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On the Global Structure of Stellar
Magnetospheres with Stellar Winds
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*Department of Applied Physics, Tsuruoka

Technical College, Tsuruoka 997.
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The solutions for the magnetic field and stellar wind in axially
symmetric stellar magnetospheres are obtained through perturbational
method in three artificial extreme situations, i.e., the limits of
weak magnetic field, strong magnetic field and weak electromagnetic
coﬁpling. The set of basic equations are derived from MHD equations
in the two-fluid approximation of a plasma by assuming quasi-neutrality
and small mass ratio of electrons to protons. It is emphasized in
this treatment that, since the inertial term in the generalized Ohm's
law has generally a non-zero rotation, the 'violation of flux-freezing'
arises even in a perfectly conducting plasma. This fact makes it
possible for a stellar wind to blow across the magnetic lines of
force. The global structure of a stellar magnetosphere is inferred
from the results obtained in the three extreme situations. It is
suggested that the magnetosphere have generally the closed magnetic
lines of force and the stellar wind blows across them forming a
current sheet which may result in a very elongated shape of the lines
of force at about the equatorial plane.

Keywords: Stellar magnetosphere, Stellar (Solar) wind, MHD,
Violation of flux-freezing.

§1l. Introduction

b predicted the

Although more than two decades have passed since Parker
existence of the solar wind, no satisfactory solution to the combined problem
of stellar wind and magnetospheric structures has been obtained yet.

Waber and Davisz) considered the solar wind solution in the presence of
the magnetic field and solar rotation by restricting their attention only to
the equatorial plane and showed that there appear two more critical points in
addition to the sonic point. Mestel>) removed this restriction and calculated
the angular momentum loss by the stellar wind. Under the assumptions of axial
symmetry and asymptotically radial structure,Pneuman and Kopp4) calculated

numerically a concrete magnetic field structure. However, only a few authors
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have discussed on the three dimensional structure of the stellar wind and
magnetic field. Though all these works are based on the assumption of the
strict MHD condition,

E+"i— Vv x B = 0, ’ (1)

(where E, B and V are the electric, magnetlc and ve1001ty flelds, respectively,
and ¢ is the 11ght velocity) Kuo-Petravic et al. 2 have carried out a numerical
computation in the two-fluid approximation. Their solution has, interesting
enough, closed magnetic lines of force and plasma outflow across them suggest-
ing the "violation of frozen-in condition"

Eg. (1) serves as a special form of the generalized Ohm's law in a
perfectly conducting plasma. Recently, however, the importance of including

the inertial terms in the generalized Ohm's law has been suggested by Wangs)

and Wright7) for a charge-separated plasma and by Kaburakis)

for a quasi-neutral
plasma. If the inertial terms and other forces such as pressure and gravity

are included, Eq. (1) becomes
E +-€é V x B = K. (2)

The explicit expression for K in the one-fluid approximation is given in
section 2. The ratio of this extra-term to the motional field,
|k
A= — ‘ (3)
|v xB /c]|

is very small for a quasi-neutral plasma and this fact makes one use Eq. (1),
but the ratio may become comparable to unity in a charge-separated plasma.
Moreover, it is not K itself but Vxg that contribute to the violation of flux-
freezing. Since Vxf=0 in a steady state, the motional field should be rotation-
free, Vx(VxB/c)=0, as far as K is neglected. However, if the inertial term is
included (i.e. K#0) it becomes generally non-zero, WX(VXB/c)=WXK#0 (c.f. section
3), so that the frozen-in condition is violated. It must also be noted that
V<K has generally the same order of magnitude as Vx(¥VxB/c¢c), although K itself
may very smaller than VXB/¢ (i.e. A<<I in a quasi-neutral plasma). The current
density induced by the extra-electric fiélde can be large enough to affect the
magnetic field structure.

We first derive in section 1 a set of basic equations for a gquasi-neutral
plasma in the one-fluid description by neglecting electron masses. An explicit
expression for the generalized Ohm's law of the form (2) is given in this
approximation. In section 3 the solutions of these equations are obtained in
three extreme situations through perturbational method. These solutions are
synthesized in section 4 to infer the complete solutions in actual situations.
We have a picture similar to that of Kuo-Petravic et a1.5) The effects of

finite electron masses are also discussed.
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§2. Derivation of Basic Equations

We assume that the plasma around a star consists only of electrons and

protons whose masses, electric charges and number densities are denoted by m,

mp, -e, e, n, and Ny respectively. The conservation equations for mass and
momentum of each species are written in the two-fluid approximation as
Bne
5z F YV (neVe) = 0y (4a)
o, ' 1 cM
meny, g3+ (Vo *VIV,} = —en (E + =V, X B) - VP + mn Vo + F (4b)
and 3 ;
'
e ¢V (npYp) = O (52)
i 1 GM
mpnp{ 5t + (Vp b V)Vp} = enp(E +—G—-Vp x B) - VPp + mpanF - F , (5b)

where V,, Vp, P, and Pp are the flow velocities and the scalar pressures of
electrons and protons, respectively, F is the momentum exchanae rate between
the two species, G, M and X are the gravitational constant, the mass of a
central star and the distance from the stellar center. Since our main interest
is in the inertial effects in a 'quasi-neutral plasma', it is convenient to
employ a one-fluid description. Introducing the mass density, charge density,

mean fluid velocity and current density by the relations
p = mpnp + Mgh,, (6)

q = e(np - ngly (7)

Voo mpanp + meneVe ' @)
mpnp + mon,

J e(anp - neVe), (9)

we first obtain the mass and charge conservation laws from Egs. (4a) and (5a);

ap

-+ Ve (o¥) = 0, (10)
2q .=
L+ veg o= 0. (11)

Equation of motion in this scheme is obtained by adding Egs. (4b) and (5b);
opV¥ 1
3¢+ V' UTras) (1-a)

- 14 GM (
= en(of + = on ® B) - VP + pWR ’ (12)

F J J J
{(l—ot+a6)pll’1l’\— aép(l’éz +—e_nV) + 8o (L) (—87)}]
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where qump/ep is the neutrality parameter of the plasma, 6Eme/mp is the mass
ratio of an electron to a proton,'nzp/mp=np+6ne, and PEPe+P is the total gass
pressure, On the other hand, subtraction of Eq. (4b)X(e/mp) from Eg. (5b)x
(e/me) yeilds the generalized Ohm's law;

9 J . I J J J J
égg(pgﬁJ + 6V [FTIE§777?&7{_upWV + p(ZEV + Véﬁj - (l-6+a6)pﬁgz)ﬁgﬁJ}]

1-6
enc

. 1 MG 1.
J X B +——enW(Pe-6Pp) + a8V -—=(j-q¥V)]1,
(13)

= enl{1-0(1-8)}E +—é—v x B -

where we have evaluated the momentum exchange rate as F=eznenp(Vp—Ve)/0 (o
represents the electric conductivity). The set of Egs. (10), (11), (12) and
(13) are equivalent to that of Egs. (4a), (4b), (5a) and (Sb).

As is well known, the mass ratio § is very small and the neutrality
parameter o is also much less than unity for a quasi-neutral plasma. This fact
surves to simplify Egs. (12) and (13). In the most part of this paper we
neglect electron masses entirely (i.e. $§»0) and charge separations (i.e. 0=0)
except in the electromagnetic terms. Therefore, the terms come from of remain
in Egs. (14b) and (l4g). The effects of finite ¢ are discussed in section 4.
Further for simplicity, we hereafter restrict our problem only to a steady
state (therefore, at least magnetic and rotational axes of the star must be
coincide) and assume an infinite conductivity (i.e. o-»«w) and isothermal
surrounding plasma. Thus simpiified equations, together with Maxwell's

equations and the equation of state, form the following closed set of equation;

Ve(pV) = 0, (14a)
O(V-V)V = qE +%sz3- Ve + QW%M, (14b)
V xB =4c—”,;‘ , (14c)
VeB =0, (14d)
YXxE = 0, (14e)
V.E = 47q, (14fF)
E +2VxB=—-rte(of + 1 jxB - ¥P_) (149)
c e(o/mp) q c J e’ !’
P = flp, Ty), (14h)

where T, is the assumed constant temperature of the plasma. Eg. (l4g) is the
generalized Ohm's law and the first two terms of its right-hand side can be
expressed in terms of the inertial term p(V+V)V by using Eg. (14b).

Here we non-dimensionalize the set of basic equations for the convenience
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of deriving their limiting forms in various extreme situations. To this end,
the units of normalization for various physical quantities are introduced and
some non-dimensional parameters are defined in terms of them. They are

summarized in Tables I(a) and (b).

Table I(a). Introduced symbols
Physical Normalizing Non-dimensional Meanings
guantities units quantities g
R-(,V) r, r (,V,) position vector (Laplacian)
14 Vo ‘ U velocity of fluid
o [ Y mass density .

total gass preééﬁfé“- i
P (,P_,P ) P, P (,pe,pp) (partial pressures of electrons
b and protons)

B B, b magnetic field

E E, e electric field V

J J o i current density

q 9, n charge density “J
Table I(b). Non-dimensional parameters

B

Concerned with the unit of velocity, v,.

MZ_ ° K =
g Py /Po Yy

2 v
v LEO/B0

Concerned with the unit of current density, jo.

4 Jo
= ¢B,/4mr &= e(po/mp)u0
Ratios among energy densities
; P, GM/r . BY/8m
= — = e— =__2
B2/8m 77 Ep, /0, Poc

Neutrality parameter

qy -
T eloy/m )
e(oo/mp
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Referring to these tables, we obtain the non-dimensional equations

WT « (yu) = 0, (15a)
. = .__1___ 2_IE .2_1_-. i 1
yluw=V, )u = TS ne + g4 xb - Vp + ZgerQ;)}, (15b)
s
v, x b = 14, (15c)
Wr b =0, (154d)
Vr x ¢ =0, (15e)
v, s e - & g, (15€)
M2KshB
8

_ B 1 21 Xt 2r
Ke + w x b = 27 S ” (B 3 e + 7?-w x b - VrPe), (15qg)
p =1y, To), (13h)

where Wr represents the non-dimensional gradient operator. We have left all
the normalizing units independent of each other, because there is a proper
choice of the set of units (some relations among the units) for each extreme
situation which we shall consider below.

§3., Consideration of Extreme Situations

In this section, we infer the behavior of the complete stellar-wind
solution of Egs. (15) by examining some artificial extreme situations in each
of which some effect is dominant over other effects. As such situations, three
limiting cases are taken up; the limits of 1) weak magnetic field, 2) strong
magnetic field and 3) weak electromagnetic coupling. Though in the former two
cases the effects of inertia are taken into account only through the perturba-
tional method, the latter is a large inertia limit in itself and perturbation
acts to reduce the inertial effects.

3-1. Limit of weak magnetic field
First, we consider the limit of weak magnetic field. In order to clarify
the limiting procedure, we replace B by B e and let €-»0 in this limit. Further,
we must choose suitably a set of normalizing units to obtain the proper form of
non-dimensional equations for this limit. The unit for pressure, p , is
specified by
Pok7,

p, = (16)

MpU g

where % is the Boltzman constant and yu =1/2 is the mean molecular weight of the
plasma. Therefore, the non-dimensional version of the ideal gas law becomes



167

P =Y. (17)

This specification is used also in other two extreme cases. Since in the

) provided that

absence of magnetic field a purely thermal wind is expected,1
the stellar rotation is negligible, we adopt the sound speed as the unit of
velocity (i.e. voz/?727ﬁ;i} or M =1). 1In this limiting case the stretching of
magnetic lines of force due to this wind results in the current density of the
order of j0=cBoa/4wr0 (i.e. I=1), which therefore is the COnVénient unit for
the current density. The unit for the electric field is suitably given by
E,=kT,/er ,u,, a typical value of the electric field to preserve the quasi-

2) A typical value of the

neutrality of plasma under the gravity of a star.
motional field ¥xB/¢ is not suitable for the unit since, if it is adopted, non-
dimensional electric field e diverges in the limit of weak magnetic field. All
other values of units are specified at a pole on the stellar surface (Table

II(a)). For this set of units, the non-dimensional parameters are rewritten as

listed in Table II(b).

Table II(a). Units for the limit of weak magnetic field

Dependent units

vV kT, ¢B,
Vo T /mpu0 Jo T 4mr &
. kT, E,
By = er  u, 4, = anr

Independent units

radius of the star

3

p, : density on the stellar surface

T, : constant temperature of plasma
Table II(b). Non-dimensional parameters
= _ E 1
Mo = 1 K= Vo T
0
- _ 2 /&
I =1 s = ’B‘O—‘/g-]—,l——(; £
0 kT, /m 1 B2/8m GM/r
1 0 0 0 0
B Bo 2,(80 = N P o h = haez,(ho = > ) g -2—_‘_7[)—
BO/BTT p,e Po 0
m kT /m
. p . o/ pHo
41T(p0/mp)e2 r?
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Making use of these units and non-dimensional parameters, we rewrite the
non-dimensionalized basic Egs. (15) as

Ve(yun) = 0, (18a)
_ 2 2 2.
: 0
VYV x b = 3, (18c)
V.b=o0, (184)
V*xe=20, (18e)
V+e=n, (18£)
2h .
Yy _ gD —_ _ 2 23Xb
e + Ty gy e + 5 emw x b Bo € 7 0, (189)

where subscript r in Vr has been omitted and the pressure p has been eliminated

with the aid of Eg. (17). Of course these equations are exactly equivalent to
Egs. (15) as long as e=1. In the following we neglect the term &ne, since £ 1is
very small in actual stellar winds (e.g. g£n107 2% for solar parameters). Owing

to this assumption we obtain from Egs. (18e) and (18g) another subsidiary
equation in the form

' e [T _ixb, _
VX (w X B - B, 2h0 € ” ) = 0, (18h)

which plays inportant roles in the following discussion.
In the limit of small e, all physical gquantities can be expressed by a

first few terms of a power series in €;

f=Fo + F16 + Foe2 + = ¢ o =, : (19)

where f may be a scalar or any component of vectors. Substituting this type
of expansions into Egs. (18), we have the following equations in the lowest
order approximation;

V. (yomo) =0, (20a)
yo(uo-v)wo = -Vy, + ZQyQWE%), (20b)
V¥ x b, = 3, (20c)
vV.b, =0, | (204)
Vxe,=20, , f20€)

V.e,=n, ' (20£)
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V%
€, -/'2—%' =0, (209)

and )
Vx (w, x b,) = 0. (20h)

Egs. (20a) and (20b) show that, as expected, the plasma flows as a thermal
windvfreely from the electromagnetic force. The solution is given by the

algebraic equations in the absence of stellar rotation;lo)
L2 - ry _9) =
glug(r) - 1} - 21n () - Inu,(r) + 2(1 -3) = 0, (21)
u, (1)
Yo, (r) = —— , - (22)
u,(r)r?

where uo(r) is the radial component of x  and the density on the stellar surface
is unity (i.e. y (1)=1) due to the normalization we have adopted. The electric
field is given by e =-V(ln y (r)/2) and this satisfies Eq. (20e). Although the
magnetic field is vanishingly small in the limit we are considering, the non-
dimensionalized field b, which remains finite, is calculated from Eq. (20h).
Eg. (20h) implies that the magnetic field is frozen into the plasma. The
correction due to the inertial term does not appear in the lowest order. Taking
into account the boundary condition on the stellar surface, b,(1)=(b, cos 6, 0,

0), we have

b, cos 8/r?

by, = 0 (23)
0
in the spherical polar coordinate (r, 8, ¢). Associated current density is
calculated from Eq. (20c) as
0
B, = 0 (24)

b, sin 8/r?

‘Thus in the lowest order approximation, the magnetic lines of force have a
radially extending structure blown away by the thermal wind. This structure
is maintained by a toroidal current distribution weakly concentrated to the
equatorial plane.

In the next step of approximation we have the following first order
equations;

W'(ylmu + Yyou,) = 0, (25a)

7 v
Yyo(uyVu, + Yo(u, *Viu, + y, (w,Vu, = -Vy + ZQyIVLFJ, : (25b)
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Vxb, =i, (25¢)
Vb, =0, ~ (254)
vV x e, = 0, (25e)
v . e, = N, (25fF)
3 Y, 2h0
e, + EZ_(Vyl —-E—Wyo) + ) xb, =0, (259)
0 0
A b
2 [ & %000 _
Vx (u, X bo +ou % %1 —-B: e v ) = 0. (25h)

The solutions of Eqgs. (25a), (25b), (25e), (25f) and (25g) are y,=0, u,=0, ¢,=0
and n,=0, because they have no inhomogeneous term. Substituting the lowest
order solution into Eq. (25h), we have

b = 0 (26)
2
P 5 .bo uo(l)

= |5 {
By y2h, uy(1)r®

2 - 1} sin 6 cos © ,

uo(r)

which gives the current density, i,, as

bi MO(J) 2 2 .
. , //E- uo(l)r“{uo(r) r? - 1} (3 cos®6 - 1)
1L1 =-B-; ‘2—ho , (27)
by {“0(1) r dug(r) _ _ji} sin 9 cos 6.
u (1)r? uy(r) u,(r) dr r?

0
The stream lines of the current density %, are shown in Fig. 1.

In the first order correction to the lowest order solution, there appear
the toroidal magnetic field and the poloidal loop current while the flow is
still radial in this approximation. Thus, the violation of flux-freezing is
realized due to the contributions of the inertial term in Eg. (25h) (note that
the force field ﬂoxbo/yo is not rotation-free). 1In general, the frozen-in
condition is violated whenever the rotation of inertial force, Ix{(uViu)},

4)

assumption of the frozen-in condition can be self~consistent only when their

does not vanish. Therefore, Pneuman and Kopp's solution obtained under the
velocity field satisfies Vx{(u-V)u}=0. Since the inertial effects are expected
to be stronger in the actual situations in which e=1, the results obtained here
suggest the violation of flux-freezing also in the solutions for actual cases.

Further, we consider the second order effects in e. The set of equations
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Fig. 1. Stream lines are
shown for the poloidal
current density %,
calculated in the first
order approximation.

In the limit of weak
magnetic field, the

inertial term in the

generalized Ohm's law,
iOX%O/yO, is not rota-
tion-free. This fact
causes this poloidal

loop current resulting

in a weak violation of

ol

frozen-in condition.

10+ ' » Fig. 2. Stream lines are
shown for a thermal

wind solution, u,+%,€,
+ obtained within the
second order perturba-
tion. The distance is
+ normalized to the radius
of a central star, and
the values of non-
dimensional parameters
are fixed to g=§, B =1
and £=0.25 for the solar

T ——-\\\\\\~____—_______,,—- case as a typical example.
The second order effect
causes the wind to bend

5 10 toward the equatorial

plane.
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are obtained as

Vely,u, + yzmo) = 0, (28a)

Yoluog*Viu, + yo(u, Vu, + yz(mo~V)uo = -Vy, + 29y2W§%) +-%;ﬁ0 xb,, (28b)

Vxb, =1, (28c)

V-, =0, (284)

WX{uz><Zb0+m0><1b2-—1——82—‘/2:%(110><b1+721XZbo)}=0, (28e)
Yo Py 0

where we have omitted the equations for the electric field since they are
completely decoupled from other equations. In order to calculate the second
order corrections, we express the angular dependent parts of all physical
quantities in terms of the Legendre polinomials and obtain a set of ordinary
differential equations. A non-dimensional parameter appears in the set of
equations;

L(r) =< SZbi 7 4o ) ’
3 Boug(1)g® yo(g)

(29)

which represents the importance of the electromagnetic force compared with the
pressure gradient force at a distance r». We must approximately specify the
representative value of € with the aid of Egq. (29), in order to infer the
electromagnetic effects in actual situations from the perturbational solution
up to the second order which is correct only for very small e's. To this end,
the Alfvén radius r, is first evaluated from the dipole magnetic field and the
lowest order solution for the plasma flow. Then, we find a suitable value of
€ by setting L(r,J)=1. For the solar parameters, we have g=$, B,=1 and r,=3.5,
and therefore have €=0.25. The stream lines are shown in Fig. 2 for the value
of € thus evaluated. We can see in this picture that the second order effect
lead the flow to bend toward the equational plane due to the electromagnetic
force. Since we set B =1, the situation is no longer the weak magnetic-field
case in the region near the surface. Therefore, the accuracy of approximation
is not so good there, but is fairly good outside the Alfvén surface r, <r.

3-2, Limit of strong magnetic field

Next we examine the behavior of solutions in the limit of strong magnetic
field. This time B, is replaced by B, /e and the limit is taken by making e-0.
In this situation, the magnetic field is expected to have a current-free
configuration almost suppressing the plasma motion across its lines of force,
provided that there is no mechanism in the stellar interior which drives a

non-negligible field-aligned current. Neglecting the inertial and gravitational
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terms, we have, from the equation of motion and the generalized Ohm's law, the

order-of-magnitude estimations as
1 .
vp %—E-J X B, (30)

7 m
Env=—v x B _P vy , (31)
c pe p

which can be used to arrange the suitable units for this limit as shown in
Table III(a). 1In this choice of the units the fluid velocity and current
density, which are both expected to be very small in this limit, have finite
normalized values because their units, v, and jo' also approach to zero as €+0.
Making use of the renewed units we again rewrite the non-dimensional parameters

(Table III(b)).

Table III(a). Units for the limit of strong magnetic field

Dependent units

kToc cookTo
V = ——— ] = ——
0 er M, B, o ToBomp“o
. kT, B,
0o er U, 90 < dmr

Independent units

7ot radius of the star

pp,: density on the stellar surface
T,: constant temperature of plasma

Table III(b). Non-dimensional parameters
M2 = E%— g2 K =1
0
B0
I ='7T-€2 s =1
P KT /m 1, hy B2 /8w M/p
B =8¢€2, (B =— " P ) h=—, (h = ——) =0
’ ’ B3 /8 ez ° PeC ETIVER
- "p Lo/ My

47T(oo/m.p)e2 r?
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The non-dimensional equations becomes for this choice of the units

Vel(yn) = 0, (32a)
ge? Yy(u*V)u = Ene + 2 X b - Vy + 2 \ (1) (32b)
jﬁﬂ;., U = Yy gy 7

B0
VX b= €24, (32¢c)
vy - % =0, (324)
V x e =0, (32e)
V « e =n, (32£)
e+mxm-%(gne+ﬁxb-%w)=o, (329)
vx {uxbp - 5%-82 (u+Vu} = 0. (32h)

0

With the aid of expansion formula(19), we obtain the lowest order equations

as

Voelyuy) = 0, (33a)

Enge, + 3, X b, - Vy, + 29y, V(%) = 0, (33b)

Vx B, =0, (33¢)

Vb, =0, (33)

Vxe,=0, (33e)

Ve, =, (33£)

eq + g X By - (Enge, + 4, X B, -Lvy,) =0, (339)

Vox (u, x b)) = 0. (33h)

At first sight, it may appear somewhat curious that Egs. (33b) and (33g) contain
the current density ﬁo while Eg. (33c) insists on a current-free field. However,
this means merely that the current density is too small to affect the magnetic
field structure in the lowest order approximation. Nevertheless, it can
contribute to the balancing of the small terms in Egs. (33b) and (33g), which
give the functional form of the vanishingly small current density and velocity.
As a current-free magnetic field well representing the stellar magnetiza-

tion, we adopt the dipole field;
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b, cos 6/r®
b, = b,sin6/2r® |. (34)

0

This satisfies the same boundary condition for bOT (i.e. bor(]):bo cos ©) as in
the previous subsection. From Eg. (33h) we obtain the velocity field as

uop V4 bo P (35)

= »%/2 gin p3~a, (36)

uo¢ 7 “eq

where uop and %6 are the poloidal and toroidal components of U respectively,
and ”eq and g are constants to be determined at the stellar surface. Eq. (36)
implies that if the stellar surface rotate rigidly (i.e. a=2), the surrounding
plasma corotates with the star in the whole space. This type of solution is
allowed since the inertial effects of the plasma do not appear in the lowest
order approximation. Further, if we neglect the pressure and gravity terms,

the equation of motion (33b) and the generalized Ohm's law (33g) reduce to

i, X b, + Enje, = o, (37)
and
e, +u, x b, = 0, (38)

respectively. Combining these equations, we obtain the current density
i, = ENquy + Jby, (39)

where J is a scalar function satisfying (b +V)J=0. This situation have been

examined by many authors as the force-free approximation.ll)

It must be noted,
however, that in general we should take the effects of pressure and gravity
terms into account in detefmining the current density (see Egs. (33b) and (33g)).,
even if in the limit of strong magnetic field. If we take the gravity and

pressure terms into‘account, Y % e and n, cannot be determined uniquely

’ ’
due to the lack of the knowled;e agoutothe outer boundary condition and the
decoupling of b and i  in Eq. (33c).

Coupling among the magnetic field, the current density and the velocity
field first appears in the second order perturbation. The second order

‘equations are

vy - (you2 + y2m0) = 0, (40a)
. : , 1
Sy, (W, = E(nye, + nge,) + (i, x b, + i, x by) - Vy, + 2gy,Vi5),
0 (40b)
S0
vV x b, = io' (40c)
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Vb, =0, (404)
vV x @2 = 01 (406)
Ve, =n,, (40f)
e, + (wyg X b, + u, x b_) =—y1—o(7zo x B, + i, x B, - =Ty, + Enye, + ENge,)
Y2 . 1 :
- (B X by - FVy, + Engey), (409)
Yo
Vx{u, x b, + u, x b, -272—0(21{0~V)m0}=0. (40h)

If we assume the current-free magnetic field and hydrostatic équilibrium
as a lowest order solution (i.e. u0=0, ﬁ0=0, e,=0 and~n0=0), the inhomogeneous
terms in the second order equations all vanish. Therefore the second order
corrections do not appear. We can show that this lowest-order solution is in
fact an exact solutions for the original equations (i.e. e€=1). This fact
corresponds to the existence of discontinuity between the dead zone and wind

)

zone, which can be seen in Pneuman and Kopp's model.4 Even if we introduce a
toroidal flow reflecting the stellar rotation, the inhomogeneous term in Eq.
(40h) also vanish because the centrifugal force due to corotation is rotation-
free. Therefore, the corotation of plasma does not remove the discontinuity
between the dead and wind zones. The self-consistent solutionsﬂin this stage
of approximation (in the actual situation, i.e. e€=1) have obtained by Hill and

8)

Carbarylz) and Kaburaki on somewhat different physical basis.

We can show in the following, an example in which the violation of flux-
freezing actually occur and therefore the discontinuity between the dead and
wind zones is removed. To this end, we introduce the field-aligned flow as

well as the corotational velocity;
3
w,b,cos0/r y,(r)
uy, =| wyb,sind/2r’y (r) |, (41a)

r sin 6
ueq s

where W, is a constant. The magnetic field, plasma density and current density
are assumed to be

b, cos 8/r?

b, = b, sin 6/2r?3 , (41b)
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Yy,(r) = exp[2g€%f— 1)1, (41c)

i, = 0, } (414)

respectively, where we have ignored the convection current for simplicity. The
second order corrections to the above lowest-order solutions are

- exp[-2g(;—— 1)]
w

u2¢ = - zh, Vo od ; sin 6, (42a)
r
b sin 6 b cos 6 w3b3u
U . 2 - U g i i g ; 0 0 eq sin 6 cos 6, (42b)
2 2r® 2 rd 0 y,(r)r®
*,
12p = yc(r) ’ (42¢)

where Uyt uze and Uy are the components of u, in the spherical polar coordinate
and sz and ﬂzp are the poloidal components of u, and iz, respectively. Thus,
the flow across the magnetic field appears as a drift motion caused by the
toroidal component of the inertial term.

We can also obtain a similar flow pattern by introducing a field-aligned

current and taking account of the effects of finite electron masses.

3-3. Limit of weak electromagnetic coupling

In this last subsection we consider the limit of weak electromagnetic
coupling. Since the strength of the electromagnetic coupling between charged
particles and field is prescribed by the electric charge unit ¢, we replace e by
ge and let e€~+0 in order to realize this extreme situation. In this limit the
stellar plasma behaves like a neutral gas and blows as a thermal wind unaffected
by the presence of the magnetic field, which therefore has a current-free
configuration. Therefore, the suitable unit for velocity is the thermal velocity
as in the case of weak magnetic field (i.e. v0=/?T;7ﬁ;E;). Since the current,
which arises as a result of electromagnetic interaction between the magnetic
field and the plasma flow, is expected to be very small, we use the unit
J,=cenv,, which is also very small in this limit.

For the case of a thermal wind, decoupling between the plasma and electro-
magnetic field generally takes place in two steps as ¢ tends to zero; (1)
Decoupling between plasma and magnetic field. When ¢ decreases to reach
en/E,/2h (v10”% for the solar parameters), where £, and % are given in
Table IV(a), the inertial effects gradually increase and the violation of flux-
freezing becomes cruicial. However, in this step the electric field which
tends to preserve the charge neutrality of the plasma still works well. (2)
Decoupling between two species of plasma particles. When e reaches
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em/E; (v10"Y ), protons and electrons come to behave as two independent species
of a neutral gas with different masses. Since our interest is concentrated on
the first step, the suitable unit for the electric field is given by E,=

kT /eu r € and subsequently q0=Eo/4ﬂr0. All the units in this limit are listed
in Table IV (a). Then we can rewrite the non-dimensional parameters (Table IV

(b)) and the set of equations.

Table IV (a). Units for the limit of weak electromagnetic coupling

Dependent units

/kfo ep, v,
'Uo=‘/m—uov ‘70 = po
p p
kT 1 E,

By = eMd r, & 49 = 4mr,

Independent units

r, : radius of the star
p, : density on the stellar surface

T, : constant temperature of plasma

Table IV (b). Non-dimensional parameters
)
2 _ 20 1
Mg =1 L£=7%n =
_ B [2h _
I = B (E_o s = 1
PokTo/m My . B2/8m GM/r
2 2 2r4/0
By/8m (N 0/ o
50 m kTQ
£ =—, (£, = L)
£? 4mp,e’ryu,

Egs. (15) become
YV « (yu) = 0, (43a)

1 °h . &y
y(u-Viu = -Vy + 2gyVé;) + T €1 x b + — ne. (43b)
0 €
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YV x b =-§' g% Eﬁ, (43¢)

Yy -8 =0, (434d)

VYV x e =0, (43e)

Ve =n, (43f)

e+g—g+ é—l—:x:(uxb-i;b+/'§%i_g' ne) = 0, (43qg)
vox o /%%:Su X b - (u-V)ul = 0. (43h)

Eg. (43h) shows that if € becomes as small as /5072h, the frozen-in situation
breaks down.
~ We have in the lowest order approximation

Voo (ym,) = 0, (44a)
y,(u, » Vug, = -Vy, + ZQyDW(%), (44Db)
Vxb, =0, (44c)
Vb, =0, (444)
Vxe, =0, (44e)
Voe, =N (44f)
vy
eyt gyt = O (44q)
ﬁoxko
Vx (u, X b, -———g———) =0, (44h)
0

by assuming vE,<<e<<vE /2h. It must be emphasized that the inertial terms
remain in the lowest order equations in contrast with previous two limits.

This limit can also be called the large inertia limit since the ratio of the
inertial term to the electromagnetic one, which include the factor mp/e,
becomes very large in this limit. We can see in this large inertia limit, that
the radial thermal wind, Eqg. (21), and the dipole magnetic field, Egq. (34), are
indeed compatible with each other as the lowest order solutions. Using these

solutions, we obtain from Eq. (44h) the lowest order current density

4 (45a)

op

il
<
(=4
®
+
<
&

7;0d> =0, (45b)
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where J is a scalar function which satisfies (bo'V)J=0.

conservation, we have from Egs.

u (1)
! {1z

where §(6) is the Dirac §-function.

radial outflow of protons across the magnetic lines of force
are compensated by the field-aligned line current carried by
Although this field-aligned

from the two poles of the star.

(22),

(34)

8(B) + 8§(6-1)

sin 6

and (45a) .

Positive charges, which

Thanks to the charge

(46)

are lost by the
in all directions,
electrons emitted

current has a

diverging strengh, this is merely a consequence of our artificial limiting

procedure £-0.

The first order equations are

Velyu, +yu,) =20,
Yolug s Vu, + y (u, « Vuy, + y, (u, -+ Viu, = -Vy, +
BD
, _Fo [zm
vV x El z /E, Ty
Vb, =0,
v ox {( e b, 4 B e
u - — - 1
° Ty, S T T

(47a)

ZgyIVF%) + [=— i, Xb_,

The toroidal component of i,%b, drives the toroidal flow

“r9 "

b
2 (1
r

I .
--;J sin 6,

0 " (a7p)

(47¢c)
(474)

0. (47e)

(48a)

and for other components of the velocity u, and the density Yy, we have

ulr = ule =

The magnetic field is modified by 4, as

0
B /73
6 = -3 /E%—uo(J)
0
b = b

y, =0
S
cos 6§
- 0
rgin 0
0
_0'

(48b)

’ (495\)

(49b)
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(a)

(b)

Fig. 3-a and b. Magnetic field structure for a case of weak electromagnetic
interaction. Field lines are calculated within the first order approximation
(i.e. b,+b c) by setting arbitrarily 8(80/2)/§Z7iou0(1)=0.05 (i.e. e=1.68%x10"7
for solar parameters and therefore the effect of inertia is very exaggerated).

The first-order toroidal velocity, u., on the equatorial plane is also shown

1
graphically.
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This magnetic field requires the poloidal surface current;

u,(1) cos ©
surf = sin 6 ¢ ' (50)

7

which closes the electric current circuit on the inner boundary.

The magnetic field configuration, b,+b, e, together with toroidal velocity
’u1¢ on the equatorial plane are shown in Fig.‘3. It is quite interesting that
this result have some resemblances to the numerical calculation of Kuo-Petravic
et alzs) As will‘be shown in section 4, the .limiting process, ee~+0, magnifies
the equatorialICurrent region (region II in Fig. 4) which in most actual ¢ases
can be regarded as a thin sheet, and as a resultythe polar region (region I in
Fig. 4) converges to the polar axis. In this situation, the common features
in our results to that of Kuo-Petravic et al.5) are as follows; (1) in the
euatorial region, protons flow outward across the closed magnetic lines of
force, (2) corresponding to this, electrons are emitted from the polar region,
(3) quantitative behaviours of the torqidal flow Uy in both cases are similar
to each other and (4) magnetic field lines also have similar configurations in
the equatorial region. We can expect that these features appear when the
frozen-in condition is violated due to the inertial effects. The greatest
difference between our situation and that of Kuo-Petravic is in the space-charge
distribution; though the plasma ‘is charge-separated in Kuo-Petravic's case,
electrons are distributed everywhere in our case so as almost to compensate the
positive charges of flowing protons.

§4. Discussion and Conclusion

We first discuss about the effects of the electron masses. The violation
of flux-freezing dealt with in the above discussion is only for protons. ‘
Electrons are still frozen into the magnetic flux, since their masses are
neglected compared with proton masses (i.e. §+0). If we suppose that 6=1,
however, the inertial term 4xh+fne in the generalized Ohm's law disappears and
instead the term V- (yui+4u) becomes important. This term may play an important
role in the electron-positron plasma, for example, and in the equatorial current
sheet where the scale length expected to be very small. In order to examine
the effects of this term in the electron-proton plasma (in which g§<<7), we must
take the finiteness of electron masses into account at least up to the first
order.

The lowest order equations in the limit of weak electromagnetic coupling
with the effects of finite § are

V. (y,u,) =0, (51a)

3
. 0 1
Yoluy * Vu, f §(i, =+ V) g: = -Vy, + 2gy0WG;), (51b)
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Vxb =0, (51c)
V-b, =0, (514)
Vxe, =0, (51e)
V+e,=n,, (51f)
1-6 , , i,1,
+ —V - 8{v-.¢( + - )} = 0. 51
€, 2y, Yo Ugly T Tl Y, (51g)

In this case we can choose i, =0 instead of i =y u , for the same choice of the
lowest order solutions for the plasma flow and the magnetic field as in section
3-3. In other Words, quasi-neutral plasma can flow across the field lines due
to the inclusion of electron inertia as well as proton inertia.

The first order correction to the current density is shown to have only

¢-component which is given by
/— U, (1) 7
%1 =5 . Gu, 7 () ;; (1 --;) sin 0. (52)

This means that the ¢-component of the motional field, [WXB/0]¢, in the
generalized Ohm's law is balanced by that of the inertial term which serves as

the effective electric field, i.e.,

m
- . . P ..
Ferrlo = "% AT (53)

This fact gives the rough estimate of the ratio between the poloidal components

in a closed magnetic field structure near the eguatorial plane,

B (e/L_)(ec/L )

O o Lo e, (54)
B w

r 1%

where LO is the thickness of the current sheet, Lr is the characteristic length
in the radial direction and wp is the electron plasma frequency. Assuming
Be/Br%Lc/LP, we have from Eq. (54)

L e/L

e r
— v . (55)
r p

We can see from this relation that the thickness of the current sheet is
magnified extremely (i.e. Lc/Lr +») in the limit of weak electromagnetic
coupling, €e~0, although in actual thermal winds the thickness seems to be very
small. From this consideration it is understood naturally that, since Kuo-

Petravic et al.s) have introduced artificially large rest masses for plasma
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particles, the current sheet is largely magnified in their calculation. Also
in a relativistic region the current sheet is expected to expand owing to the
large inertia as shown by them.

As a summary, wevsynthesize in Fig. 4 the results for the three extreme
situations to infer the global structure of actual stellar magnetospheres
including the inertial effects of the stellar wirds. There are three typical

regions in this figure corresponding to the three extreme situations.

Fig. 4. A schematic picture of the global structure of stellar magnetospheres
(drawn only in a poloidal plane). The thick solid curves represent magnetic
lines of force, the dashed curves the stream lines of plasma flow and the
thin solid curves the stream lines of the current density. This picture is
synthesized from the considerations in the three extreme situations and has
correspondingly three regions denoted by I, II (hatched region) and III
(dotted region).

In region I, where the solutions are well represented by those obtained in
the limit of weak magnetic field, the frozen-in condition is almost satisfied
and the stellar wind is bent toward the equatorial plane due to the interaction
between the flow and the magnetic field (see also Fig. 2). In this region,
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unless the rotation of the inertial force vanishes, the poloidal loop current
is produced associated with a little violation of flux-freezing. However, no
accurate calculation can presently be done for this current density.

In region II, the violation of flux-freezing is serious. The wind of
protons blows across the closed field lines resulting in the convection current
which is smoothly connected with the loop current in region I. This type of
solutions are obtained in the limit of weak electromagnetic coupling by
neglecting the electron mass entirely. Since I}c/Llﬁ»OO as ee>0, region II
occupies in this limit the whole space except the polar axis to which region I
converges. If we include also the electron mass, a guasi-neutral plasma can
flow across the closed magnetic lines of force. In the magnetospheres with
powerful thermal wind like the heliomagnetosphere, region I occupies the most
part of them and region II is pressed to a thin current sheet. Nevertheless
according to our picture, all field lines in region I are closed in region II
however elongated they may be. Moreover, since LG/err‘provided that pnr~?,
region II becomes dominant over region I at large distances from the star.
However, this distance is about 1 pc for solar parameters.

Region III forms a so-called dead zone or a corotation zone. In this
region, the effect of inertia is not so important and the magnetic field is
almost the dipole one. The plasma almost corotate with a central star, although,
due to the inertial effect, there is a small poloidal flow across the lines of
force in the outer part of this region. Therefore, the boundaries among these
three regions are not the sharp ones but vague ones. All physical quantities
vary smoothly across them.

To conclude, we have a magnetospheric model in which the magnetic lines of
force take a closed structure as a whole and the stellar wind blows across the
lines of force owing to the inertial effects of the plasma more or less stretch-
ing them and forming a current sheet at about the equatorial plane.
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