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Resonance Phenomenon in Classical Cepheids
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To investigate resonance phenomenon in classical cepheids, the
non-linear radial oscillation of stars is studied based on the
assumption that the non-adiabatic perturbation is expressed in terms
of van der Pol's type damping. Two- and three-wave resonance in
this system is applied to classical cepheids to describe their bump
and double-mode behavior. The phase of bump and the depression of
amplitude are explained for bump cepheids. The double-periodicity
is shown by the enhancement of the third overtone in three-wave
resonance. Non-linear effect on resonant period is also discussed
briefly.

Keywords: Variable stars, Classical cepheids, Bump cepheids,

Double-mode cepheids, Resonance theory.

§1. Introduction

The double-mode cepheid is still a problem of the pulsation theory of
variable stars. However Stellingwerfl) once succeeded in showing the possibil-
ity of double-periodicity by non-linear hydrodynamical calculation, their
2) and A.N. Cox
The simultaneous excitation of two modes has been supposed as the result of

period-ratio has not been solved yet (see reviews by J.P. Cox 3)

).
resonance4) but the non-linear simulation by Simon et al.s) does not succeed

in showing the double-mode behavior for likely resonant model envelopes. The
calculated period-ratio differs from the observed one, and moreover the
resonance distance presented by the linear theory is not barely equal to zero
for models with evolutionary mass, even if chemically inhomogeneous envelopes

6)

are assumed. Concerning with the resonance problem the bump cepheid is also
interesting because their bumps are likely evidence for the resonance between
the fundamental mode and the second overtone mode as pointed out by Simon and
Schmidt. )

The resonance theory in oscillation gives several interesting results, so
it seems necessarily to study the multiple-periodicity in the pulsating stars
in view of the resonance. In the present paper, we use revised expressions

6)

Pol's type damping force is assumed to describe the self-excitation following

presenting the stellar radial oscillation in our previous paper. Van der
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Krogdahl.s)

analysed as well as the phase-difference between enhanced modes. The effect

The effect of mode-coupling on the amplitude of oscillation is
of higher order terms upon the period ratio of maximum resonance is also
discussed. It seems very important to study the stellar pulsation by using

the resonance analysis.

§2. Equations for Coupling Oscillation

2-1. Coupling coefficients
6)

In our previous paper, we derived non-linear and non-adiabatic equation

of stellar radial pulsation as follows:

; 2 . 2g,a°r
> - .2rr oP _ _r° JL(P) y—0 = (1)
2 2a 2 da 3
ol o r

Equation (2) of our previous paper, the equation of continuity, should be
written up to the second order of displacement f(a,t) =r(a,t) -—a as follows:

p/py = 1 - dive - 2(g/a)dive + 3(z/a)? + (divi)?. (2)
The operator div means a~2(3/3a)a? through the present paper. We used the
expression neglecting the second order terms of the equation of continuity.
For this reason, equation (6) in our previous paper has to be revised. 1In the
adiabatic case the pressure is written in the following form.
P/Py = 1 - ydive + 3y(g/a)? - 2y(g/a)divi + (1/2)y(y+1) (divz)?. (3)
Using this equation we have
LX) a . . . — _ i . . hd
r - (l/po)aa(YPOdlvc) - 4g0c/a = (l/po)aa[(y+l)yP0d1vc divz]
K3 .. . K .
+ (4/00)[(C/a)aa(YP0leC) + (C/a)aa(YPoleE)]
k) .= . Qs .
+ (2/04) [55(z/a) yPydiv g +5-(z/a) YP div L]

- (6/0,) [35 (YR ci/a?) - 4gii/aZ, (4)

instead of equation (6) of the previous paper. Non-adiabatic terms are ignored
in this expression.

In the present paper, we describe detail to derive the coupling coefficient
because of its importance although it seems not so complicated. We put here
that f(z,a) is the right hand side of equation (4). 1In the case of f(z,a) =0,
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equation (4) is Sturm-Liouville's differential equation. Putting Em the
eigenfunction of order m of this case, we set the solution g of equation (4)

in the following form:
cla,t) = gqm(t)im(a)- (5)

We used that expression in the previous paper although it is not exact. We

use it again in the present paper. Then we can expand f(g,a) by function gm.
£a) = 232G a (-(1/pg) g5 [ (v+1)YR(Aiv £,div €]
+ (8/04) [(E/a) s (vPydivE ) + (E,/a)F0 (YPdivE )]
4 . d .
+ (2/p) [35(E,/a) VP div E + 35 (Ep/2) YR div E ]
(6/00) (YR E £ /a%) - 4ggE € /a%). (6)

Taking into account equation (6), we can derive the following equation for

each q_.
s
. 2 . _
I(qq + 0ldg)Eg = £(a), (7)

where o is an eigenvalue associated with the eigenfunction Eg- Multyiplying
this equation by 4ﬂa2pogsda, integrating over the radius of the star, it

follows from the condition of orthogonality that

qg + © 2§ = I%rzloszC(s;m,n)c'qmqn. (8)

Here we define the coupling constant as follows:

M
C(s;m,n)G;.[

M
el an - [0 (=(E/pg) &1 (v+1) ¥R div £ div £ ]

+ (48 /pg) L(E /)AL (YR@iv £ ) + (£./2) 5 (YP(iv E )]
+ (28 /py) [ (£, /a) YRAiV £ + 55 (£ /a) YP(div € ]
- (6E_/0)) 3 (YR EuE/a%) - 4ggE EpE,/a?dn, (9)

where
dm = 4nazpoda. (10)

M
The integral OSZJ gszdm is the oscillatory moment of inertia. Using the partial
integration taking into account the condition that P0==0 at the surface and
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£ =0 at the centre, we have

M
. 2 2
C(s,m,n)cs f gs dm

M
[ty sogaive aiv e aive
Q 0

- 2v(Py/eg) [div £ div(E £ /a) + divE div(g g /a)
+ dive div(g £ /a)] - 4g,¢ £ £ /a’}dm

M
= f {(y+1)y(Po/p0)divgmdiv gndiv £g
0 .

2Y(Py/py) (& /a)divE (2div e - 3£ /a)
+ (g /a)divE_(2dive - 3¢ /a)
+ (gs/a)divgm(2div£n - 3g /)]

- 490€m€nis/a2}dm- (11)
The exponent of the denominator of the last term in the integrand of the right
hand side of equation {9) in our previous paper should be read as 2. It was
caused from a carelessness in reading the proofs. The change in the equation
of continuity does not affect this exponent. The expansion or contraction of
a layer in a star caused from the oscillations of mode m and n affects the
oscillation of another mode of order s. C(s/m,n) is used to analyse the
resonance of stellar radial oscillation through the present paper.

2-2. Two-~wave coupling

In the present sub-section we consider two-wave coupling by using the
coupling coefficient defined above. We have the following two equations
including damping term K.

?;’i+ciz (1-(1/2)c(izi,i)qy - c(i;i,j)qj)qi—Kic}i (1/2)0i2C<i;j,j)qj2 ' (12a)

L 2 - CO . - t e s . - »
q4 + 95 (1 (1/2)C(J,J,J)qj C(J.l.-J)qi)qj K.q.

20(9:i,1i)qg.2
595 (1/2)0j C(isi,i)qy”. (12b)

Although the expression of damping term is subject to the conclusion of careful
study on non-linear and non-adiabatic behavior of outer envelopes of stars, we
8) It is probable that the
damping force could concern with the total amplitude of oscillations when two

choose here van der Pol's one following Krogdahl.

or more modes are enhanced simultaneously, because the result of non-linear

calculation showed that the instability seems to be independent on the mode

9)

of pulsation. We choose, however, here van der Pol's type force which

depends on the amplitude of only its own.mode, for simplicity. So we have
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2 2
2a?), (13a)

~
|

Ui(l'a

K.
J

uj(l-aqujz). (13b)

Our interests are focussed to the problem of two-wave coupling for the
case that the higher mode, say, j-mode, has frequency near superharmonic one
of the lower mode, say i-mode. In this case, some terms of equations (l2a,b)

can be neglected, and we have

. 2 - 2 - . _ b =
q; + 05793 0y C(l,l,j)qiqj K;q; 0, (14a)
9. + 0.2g. - K.q. = (1/2)0.2C(j;i,1)q;?. 14b
a3 5 95 595 (1/2) 5 (3s;i,i)ay ( )
Putting q; and qj as follows:
q; = aiCOS(uit + bicos((wj —(ui)t + ¢i), (15a)
qj = ajcos:ujt + bjcos(Zwit + ¢j), (15b)

and comparing the amplitude of c05(uit, sin(ujt, cos((mj-wi)t-+¢i), sin((mj-wi)t
+ ¢i), COSmjt, sinuﬁt, cos(Zwit-+¢j) and sin(2wit~+¢j) in equations (15a,b),

we have equations for ajs bi’ aj and bj' including Wy wj' ¢i and ¢j.

(0i2 - u)iz a; = (1/2)0 C(i5i,3) (aibjcos ¢j - biajcos 95) s (16a)

~ujwia;[1- aiZ (aiz /4 + bi2 /2)] = (1/2) oiz C(i;i,3) (,aibjsin ¢j - bya;sin¢;), (16b)

3
[oiz-(mj-wi)zlbi = (1/2)ci?C(i;i,j)aiajcos¢i . (17a)
uibi(wj -wy)[1- aiz (aiz/z +bi2 /4)] = (1/2)0i2C(i;i,j)aiajsin L (17b)
(ojz--wjz)aj = (1/2)0j2C(j;i,i)aibicos¢i, (18a)
-ujajwj[l—ujz (aj2/4+bj2/2] = (1/2)0j2C(j;i,i)aibisin o0 (18b)
(cj2 —4wi2)bj = (1/4)0j2C(j;i,i)ai2cos cbj, (19a)
2ujbjwi[1-aj2 (aj2/2+bj2/4)] = (1/4)oj2c(j;i,i)ai251n ¢j. (19b)

The order of magnitude of the maximum value for a; and bi is ai'l and

that for aj and bj' aj‘l. So equations (16a)-(19b) have two important

parameters, i.e.
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Aiij = a5 2a, 1C(4; 1.])/(plwlalaj), (20a)
= 2
Ajii J 2q, C(J,l 1)/(pjwjal ). (20b)

Parameter Ajii denotes efficiency to excite the forced oscillation of j-mode
by the principal mode. 1In the case Ajii:»]” we can expect that the forced
oscillation might be enhanced strongly in the vicinity of rescnance centre and
the free oscillation of j-mode might be strongly suppressed. In the case

Aiij > 1, the feed back of higher mode on the principal mode is weak, and so
we obtain biz 0 from equations (17a,b).

Near the resonance centre we can generally expect that b;=0 and a,=0

because of the synchronization. Eliminating 51n(b in equatlons (16b) and (19b),

we can derive the following expression in this case.
—(ui/0i2 )C(j;i,i)ai2 [1-a,? (aiz/4)] = (411]-/03-2)C(i:i,j)bj2 [l-OLj2 (bj2 /4 1. (21)
Then we have
(ui/oiz)aiZC(j;i,i) (a;? - 2/a;2)2% + (4uj/0j2 )ajZC(i;i.j) (bj2 - 2/0Lj2 )2
= (4u;/0,%)a;72C(F5i,1) + (16uj/0j2)aj‘zc(i;i,j)- (22)

Because C(i;i,j) and C(j;i,i) have the same sign, the following expression is
derived from equation (21).

(aZ -4/a?) (b2 - 4/a?) < 0. (23)

The meaning of this expression is that the increase of the amplitude b from
the limit-cycle value Z/a should be compensated by the decrease of the

principal amplitude a. from 2/0ti and vice versa. Equation (22) expresses an

i
ellipse on the aiz--bj2 plane, and then the maximum and minimum values of bj2

are found to be as follows:

2 2 . 0 »
;050 C(j;i,1)
by =—%[11{1+ 11 12, (24)
aj 4uj0i ai C(i;i,J)
as ai2==2/ai2. The amplitude of resonant oscillation in j-mode will increase

while oy is small and/or C(j;i,i)/C(i;j,j) large. The fact that b has its
maximum is a feature characterized in the resonance of self-exc1t1ng system.
In the case of oj-—Zoi and w; =04y ¢j is necessarily equal to -n/2. So

we have a relation from equations (16b) and (19b) as follows:
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2 _ 2 = 2 s.a s ) .2 i.i. )b, 271,
(bj 4/(1j )bj oj/(ijaj )C(3,1,1)1(201/(plul )C(l,l,])bj-+4/al 1 (25)

A root of this equation is greater than 2/0Lj because the right hand side is
positive with bj > 0. Therefore the suppression of aj is always kept at the

resonance centre.

2-3. Three-wave coupling

Three-wave coupling is formulated like as the two-wave case studied above.

In general, we have

h} + ofl(l-(l/Z)C(i;i,i)qi - C(i;ifj)qj - C(i;i,k)qk)qi - Kiqi

= 02 ((1/2)C(i:3,3)as? + Clisd R q + (L/2CEk g, (26a)

"‘+ '2 _ .;.,. .- .;.’. ._C.;.k -_K-..
qy + 93°(1-Clisi,3)ay - (1/2)C(3:3,3) 9y (3:3.K)qp)ay 395

= cjz((l/z)c<j;i,i>qi2 + C(isikIqga + (1/2)c(Isk,k)aq?), (26b)

2 - .1 - . - . - 3
qk + ck (1 C(klllk)qi C(kljlk)qj (1/2)C(k,k,k)qk)qk quk
= 02 ((k/2)Clksi, i) gy + Clk;i,I)azay + (1/2)C(k:3,3)a48) . (26¢)
In this case our interests are focussed to the problem of three-wave coupling

in the vicinity of three-wave resonance, i.e. okzzoi-rcj. Thus, some higher
terms can be neglected and we have

.q.i + Oizqi - Kiéi = Oizc(ifjrk)qjqkr (27a)
9. + 0.2q. - K.q. = 0.2C(5;1i,k)q;

95 5 95 i95 3 (3:i,kK)a;qp. (27b)
q + ol - K = 02 Clkii,d)a;ay. . (270)

The damping term Ky is chosen as K, and K.,. Then we have

= -—q.2g.2
Kk uk(l s gy ). (28)
Solutions of equations (27a)-(27c) are obtained as the first approximation

by expressing q; qj and q, as follows:

q; aicosuﬁﬁ + bicos((wk-wj)t + ¢i), (29a)

q. = ajcosuﬁt + bjcos((wk-wi)t + ¢j)’ (29Db)
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q = a, cos wkt + bkcos((9j1~wi)t-+¢k). (29¢c)

The first terms of the right hand side of equations (29a)~-(29c) denote free
oscillations and the second ones forced oscillations respectively. Comparing

coefficient of each mode, we can derive the following equations for a ., aj, a .,
bi’ bj and bk including wi, wj' mk, ¢i' ¢.

j and ¢k.

1

2 _ .2 — 2 (.
[o. W, ]ai (1/2)0i C(l,],k)(ajbkcos¢k-+ akbjcos¢j), (30a)

- 2 2 2 — ) - _ . .
uiwiai[l ai (ai /4+bi /2)1] (1/2)0i C(i;3j,k)( ajbk51n(%{+ akbj31n.¢j), (30b)

[oiz - (w, - wj)z]bi = (1/2)0i2C(i;j,k)ajakcos ¢ (31a)
My (wy = wj)bi [1- ai2 (ai2/2 + bi2/4)] = (1/2) ci2 C(i;j,k)ajaksin Oy v (31b)
[oj2 - wjz ]aj = (1/2)cjzc(j;i,k) (a;b,cos ¢, + a;b.cos ¢,), (32a)

ksin ¢k-+ akbi51n ¢i), (32b)

- 2 2 2 - 2 CA] -

2 _ - 2 _ 2 s
[oj (wk mi) ]bj (1/2)0j C(j,l,k)aiakcos¢j, (33a)
_ 2 oy 2 2 2 - 260044 ;
uj(wk wi) bj[l aj (aj /2+bj /4)1] (1/2)0j C(J,l,k)aiakSlni¢j, (33b)
[ckz-—wkz]ak = (l/2)0kzc(k;i,j)(ajbicos¢i_+ aibjcos¢j), (34a)

a1 = ak2 (ak2/4 +bk2 /2)1 = (1/2)0k2C(k;i,j) (—ajbisin ¢, - aibjsin ¢j) . (34b)
[ok?- - (mi+mj)2]bk = (1/2)ok2c(,k;i,j)aiajcos Opr (35a)
uk(wi+wj)bk[1— ak2 (akz/z +bk2/4)] = (1/2)Ok2C(k;i,j)aiajsin O- (35b)

Equations (30a)-(35b) have three important parameters, i.e.

- 2 -

Aijk = Oi aiC(l,j,k)/(pimiajak), (36a)
= 2 1+ 1

Ajik Oj ajc(j,l,k)/(ujwjaiak), (36b)
= 2 3 |

Akij Ok akC(k,l,j)/(ukmkaiaj). (36¢)

These parameters determine strength of the influence of the other two modes on
each oscillator. When oscillatory moments of inertia satisfy the following
relations,



114

M M M
2 2 2 2 2 2
Gk L)gk dm > Uj L gj dm and Gi L Ei dm, (37)

coupling coefficients should be as follows:
C(k;i,3) »cC(j;i,k) and C(i;j,k), (38)

because of symmetric properties in expression of the coupling coefficient.
Although we have no exact knowledge on o aj and Oy defined above, we may

kij > Pijx *
Ajik' If oy is sufficiently small compared with o, and aj, we may also suppose

suppose that relation (37) among coupling coefficients derives A

the strong coupling on k-mode oscillator from i- and j-mode oscillators. 1In
this case a, could be suppressed at first by the synchronization with increas-
ing by . Then b, and bj diminish simultaneously. The scheme of resonance is
that the free oscillations of i~ and j-modes enhance the forced one of k-mode
for the case Wy ® wi4-wj. Eliminating sin<h( in equations (30b), (32b) and
(35b), we derive equations as follows:

2 2 TR 2 _ 2 y2 2 2 s . q 2 2 y2
Hywias /(0 Cli:3,k)) (af 2/a°) ujwjaj /(oj C(J,l,k))(aj 2/ocj )

_ 2 02 (4. - 2 42 0(4.4
= 4y w;/(02a” C(i;3,k)) 4ujwj/(0j oy C(j:i,k)), (39a)

piwiaf /(ci2 C(i;j,k)) (ai2 - 2/ai2 )2 + y (wy + wj)ockz /(ck2 C(k;i,J) (1ok2 -2/042) 2

= 4“1‘*’1/(012 aiZ C(i;j,k)) + 4uk(wi+wj)/(0k2 ozkz C(k;i,j)). (39b)

Equation (39a) indicates the hyperbola on the af -af plane and equation (39b)
presents the ellipse on the af —lﬁf plane. Equation (39a) means that the
decrease of a; from the limit-cycle amplitude 2/ui is necessarily accompanied
by the decrease of the amplitude of another driving mode aj from 2/aj. We can

derive an expression similar to equation (39b) as follows:
2 2 Lo 2 2 _ 2
“k(‘”i“"j)“k /(0 C(k;1,3))by” (b - 4/a,%)

— 2 2 3 e 2 2 2
= iniai /(01 C(lrjlk))ai (4/0".1'. ai )y (40)

from which the following relation between af and bf is found.

(ka - 4/0Lk2 ) (aiZ - 4/a12) < 0. (41)

This expresses that the increase of bk should be accompanied by the decrease

of ay like as the result in the two-wave coupling. The scheme described here
6)

differs from that stated in our previous paper. We presumed the existence
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of unstable free oscillations of i- and k-mode and expected the enhancement of
forced oscillation bj of the frequency Wy =Wy by the three-wave resonance.
This may be appear in the case of Aijk‘« Ajikﬂ'Akij' It depends on the
relation among these three parameters which scheme works in actual star.
These equations will be more precisely investigated on models of classical
cepheids in later section.

We must mention here an interesting relation about frequencies. In the
synchronized case, we can derive the following equations by eliminating cos ¢y
in equations (30a), (32a) and (35a).

2 2 LR 2y 2 2 s . 2 = 2 s .S — 2 TR
a;f w®/(C(i3,k)0;%) ay wg /(C(J.l.k)Oj ) = a; /C(i;],k) aj /C(3;:;i,k), (42a)

and
2 42 e 2y - p2 2 ei s 2
aj wr/(C(i;3,k) o) by (wi-+wj) /(Clk;i,3)o)°)

= a{Z/C(i:j,k) - bfz/C(k;i,j). (42b)
These express the hyperbola on the wi—wj plane and the wi—(wi-+mj) plane
respectively. The crossing point of two curves determines wy and wj with
given aj aj and bk‘ Both gradients dwj/dwi and d(wi-+mj)/dmi are rather steep
in the case that C(i;j,k)aj2 « C(j;i,k)ai2 and C(i;j,k)b? « C(k;i,j)aiz. So
wj has the tendency to leave from oj as wj; remains to be close to o5 Because
equation (42b) passes the point

w? /02 = (1-C(i;j,k)b2 /(C(k;i,J)ad))/(1-C(i;],k)b2 /(C(k;i,I)o 2 a?))

with wj==0. Curves of equations (42a) and (42b) on the wi—wj plane crosses
close to the point w; =0y with mj==o. in the case as follows:

1- C(i7]lk)bk2 /(C(k;i,j)aiz )

1 - cliij,kaf/(cirika?) < . (43)
l-C(i;j,k)bkz/(c(k;i,j)aizokz
This is almost generally satisfied by the condition
af /C(3iik) » bl /Clkii, ). (44)

Then we have the frequency of j-mode wj which is greater than Gj while

i
that the strongly enhanced bk is realized with the frequency near oi4-0j only

in the case that C(k;i,j) > C(j;i,k).

ok-<cj-+0. and vice versa. The condition (44) is important because it means
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§3. Effect of Higher Order Terms

3-1. Single-mode oscillation

We treat the effect of higher order terms in resonance problem in the
present section. In the first place we consider a single-mode case by using

the approximation discussed in previous section. Then we have

. 2 _ . : _ - _
qg + Og (1 C(s,s,s)qs)qs qus 0. (45)

van der Pol's type damping force is also chosen. So we have

2

K = us(l - ag

s ql ) - (46)

Mg is the negative damping-constant in the linear approximation. us/os for
classical cepheids is estimated at 1072+ 1073 by summarizing recent numerical
calculation.g)

The differential equation including van der Pol's type term is well
studied in the oscillation theory. KrOgdahlg) studied differential equation
similar to equation (45). The asymmetry appeared in the solution of the
equation having van der Pol's term is not similar to the variation observed in
real cepheids. Krogdahl's calculation have confirmed the general trends of
the solution of this equation. As suggested by Ledoux and Walraven,lo) Krogdahl's
asymmetry is not significant in the case us/oS « 1. So we may use van der Pol's
type term for studying the asymmetry of cepheid variables. C(s;s,s) is, in
general, positive for the polytropic gas spheres (see Appendix). This leads
the asymmetry of solution agrees with the result of non-linear study of pulsa-
tion of gas spheres and also with observed one.

We put here the solution of equation (45) as follows:

qg = a + a,coswt + a,cos(2wt + V). (47)

0 1 2

Then we have

w? = o; [1 - (1/2)C(s;s,s) (23, + a20051p)], (48a)
-uswal[l - asz al2 /41 = (1/2)ch2 C(s;s,s)azsin W (48b)
a, = (1/4)C(S;S.s)a112 ' (49)
[(-4m24-082)/052 - C(s;s,s)ao]a1

= (1/4)C(s;s,s)a12c051p - (usmusz/cgz)aoaf siny, (50a)
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(2ugw/ofa,ll - a2a? /2]

= . 2 o 2 2 2
(1/4)C(s,s,s)a1 siny + (psmus /GS )aoa1 cos Y. (50b)
Frequency w is determined by equation (48a). Equation (49) gives ag,-. The

amplitude a, and phase ¥ of harmonic mode are expressed by equations (50a,b).
Equation (48b) determines the amplitude aj, which we express with the stellar
radius as a unit. So, a, and a, are of the second order, therefore, from

equation (48b), we can derive an expression as follows:

2~ 2 [
a;” = 4/as . (51)

This relation is important to estimate the quantity Oge On the assumption that
a; is given by the approximation (51), we have that the left hand side of

equation (50b) is nearly equal to (—2usw/0;1)a2. In general, the relation

|4uswa; a /(02 C(sis,s)) | <<1 (52)

is likely satisfied, and for the case of wx0og, a,, a, and y are given

approximately in the following form.

a, = (1/4)C(s;s,s)af , (53a)

a, » (1/12)c(s;s,s)af (53b)
and

Y oz -7, (53¢c)

Equations(48a)-(50b) are based on the similar idea to Eddington's approx-

11) 12) carried out numerical

imation to study non-linear oscillation. Kluyver
calculation by using this approximation for a polytropic gas sphere with
Y=1.43. Values of az/al2 calculated from her table are close to -4.617. It
corresponds to the value of 55.4 for C(s;s,s) in our study. The value of
C(s;s,s) calculated by the equation (11) of present paper is 2.38 for this
case. The difference between our value and hers indicates that between our
method and hers. Equation (48a) gives the correction of frequency caused from
the non-linear effect. Combined with equations (53a)-(53c), the period is

found as follows:
w? = o2 (1 - (5/24)C(s;s,s)2a12). (54)
Non-linear period given by the present approximation is also larger than linear

one in accordance with the conclusion confrimed in recent stellar pulsation

theory. The increase in periods depends on the value of self-coupling
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coefficient C(s;s,s) and the amplitude a-

3-2. Two-wave coupling

We shall study here the effect of non-linear terms of the principal mode

on two-wave coupling described in section 2-2. We assume that a, and

a,
i0’ "i2
a. are of second order in the following equations and bi and‘bj of first order

because of its significance. Put oscillations as follows:

qa; = aj, + aicosuﬁﬁ + a; cos(2wit-+w) + bicos((wj-wi)t-+¢i), (55a)

i 2

., = a,cosw.t + b.cos(2w.t+¢.). 55b
95 37O 95 jeos (2wt + ¢ 4) (35b)
Insert these expressions to equations (12a,b). Then we have
- 2 2 - ... .
[ W +o0/ (1 (1/2)C(1,1,1)(2ai0-|-ai2cosw))]ai

= (l/2)0i2 c(i;i,3) (aibjCOS ¢j + ajbicos $5) (56a)

[-ujw, [1- ai2 (ai2 /4 +bi2 /2)1 - (1/2)0i2 C(i;i,i)a;,sinvla;

= (l/2)oi2 C(i;i,j)(aibjsin ¢j - ajbisin $5) (56b)

a;o = (1/4)[c(izi,i)(af +b2) + C(i;3,3) (aj2 +bj2 )1, (57)
[-4wi2 +oi2 la;, = (l/4)ci2 C(i;i,i)ai2 cos ¥, (58a)

2u wa;, = (1/4)0i2 C(i;i,i)ai2 sinvy, (58b)

[—(wj —wi)2 + "12 (L-c(iz;i,i)a; ) 1b, = '(1/2)0i2C(i;i,j)aiajcos o0 (59a)
“i(‘"j -w;)b, (1~ oziz (ai2 /2+bi2 /4)1 = (1/2)oi2 C(i;i,j)aiajsin LI (59b)
[—wj2 +cj2 (L-c(isi,dagglay = (1/2)crj2 C(j;i,i)a;b;cos ¢,, (60a)
—ujwjajll—ajz (aj2 /4 +bj2 /2)1 = (_1/2)0j2C(j;i,i)aibisin P (60Db)
,[—4mi2 +oj2(l—c(j;i,j)ai0)]bj = (1/4)03.2 C(j;i,:i.)aiz cos ¢j, (6la)
Zujwibj [1- aj2 (aj2 /2 +bj2 /4)] = (1/4)03.2 c(j;i,i)ai2 sin ¢j. (61b)

Equation (60b) expresses the suppresion of aj.by the synchronization. 1In the

case that the free oscillation (mj) is pulled in the resonant one (2wi), the



119

oscillation (ﬂﬁ -mi) is pulled in the oscillation (wi) simultaneously, so we
have

aj = bi =0, and ¥ 2 7. (62)

At the centre of resonance ¢j should be -m/2 and then frequency Wy is

2 ~ 2 - TR . -
wf ¥ o [1 (_1/2)C(1,1,1)(2ai0 aiz)]' (63)
with

a

o = (/)ctizi, a2 + (1/4)C(i53,3)bs2. (64)

Because the condition for the resonance centre is that the left hand side of
equation (6la) is zero, the condition,

cj/oi = 2[1 - (L/4)C(i;i,1i)(2a;,-a;,) + (1/2)C(3:i,3)a; 41, (65)

is that for the resonance centre. The non-linear effect on the resonant period
is of the same order to the non-linear effect on isolated oscillation.

3-3. Three-wave coupling

We choose here the following oscillation for our three-wave coupling.

q; = aj, * ajcoswt + aizcos(Zwit-+¢), (66a)
qj = ajcos<ujt, : (66b)
q = bkcos((wj-Fwi)t + ¢k). (66cC)

In these equations, the free oscillation of k-mode is assumed as suppressed
already and the resonant forced oscillations of i- and j-modes are disappeared
too. Then we have

[-wi2 + oiz (L-(1/2)C(disi,i) (2a,,+ a,,cos ¥)Ja;

= (1/2)0i2 C(i;j ,k)ajbkcos e v (67a)
- - 2 - .' . . .
[-u0;(1-a2a?/4) (1/2)02 C(i;i,i)a;, sinplay

= (1/2)oi2 C(i;j,k)ajbksin by (67b)
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a;g = (1/4)[C(i;i,i)af +C(_i;j,j)aj2 +C(i;k,k)bk2 1, (68)
[-4wi2 +oi2 ]ai2 = (1/4)0i2 c(i;i,i)ai2 cos §, (69a)
2u wia,, = (1/4)oi2 c(j.;i,i)_ai2 sinvy, (69b)
[—wf 4—0; (1--C(j;i,j)ai0)]aj = (1/2)of C(j;i,k)aibkcos Py (70a)
—ujmjaj[l—ajz aj2 /41 = (1/2)oj2 C(jsi,k)a;bysin ¢y, (70b)
SCH +wj)2 + 0k2 (1-c(k;i,k)a; )by = (l/2)ck2C(k;i,j)aiajcos Opr (71a)
uk(wi+wj)bk[l-—ak2bk2/4] = (1/2)0k2C(_k;i,j)aiajsin Oy (71b)

Following previous analysis we have three equations for frequencies.

“’iz = 012 [1-(1/2)c(izi, i) (2a;,-a;,5) ], (72a)
wjz = on [1-c(3si,dagyl, (72b)
(wi+wj)2 = 0k2 [1-c(kii,k)a;ql, (72¢)

where cos ¢k==0 is assumed. The resonance condition,
(ci-+oj)/ok =1 + (1/2)[oi/(oi+-0j)c(1;1,1)(aio-—aiz/z)
+ oj/(ci+0j)C(J;1.J)aiO-C(k;l,k)aiol, (73)

is adequate in this case. Then the resonance distance for the non-linear
resonance centre is as follows:

d(i+j;k) =1 - (Gi -+0j)/0k = —(1/2)[Oi/(oi-kcj)c(i;i,i)(aio-ai2/2)
+ oj/(oi~+oj)C(j;i,j)aiO-C(k;i,k)aiO]. (74)

The non-linear effect is not so great while coupling coefficients remain in
small values.

§4. Application to Classical Cepheids

4-1. Coupling coefficients

For applying the resonance theory to classical cepheids, we must calculate

coupling constants and estimate other parameters appearing in resonance
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equations. So we should construct model enyelopes first. The theory of
stellar interior is well studied for a few decade, so that the masses of
classical cepheids are expected of those derived from the eyolution theory.
Recently studies on the mass of cepheids are summarized by A.N. Cox.3) However
it remains some problems concerning the accuracy of distance modulus and the
scale for the effective temperature, it seems that the difference between
evolutionary masses and those derived by using the pulsation theory is not so
great for single-mode cepheids. In the case of bump and double-mode cepheids,
the situation is quite different. For these stars masses derived from the
standard evolution theory appear not to melt into the pulsation theory without
any modification of physical or chemical properties in model envelopes.

13) we choose

Following a survey about the positions of possible resonance,
the resonance between the fundamental mode (0) and the second overtone mode
(2) , and that among the fundamental mode (0), the first overtone (1) and the
third overtone (3) in the present section. We can show two series of model
envelopes at the cepheid instability strip. They are constructed by using

Stellingwerf's opacity formulal'l4)

for the chemical composition of X=0.7 and
Z=0.02 through envelopes and the mixing-length theory for convection. The
ratio of the mixing-length to the pressure scale-height is one. The charac-
teristics and pulsation properties of models are tabulated in Table 1. The
oscillatory moments of inertia calculated by adiabatic pulsation function are

also tabulated in Table 2. The models of a series are constructed by using

Table 1. Characteristics and pulsation properties of model envelopes
at the cepheid instability strip.

Model 1 2 3 4 la 2a 3a 4a
M/M0 5.176 6.714 8.710 11.30 3.1056 4.0284 5.226 6.780
log(L/Le) 2.958 3.358 3.758 4.158 2.958 3.358 3.758 4.158
Tefs (K) 6155 5850 5561 5286 6155 5850 5561 5286
Po(in days) 2.1493 4.6394 10.1845 22.8645 2.9844 6.6009 14.9483 34.9923
01/00 1.312 1.342 1.374 1.427 1.368 1.403 1.479 1.635
02/00 1.626 1.673 1.775 1.954 1.756 1.892 2.094 . 2.393
03/00 1.956 2.062 2.232 2.484 2.205 2.401 2.700 3.161

Table 2. The oscillatory moment of inertia for model
cepheids. (in unit of 10“ cm2gr sec~2)

Model 1 2 3 4 la 2a 3a 4a
002 I, 0.29 0.35 0.47 0.66 0.03 0.05 0.08 0.13
012 I, 0.09 0.14 0.25 0.60 0.01 0.03 0.09 0.28
022 I, 0.05 0.12 0.38 1.19 0.02 0.06 0.17 0.53
032 I, 0.05 0.18 0.55 1.81  0.02 0.08 0.29 1.07
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evolutionary masses and those of another series are calculated by using 0.6
times masses. The resonances (0+0,2) and (0+1,3) are expressed by squares and
triangles on each sequence in

the period-period ratio diagram
(Fig. 1). In accordance with
075 the result of several investi-
gators (e.g. see the review by
o A.N. Cox3)), the evolutionary
%_ mass is too large to fit the
* % XX Mev observational data of double-
o070k - x%x mode cepheids expressed by
X crosses in Fig. 1.
The coupling coefficient
.6 Mev is calculated by using equation
(11) which is derived on the
&5 SO ﬂ5 assumption (5) that the pulsa-
log Po tion function in real cepheid
is well expressed by the
Fig. 1. Period-period ratio diagram for adiabatic eigenfunction. This
model cepheid envelopes. Squares and seems to be checked much more
triangles indicate the superharmonic carefully, but we used it in
resonance (0+0,2) and the three-wave the following discussion.
resonance (0+1,3), respectively. Results are tabulated in Tables
Crosses are double-mode cepheids. 3 and 4.

Table 3. Coupling coefficients for two-wave resonance.

Model 1 2 3 4 la 2a 3a 4a
Cc(0;0,2) 0.6 0.8 1.2 1.7 0.9 1.4 1.9
C(2;0,0) 3.2 2.3 1.4 0.9 1.6 1.1 0.8
C(0;0,0) 3.4 3.9 4.6 5.4 4.4 5.2 6.1 6.9
C(0:;2,2) 1.3 2.4 4.9 9.7 3.7 7.3 13.5 23.3
C(2;0,2) 7.2 6.9 8.4 8.4 6.7 6.1 5.9 5.7

Table 4. Coupling coefficients for three-wave resonance.

Model 1 2 3 4 la 2a 3a 4a
Cc(0;1,3) 0.4 0.8 1.5 2.5 1.1 1.8 2.3 1.9
C(1l;0,3) 1.2 2.1 2.8 2.7 2.5 2.6 1.9 0.9
C(3;0,1) 2.2 1.6 1.3 0.9 1.4 1.1 0.6 0.2
c(1;0,1) 5.3 6.3 7.0 6.7 7.4 7.4

C(3;0,§) 6.9 6.2 5.9 5.4 6.5 6.1 5.6 5.3
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4-2. Bump cepheids

Near the resonance centre of coupling (0+0,2), we may expect that the free
oscillation of the second overtone mode is suppressed by the synchronization
with the increase of amplitude of the forced oscillation, even if the second
overtone is unstable. Then we can use the result of sections 2-2 and 3-2.
Coupling coefficients between the fundamental mode and the second overtone are

tabulated in Table 3. We may put u0/00==10’3, and a, = 40 which is chosen to

normalize the amplitude of limit cycle as 0.05. 1In ginear approximation, the
maximum of b, which determines the height of bump is given by equation (24).
So if the parameter (p2/02)C(2;0,0)/C(0;0,2) is large enough, the second
overtone which has the same period as the first harmonic of the fundamental
mode prevails in oscillation. 1If it is not so great, we can find only small
bump. And it is evident that large 05 yeilds weak bump.

In actual classical cepheids, the bump is not so strong, therefore rather
strong stability or instability (positive or negative uz) and strong non-linear

damping (positive or negative a.2 with large absolute value) are expected to

2
fit the present model of oscillating system. We solved the resonance equation

with parameters as follows:

u,/0, = -0.00004, and 'oc22 = -250000,

using tabulated coupling coefficients. Amplitudes a, and b2 in linear

approximation are illustrated in Fig. 2 by the dotteg lines with 02/00. mo/oo
is also shown in the figure. Non-linear results calculated by equations in
previous section are shown in Fig. 3. The non-linear result is well understood
on the diagram of b2/aO with cz/wo. This relation expresses the enhancement

of b, by the external oscillation a, of frequency w The diagram is just like

the usual relationship in non-linear forced oscillagion.

Because ]powo/cf |<K 1, ¥ is close to -m. Then the variation of g with
the time t is expressed by the following relation.

ajcos y t - aj,cos(2w t) + b,cos(2w t+9,). (75)

The bump caused from resonant oscillation may appear at the descending slope
of dgq/dt. Another bump may be situated at the rising branch. The strong
enhancement of harmonic oscillation may cause double bumps both at the rising
and descending branch. For models with the period shorter than that for the
resonance centre, the term (—4wi2+0j2)/0j2 is negative so that -m<¢, <-1/2,
and for those with longer period -m/2 <¢2 < 0. In the former case a bump
appears at the descending slope of dgq/dt and another one melt into the main
maximum, so we find usually only one bump at the rising slope of radial velocity
curve. On the contrary, we see a bump at the descending slope of radial
velocity curve in the latter. Thus Hertzsprung relation between the phase of
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Fig. 2. Amplitudes and frequency

in superharmonic resonance.

The decrease of the amplitude

of principal mode a, (top) and
the increase of the amplitude

of resonant mode b2 (middle)

are illustrated. Frequency of
principal mode w, is also shown
(below). Dotted lines demon-
strate the case without harmonic
terms (section 2-2) and solid
lines with harmonic terms (sec-
tion 3-2). Coupling coefficients

for model 3a are used.

Fig. 3. Relative enhancement of

the resonant amplitude b2 to
the principal amplitude ag-
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bump and the period seems to be presented by the resonance. Fig. 4 shows q(t)
and -dq/dt, the radial velocity, for several models.
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Fig. 4. Variations of radius and radial velocity. Radius
(r-—rmin) and radial velocity (—i) are illustrated for
various period ratio, which is labelled on each curve.

Model 3a is also used here.

The enhancement of resonant harmonic is usually combined with the decrease
of the amplitude of main mode in the self-exciting system. This decrease
likely corresponds to the depression of the amplitude of classical cepheids
appearing for the period of 10 days. This seems also to be evidences for the
resonance theory. It should be mentioned that we are not able to state
definitely that the 10-day depression is originated from the resonance phenom-
enon, however. In fact, the depression appears only with the sufficiently
large value of Oy although it is not denied in the present paper.

4-3. Double-mode cepheids

In the present subsection, we shall try the double-mode cepheid, which
seems quite puzzling for the pulsation theoigi The coexistence of single-mode
the amplitude of the first overtone and the third overtone are rather small
compared with that of the fundamental mode off the resonance. So the free
oscillation of the third overtone should be suppressed even if the mode is
unstable. If the mode is stable, only the forced oscillation driven by the
fundamental and first overtone modes is enhanced. Then we may treat again in

and double-mode cepheids on the H-R diagram leads us to the assumption that
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this case the resonance among the fundamental mode, the first oyertone and the
third overtone assuming the free oscillation of the third overtone oscillator
to be suppressed. In both cases we can use results in sections 2-3 and 3-3.

The pulsational instability has been extensively investigated on the
models of classical cepheids, so it is certainly that the fundamental mode and
the first overtone are pulsationally unstable for short-period classical

cepheids, i.e. Mo and u, are positive. 1In the case of

44w,/ (0,2 @2 €(0;1,3)) - 4ujw /(02 a? C(1;0,3)) > 0, (76)

from equation (39a), a&z is restricted in two separate domains, i.e.

2 2 .
oy MW 04 c(0;1,3)

a2 > 2/02 (1 + {1 -— : 1127, (77a)
o uyweo,y c(1;0,3)
and
a?u.w,02C(0;1,3)
a2 <2/02[1 - {1 - 02 11 02 127 (77b)
oy HgWqa0 g Cc(1l;0,3)
As a2 =2/a.2, a2 has its extrema and b, reaches also its maximum. By using
1 1 0 3

the relation between al2 and b32, the maximum of b32 is, therefore, as follows:

2 2 .
G U w0 C(3;0,1)

2 2 .
o p3(w0-+m1)01 c(l;0,3)

2/62 (1 - {1+ 2y, (78)

So if (Os/uS)C(3;0,1)/C(l;0,3) is sufficiently large, we shall have strongly

enhanced b, although a, remains in rather small amplitude unless |a32| is not

so large. '
The result which we obtained indicates that the possibility of double-

periodicity depends on the characteristics of the third overtone. This reduces
the conclusion that non-linear simulation of double-mode phenomenon must be
examined by using the programming code which has the accuracy enough to express
the third overtone. Although we find the enhancement of three different modes
showing the double-periodicity, the mode mostly enhanced by the resonance is
the third Qvertone with the frequency (w0+-wl). If we suppose a weakly stable
or weakly unstable first overtone and some unstable third overtone, the

amplitude of the first overtone a. must be enhanced with frequency W Because

1
the investigation on the stability shows that the first overtone of short-
period classical cepheids is usually unstable, the former seems probable. It
is reported that the variation of double-mode cepheid is analysed to the

fundamental oscillation and the first overtone oscillation. Although the
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recent period determination reaches rather high quality, Henden's reporth)

permits to us some possibility of the enhancement of the third overtone. It
remains the problem which scheme is realized in actual double~mode cepheids.

§5. Discussions and Conclusion

We have described the non-linear oscillation of stars by using coupled
self-exciting oscillator model in the present paper. The meaning of analysis
presented depends on the adequacy of this model for stellar oscillation. The
non-linear non-adiabatic nature of outer envelopes of cepheids is complicated.
Although it is required to describe the damping term much more precisely, some
conceptions we used as the synchronization seem to be essential. Another
essential assumption in the present study is equation (5) that non-linear non-
adiabatic displacement is expressed in sufficient precision by linear adiabatic
one. This assumption is rather crude especially in outer envelope layers.

The coupling constant which is affected strongly by the nature of oscillation
in the hydfogen and helium ionization zones is probably subject to non-linear
non-adiabatic studies by using the dynamical code. If the coupling coefficient
is much greater than that estimated in the present paper, the resonance occurs
at the period ratio different from that calculated by linear periods. So we
have to wait for the result of non-adiabatic analysis to judge whether or not
the mass reduction derived in the present work is real.

We must note here the problem about the coupling coefficient. It is
difficult to enhance strongly b3 with small a, if C(3;0,1) is not so great
enough in equation (78). It is the reason why we did'nt show the example of
three-wave resonance numerically in previous section. The uncertainty comes
mainly from that in coupling coefficients. If we choose those of the polytropic
gas sphere (Table Al), the strongly enhanced b3 is found against very small a;

and nearly unchanged a,- It is important to develope the resonance theory in

the non-adiabatic case like as Auvergne et al.l7) do.

8)

Simon's generalized
discussionl is also interesting.

Summarizing the present paper, we could state that the coupled self-
exciting oscillator model seems working to study the resonance phenomenon in
classical cepheids. Even if the second and third overtone are vibrationally
stable, the resonance of fundamental mode and first overtone with them is
important. A strongly damped overtone which couples with the fundamental mode
can quench efficiently the pulsation, and a weakly damped overtone may enhance
the harmonics or faint oscillation. As Takeutilg) has pointed out, the strongly
damped overtone may be a cause of non-variable stars in the cepheid instability
strip.

The mass problem of bump and double-mode cepheids is not removed in the
present analysis, but the disagreement appeared in the resonance distance of

6,20,21)

chemically inhomogeneous model envelopes is subject to the non-linear

effect. The helium-enriched envelope hypothesis is still interesting in the
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viewpoint of our study. The application of resonance theory to other group of
variable stars seems also interesting. Simon4) has argued the applicability
on double-mode § Scuti stars like as AI Velorum. These stars have been also

13)

studied by Petersen. Takeuti and Petersenzz) hayve discussed the RV Tauri
stars concerning with the resonance of (0+0,1) and (0+1,2). Takeuti has found
that the coupling coefficient for these stars is rather great because of their
low surface gravity.23) Therefore, the complicated behavior of light variation
in giant or supergiant stars is likely caused from the strong coupling of
several modes. Petersen24) has discussed the BL Herculis stars by using Simon-
Schmidt's semi-empirical relation between the phase of bump and the period
ratio. The superharmonic resonance studied in the present paper may permit to
us another phase difference for bump than that given by the locked-in consider-

ation. It seems still important to study these variables by the resonance theory.

Appendix Coupling Coefficients for Polytropic Gas Spheres

The coupling coefficient of polytropic gas spheres is calculated for
several modes (Table Al). vY=5/3 is chosen through the calculation. c(i;0,1i),
the coefficient dominating the asymmetry of each mode, is positive, so that

asymmetry agrees with that derived by other method.

Table Al. Coupling coefficients for polytropic gas sphere

(y=5/3).

n 1.5 2.0 2.5 3.0 3.5 4.0
C(0;0,0) 4.7122 3.7269 2.6113 1.9802 2.1006 2.0358
C(0;0,2) -0.0138 -0.0092 0.0119 0.0784 0.1615 0.1276
Cc(2;0,0) -0.0732 -0.1523 0.4035 2.7266 4.4376  5.3088
Cc(0;1,3) -0.0016 -0.0013 0.0030 0.0162 0.0449 0.0345
C(1;0,3) -0.0046 -0.0079 0.0271 0.1275 0.2972  0.3025
Cc(3;0,1) -0.0132 -0.0444 0.2578 1.7425 4.0544  4.9409
Cc(0;2,2) 0.8338 0.3005 0.1590 0.1566 0.1839 0.1296
C(2;0,2) 4.4349 5.0096 5.3909 5.4433 5.0504 5.3915
Cc(0;1,1) 1.6386 0.7956 0.5117 0.5208 0.5707 0.4636
Cc(0;3,3) 0.5135 0.1465 0.0646 0.0571 0.0670 0.0436
c(1;0,1) 4.6125 4.8027 4.6865 4.0912 3.7764  4.0566

c(3;0,3) 8.2012 7.4922° 6.5002 5.5445 4.5992 4.2074
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