3P, coincides with these resonance.

To conclude whether the modulation results from resonance or not, we
should study the models with in- and off-resonance. Some trial shows that the
remarkable modulation is yielded only in the model with in-resonance. Details
of the study will be reported in the future paper.

In Fig. 6, the n-Kmax diagram is shown for the model with n=6.3 and CQ==4.
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The difference between Figs. 2 and 6 is

T L that in the constant CQ of the artificial
viscosity. The increase of the artificial
viscosity makes the limiting-amplitude
ool 4 smaller and the modulation to be less
significant. The enhancement of the first
b overtone may be generally affected by the
artificial viscosity term. This should be
z:n checked to study the multiperiodicity in

f pulsating stars.

tog {Kmax/Ms)

% - In conclusion, the intrinsic growth-

;» rate calculated from. the oscillation with
‘K;;>° pumping is useful to search the limiting-
<] amplitudes of hydrodynamical models.
o Although the modulation in n probably

caused from resonance is appeared, general

a‘o 1 1 ] | . 1
-.02 o 02 trends of n coincide with the growth-rate

without pumping. By using the present
technique we shall investigate the proper-
Fig. 6. The same as Fig. 2 ties of hydrodynamical models, especially
except for CQ. the effect of initial distribution of the
RIMAX = 0.05, n=6.3 and CQ=4. velocity.
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