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"As a preliminary step for handling the three-body scattering problems,
here we present the following three new methods:"A method of acceleration for
iterative calculations, a method for treating the scattering from a non-local
potential, and a method for treating the three-body breakup channel. Conver-

gence of elastic scattering channel is studied.

Keywords: Three new methods. - Method of acceleration for iterative
calculations. Scattering from non-local potential.
Three-body breakup.

§1. Introduction

For a long time, the study for convergence of perturbation-iteration has

17'6?. Although the development of computers

attracted a great deal of interest
has made this subject less attractive for a simple problem, such as the scatter-
ing from a potential, the study of this subject for more complicated problems

is still very important. For instance, we have used a perturbation-iteration
method in solving the Faddeev equation for the bound state of the triton and
3He7)’8). In these cases, it turned out numerically that the convergence is
very fast. However, we don't know at this moment whether a similar rapid con-
vergence is expected or not when the method used for the bound state is extended
to the scattering state. As a result, we feel a need for exploring a powerful
method for handling the perturbation-iteration.

As a perliminary for solving a three-body scattering problem in a full
scale, we study the problem of convergence in the present paper. Since we have
written several papers on this subject, ;it might be helpful to readers, if we
give a brief review of what we have done in our previous papers, as well as
what we are going to do at the present time. We devote sec. 2 to this subject.

In other words, sec. 2 is an introduction to the present paper in mathematical

*Permanent address: Department of Mathematical Physics, Charles Univer-

sity, 18000 Prague 8, Povltavskd 1, Czechoslovakia.
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language. 1In sec. 3, a new method of acceleration for the iterative calculation
of a Fredholm equation is presented. In sec. 4, some examples for this method
are given for the scattering from a local potential. In sec. 5, the treatment
of scattering problems for a non-local potential is studied in detail. 1In sec.
6, the methods) is applied to the three-body breakup channels. In sec. 7, we
show how to treat the breakup channel neglecting the elastic and closed channel.

§2, Decomposition of Faddeev Equation into Channels

A. Decomposition into channels

As stated in the Introduction, the present paper is a preliminary study
for solving a three—body scattering problem. For this purpose, we decompose
the three-body wave functions into the closed-, elastic- and break-up channels.
Then we study the treatment of each channel separately. This was done in
previous papersg)-ll). However, since we have got some new ideas after that,
we are writing the present paper.

For simplicity, we restrict ourselves to the central potential and to s-
waves. We name three particles 1, 2 and 3. We call the channel 1 such a state
that the particle 1 sits as a spectator while the pair of particles 2 and 3 are
interacting. We express the wave function of the channel 1 by W(l).

Suppose that the position of the particles 2 and 3 is fixed. Then the

(3) and W(Z) representing the final state interactions that took place

waves Y
between 2 and 1, and 3 and 1, respectively, will interfer after the final state
interaction. As a result, the wave function ¥ of the total system may be
expressed as

y=y3) Ly(2) (1)

In general, when all particles are treated symmetrically, ¥ should be represented
) 3.1, 2 ana 3,
v=y(1) oy y(2) 4y (3)

as the sum of V¥

(2)

If we let ©(l) denote the initial state for the channel 1, the Faddeev
equation reads

v ooy e (v 4y (3)

where Gy is the three-body Green's function in free space, tl is the scattering
matrix for the pair 23. Sometimes it is convenient to express Eq. (3) as

(1) _ . (1) (1)
¥ =o +G0tlw , (4)

where the exchange operator P is defined by

py (1) _y(2) | 4 (3) (5)
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We shall suppress the superfix (i) of Eq. (3) if there is no fear of confusion.

If we denote by Kl' K23 and V23 the kinetic energy operator of the particle
1 relative to c.m. of the pair 23, that of the relative motion of 2 and 3 and
the potential acting between the pair 23, the following identity holds,

1 1
Gty = o— — t., = — — V,5. (6)
0’1 E (K1+K23) +1ie 1 E (Kl + K v23) +1ie 23

23 %

In coordinate space, GOtl is always calculated in the limit of e€+0. For sim-
plicity, however, the notation of %i@ is omitted throughout.
We let ¢23 represent the wave function of deuteron, whose binding energy

is -|Ed . The Faddeev equation (3) for the two-body triplet state may be ex-
pressed as

(D _,0 1 py (1)

)
* 1oy [Ed|—Kl+ie<¢23|V23 (7.1)
1 (1)
+ = (1 = [0,5><¢55 IV, ,P¥ 77, (7.2)
E- (K, ¥K,, ¥V, ¥1ic 237%92310V)3

The term (7.1) represents the elastic channel. We decompose the term (7.2) by
a complete set of |¢p>, which is defined by a product of the normalized plane
wave of the spectator 1 with energy Ep' and the spin-angular wave function of
the total system. The term (7.2) is then decompaosed into

_ ! (2) (1) '
(7.2) —[E_Ep>0 dEp|¢p>G0'q t1'q<¢plp\y (8.1)

- ! 1 (1)
Je-g >0 Eplop> 0oy gmg T <0pl<023VasP0' ™ (8.2)
p P d
" (2) v —1 (1) (8.3)
+IE__Ep§0 aB, lo,> 6%l &) =V 3t e, 0<0, v, <o Ry (D),

Here the suffix g represents the energy given by

E =E-E
q o (9)
and Gézé denotes the Green's function of the two-body system
(2) ‘ 1
G = — . (10)
0,9 Eq K, +ie

The term (8.1) is the break-up channel, because both E_ and E_ are positive.
The term (8.2) is a closed channel, because the denominator is positive de-

finite and there is no pole. The term (8.3) is also a closed channel because
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E—Ep<0. At Eq:=f]Edl, this term vanishes as demonstrated in refs. 9,10 and
11.

B. Closed channel

The bound state problem consists only of the term (8.3). For treating
the bound states, we have expressed Géz) t as7'8)
- 9 Tl,9

6l el =lvo. e <y Vot (e -1), (11)

0,9 1,q 23,9" 7q "23,q9' 23 q
with

g |
gq.=l_x . (12)

Here |¢23,q> represents theﬂfirst Sturm-Liouville function of energy Eq(<0).,)\q
being its eigenvalue. The function w23,q is regular at the origin and falls
off as e_qx/x, q==/TﬁZ£§TTE;T at large distances from the origin.

The decomposition (1l) has the following merits: Firstly, the large part
of Géfé tl,q is involved in the first term on the right hand side, which is
separable, and the remainder wq-—l may be treated as the perturbation. 1In fact,
refs. 7 and 8 have revealed that the convergence of the perturbation-iteration
of (wq-—l) is very fast. Secondly, both the first and second terms on the

right hand side are regular at the origin and falls off as e 3°/x at large
6) (2)

t
0,9 1,9’
these two properties should always be taken into account and restrict the

manner of decomposition. Since our approach to the bound state is so success-

distances. Although there are many possible ways of decomposing G

ful, we presume that the same. method may be utilized to the closed channel.

We do not discuss the treatment of closed channels in the present paper.

C. Elastic channel

To treat the elastic channel represented by the term (7.1), we have to
have a method for dealing with the scattering from a non-local potential. In
refs. 6 and 12, a method for this purpose was proposed. The idea was that we
express the non-local potential as the sum of a real symmetric part and an
Hermitian part. Each part can be expressed as the (infinite) sum of separable
terms by respective Sturm-Liouville functions. In practice, we take some
Sturm-Liouville functions that give main contributions as unperturbed part and
treat the remainder as the perturbation.

A numerical example for which only one term is taken as the unperturbed
part seems satisfactorylo'lz). However in these references, this method was
nof tested for all energy. Later, it turned out that we need more terms if

the energy is very low (around 1 MeV). As a result, we should try another
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method that works better for all low energies, say below 25 MeV, since the
merit of this method manifests itself, when the number of unperturbed terms
is one or at most two. In sec.. 4 and 5 of the present paper, we propose

new methods for the treatment of a scattering from a non-local potential.

D. Breakup channel

(2)

The Green's function G0 is real symmetric for a closed channel, but
. . . 14 .
complex and non-Hermitian for the breakup channel. BAs a result, both the
Sturm-Liouville function and the eigenvalue Aq becomes complex. The norm of

this Sturm-Liouville function (the Weinberg function) is not positive definite.

(2)

This makes the accurate and stable calculation of G0 q tl q difficult, if we
(2) '

t
0,9 "1,q :
To overcome this difficulty, we have proposed in ref. 6, the following

14
decompose G for positive energies as Eq. (11).

decomposition to positive energies

(2)

0,q

T S 1 -
tq-—(mq 1) |wq-+1mq Uyy ‘Aq'+i<uq|V5unq> <uq]qu . (13)

r

Here u_ is the spherical Bessel function times vq, and @q is the first Sturm-

g9 . ~
Liouville function so normalized that at large distances‘w23 q behaves as
14
/aigiigfgil . So far as an example shown in ref. 6 is concerned, the decompo-

., L 9%2 . .
sition %13) seemed very promissing.
Concerning Eq. (13), we should remark two things.
(i), A detailed study'>)

mq is useful provided that the potential is monotonic or the repulsive part

has revealed that the perturbative calculation of

is weak. In such a case, the convergence is usually very fast. If the poten-
tial is very non-monotonic, this method is not usefull3).

However, in practice, the operator Qq-—l need not to be calculated in
the perturbational manner. But we can calculate this quantity as a function
obtained by solving a differential equation. In fact, this is the way that
we have adopted in refs. 7 and 8. Therefore, at the present moment, it is too
rush to say that Eg.(13) is useless. In fact, what we should examine is the

convergence of the series
! - n
E[IE—EP>0dEpi¢p>(wq-l)<¢plp] | (14)

as obtained from Egs. (8.1) and (13).

(ii) In Eg. (13), the denominator involves the effect only from the first
eigenvalue. It may be useful if the denominator involves the effects from all
poles. This requirement is satisfied by the following decomposition for S
wave

1
w_>
+ < J >
ql uq| qlwq

o(2)

0, ©

_(2) _
Gy {Jq Jq|

= <u |J
a e ugl gt (15)
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q
wave 221

where w_ is the spherical Hankel function times vg. In general, for a partial

(2) 27 (2 2 15
2 _ 2 n 2
Gy g tq-hgl (Gglq V)T + (G a V)

sy

a(2)
GO,q{Jq

_Jqlwq 1 +<u }J w_>
9" 9’ g

quJq} . (16)

In Egs. (15) and (1l6), Jq is the J-matrix defined in terms of the Green's
function of Jost gq by

J =V+Vg J . 17
q 997¢ (17)
2+1. . 2+1 .
In Eq. (16), [—§—J stands for the integral part of 5 The device of Eg. (16)

for 21 is necessari to let each term on the right hand side be regular at the
origin. On this account, see Appendix A. The denominator 1-+<uq|Jqlwq> is
the Jost function. All poles of tq are given by zeros of this function.

The operator Jq multiplied by a function is obtained by solving a differ-
ential equation as in ref. 7 and 8. 1In the application of Eg.(15) or (16) to
a three-body problem, we should examine ° .e convergence of the series

! (2) n
g (IE—EP>0 aBpl0p> Co,q Tg<0p!P) e
or
5 (2) ) 7] (
' 2 m 2) 2 (2) n 19)
E [JE-Ep>odEp‘d’p> (le (GOIq vyt (GO:q v) Gorq Jq)<¢p!P] )

Derivation of Eq. (15) and (16):

We suppress the suffix. The two-body Green's function G0 is decomposed

as6)

G0=-|w><u| +g, (20)
where g is defined by Eq. (20). The Green's function g is the Green's function
of Jost. It is irregular at the origin and vanishes at large distances.

With the usual t-matrix

t=V+V Gyt =V+V(-|w><u|+g) t, (21)

0
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we define the Jost matrix J by
J=V+VgJ. (22)
If we subtract (22) from (21) we obtain
t-J = Vg (t-J) ~V]w><ul|t
=—1—:lV? V]w><u|t
=-J|w><u|t. (23)

Multiplying by <u| from both sides, we get

<u|t =<u|J - <u|JT|w><u|t

_ 1

If we use Eq. (24) into Egq. (23), we get

_ 1
t= J'J|W>m<ult}. (25)

From Eq. (25), we get Eg. (15)
Now we should remark that

(22-1) 1 1
0y x50 T 2

1 1 I

G ) —
22-1° _2-1

N (26)

x>0

This is regular only for £ =0. Each term on the right hand side to be regular,
we iterate t making use of Eq. (21). Eq. (16) is obtained by this procedure.
Each term on the right hand side of Eq. (16) is regular at the origin.

E. The subjects that we study in the present paper

With the above background, let us describe what we study in the present
paper.
(i) Before studying the series (14) or (18) and (19) that involve a rather
formidable operator P, a new method of acceleration for iterative calculations
of a Fredholm integral equation with a usual éimple kernel is proposed in secs.
3 and 4.
(ii) For dealing with the elastic scattering of three-body problems, we study
the treatment of the scattering problem for a non-local potential in sec. 5.
(iii) The method of calculating the series (14) or (18) and (19) is presented
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in secs. 6. and 7.
In the present paper, the study will be made channel by channel. A
combined treatment of these channels will be the subject of the future papers.

§3. A Method of Acceleration

A. Equation with square integrable kernel

~ In three-body scattering problems, we have to calculate the series given
by Ed. (14) or Egs. (18) and (19). These series have a rather complicated
kernel and we will defer the study to secs. 6 and 7. As a preliminary, let us
consider the iterative calculation of a Fredholm integral equation of the

second kind
¢ (x) = £(x) +Afg K (xx)o(xNax’ . (27)

Here A is a strength parameter. In the potential scattering, K(x,y) is given
by

K(x,x’)=G0(\X,X';E)V(X') ’ (28)

where GO(X,XEE) is the Green's function in free space and V is the interaction
potential.

The function ¢(x) is not usually square integrable. However, in many
cases of interest, a similarity transformation makes the function square
integrable. For instance, if the kernel is given by Egq. (28), we multiply
[V(x)]l/2 from the left of Eg. (27) and obtain the equation

E(x) =n(x) +1[; R(x,x")&(x")dx’ (29)
where

£=v/2y , n=vl/2¢ (30)
and

R(x,x') = [/7(x)]l/2 Gy (x,x") [V(x') 11/ 2, (31)

Since [V(x)]l/2 is a multiplying factor, the properties of Egs. (27) and
(29) as linear algebra should be the same, but £(x) and n(x) are now square
integrable provided that the following equations hold.

(vt 2 Pax= [T () V(x) 6 (x)dx =M , (32.1)
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and
[o1v %8 %ax = JSEx) V(0 Ex)dx =M" . (32.2)

Here, M and M' are finite numbers. Equations (32.1l) and (32.2) are satisfied
by usual potentials.

The Kernel R(x,x") is L2 under the following condition;
Jox|V(x) |[dx=M" , (33)

where M'' is a finite number. The proof of this statement for s-wave is done
as follows. '
The square integral of the kernel ﬁ(x,x') is given by

JIIRGexty | 2ax ax's [fGg (x,%") Gy (x,x") [V(x) | |[V(x') [axdx' . (34)

If we make use of the expression

. 3 ]
Go(x,x')==-%[9(x-x')elkx sin kx' +68 (x'-x) sinkx elkx 1 ., (35)

with the step function

1, for x>0 ,
0, for x<0 ,

B(x) =
the right hand side of Eq. (34) becomes as follows.
The RHS of Eq. (34)

= —lz—j[[e'(x-x') sin %kx + 0 (x-x') sin 2kx']><|V(x) [ |V(x')|dx ax*
X e

2ikx

2 0 . 2 L ' ',2°°l"_ 2 © ' '
= ;5[051n kx |V (x) |axf |V(x )|dx-§;§J0(——EET———) |V(x)|dx]X|V(x ) |ax

=2f?(ffe_2ikgdg)2|V(x)|dx[i|V(x')|dx'§ 2]?x2|V(x)|dxfz|V(x')|dx'

2

<2fox|V(x) lax[ x" |V(x*) [ax’ g 2m" (36)

This proves that the kernel ﬁ(x,x') is L2.

In what follows, we start from Eq. (29) under assumption that £(x) and
n(x) are square integrable functions and define the Hilbert-Schmidt norm |||
of X by

1K I = Yook e,y Paxay . B (37)
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B. Neumann series

If the strength parameter is sufficiently small and satisfies the condition

| A

IRl <1, ' (38)
we can write the solution of Eq. (29) in the Neumann series
E(x) =n(x) +A[7K(x,x') n(x") dx'+>\2f%°ﬁ2(x,x') n(x') dx'+... ,(39)

where

=

®
x—
I

Ifﬁ(x,x")ﬁn_l(x",xﬁ dx"

A A (40)
K, (x,x") = K(x,x") .

If the condition (38) is satisfied, the series (39) is uniformly and
absolutely convergent to the solution £ of Eq. (29)14). On the other hand,
if this condition is not satisfied, the series (39) is usually divergent.

In the three-body scattering problem, we have to calculate the series
such as Eq. (14) or Eg. (13) and (19). If these series turn out to be diver-
gent, we will be in a serious trouble, unless we consider other separations
of Gé?é
sider a new technique of summing up series in a manner that they converge.

tq than those given by Eg. (13) or by Egs. (15) and (16), or we con-

Even when a series is convergent, if it converges very slowly, we will be in
trouble in performing numerical calculations. In such a case, we should con-
sider some method which works well beyond the convergence radius of the Neumann
series. With these background, we shall propose a method of acceleration in

the next subsection.

C. A method of acceleration

First, let us suppose that for a given energy E, A is not an eigenvelue
of K. In the usual case, this is always expected, since the kernel K is
complex and non-Hermitian. As a result, the eigenvalue of K is complex and
not real. On the other hand, we assume that the parameter X is real.

For simplicity, hereafter we write Eq. (29) as
E=n+XKg . (41)

The usual first approximation, taking first two terms on the right hand

side of Eg. (39) reads

£y =n+Xkn . (42)
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Instead of Eq. (42), let us introduce a parameter o and the "accelerated"

first approximation £, as
c1=n+a>\§n (43)

The solution £ is then given in the form

£=cl+u1 . (44)

The function u, satisfies the following equation

1
ul=n1+)\Kul ’ (45)
where
_ . 2;
ny = (1-a) AKn + aX Kzn (46)
Here we note that Eq. (45) takes the same form as Eq. (41). Therefore,

to proceed further, we replace n of Egs. (43) and (46) by ny and define equat-

ions
r,2=nl+ot)\Knl , (47)
and
u, =n2+}\Ku2 (48)
where
N, = (1-a) AKn. +oA?R.n. . (49)
2 1 21

As the function & [Eg. (41)] is expressed as (44), the function Uy [Eq. (45)]

is expressed as
u; =gy tu, . (50)
Combined with Egq. (50), the function & [Egq. (44)] is given by

E=gytiytu, . (51)
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Let up proceed further, defining an operator T(a) by

T(a) = A(1-a)K +,ax2f<2 ) (52)

In terms of this operator, Eq. (49) is expressed as

Ny =T(a)ny (53)

and generally

n =T()n__, s (54)
with
Ng=n -
Repeating the iteration n-times, we obtain
E=Ty 4Ty teeaat +u (55)
where
u =n_+iKu_ . (56)

The solution u of Eq. (56) can be expressed in terms of the resolvent R(A) of
Eqg. (56)

R(A) = (1 - AK) "%, g (57)
as

un=R()\)nn . » (58)

As a result of our postulate that A is not an eigenvalue of K we have
RN || = M(A)< > , (59)
where M(A) is some non-negative function of A. From Eg. (58), we then have

lugll <m0 fin . (60)
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Using Egs. (54) and (60), we finally obtain

u fl <m0 fim@ [® )l . (61)

When the norm of T(a) is less than unity
| T || <1, (62)
it follows from Eq. (61) that

lim || u ||=0 (63)

n-+o

n
and ) t; converges strongly to the unique solution £. n

Lot
) i=1 *
is governed by the operator T (o) and not by the operator AK as it was in the

l=lllere, the most important fact is that the convergence of the series

Neumann series. From the definition (52), we make the following simple state-
ment: The parameter o in Eq. (52) can always be chosen so that the norm ||T(a)l|
K|

is less than or equal to |A

o) || ]r]- ]I Rl - (64)

The choice a=0 and the continuity of T with respect to a ascertain that
this statement is true. As we shall see later by examples, the parameter o
can often be chosen so that

| T) || < 1, (65)

even if |A Rl >1 . n (66)
That is to say, by summingiz Lir We obtain a convergent result for &, even if
the usual Neumann series (39) is divergent.

In concluding this subsection, we should remark that we have discussed
the method of acceleration for Eg. (41) [Eq. (29)]1, but the same method should
be applied to Eq. (27), because the'similarity transformation to the original

equation does not change the iterative properties of the equation.

D. Various choices of o

Now the problem is how to choose the parameter o in order to obtain the
optimal degree of convergence. Let us consider three methods for this purpose.
The first and the most natural way is to choose o so that the norm of

T(o) is minimal, i.e.,

sl T =0 . (67)
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If we obtain a satisfying Eg. (67) and prove that || T(a)]|| < 1, the uniform
convergence is guaranteed. We cannot state, however, this choice leads to the
optimal convergence. Besides, the computation of the norm of T(a) renders a
numerical task. In fact, even in the case of the potential scattering, this
is a complicated operator. We propose, therefore, two other ways of choosing
o which do not require the computation of the norm of T(o). Both are based on
the idea of choosing o optimally at each step of iterations. We note that in
sofar as a is chosen to satisfy

Tl <1 (68)
n
at each step, ) L; converges strongly to the unique solution &£.

The flrs%_method is to choose o; at the i-th step of iteration so that
the projection of ni(ai,x) on a given function Fi(x) is zero.

j";’ni(ui,x)Fi(x)dx=o . (69)

This method is closely related to the variational method. In our calculation,
we have chosen Fi(x) as

Fi(x) =0, _; (x) (70)

As a result, the condition (69) reads

f?ni(ai,x)ni_l(x)dx==0. (71)

n
The series, z ] (x) will be a good approximation to g, if u, is small. By

Eq. (60), if the norm || n || is small, so will be the norm |[u, || Our last
choice is based on this fact. At each step of iterations, we find oy from

the equation

ol ngapli=0, (72)
: |

i.e., |[n; || is minimal at a=a,.

E. Examples

Ex.l Separable kernel

As a first example, we study the separable kernel

R(x,x") = g(x)h(x") . (73)
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The Neumann series (39) converges provided that
AP felgta P axfS h(x) Pax < 1 (74)

However, if we chose a to be

- 1 |
1-afs9(x)h(x)ax , (75)

o

the norm of T(a) is always zero

[l TC) |l =0 . (76)
As a result, the first iteration (43) is exact. This is an example in which
Eq. (64) holds. Also we note that by the choice (75), the condition (71) for
i=1

fong (ag ¥In(x) =0, N

as well as the condition (72) for i =1

3 i =
571—1” nq (o) | =0 | (78)

are satified.

Ex.2

In order to have some quantitative insight into the convergence, let us
consider the following simple equation

£(x) =1 +aff B XL (79)
V1+x2+x'2
The norm || K || in this case is
Nk 1%=74 f}lﬁz =2.558
and the Neumann series converges if
|A] < 0.6252 . (80)

The results of iterations for various choices of o are illustrated in
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Table 1 for A =0.5 and in Table 2 for X =2. The first column uses o determined
by Eq. (67), the second column by Eq. (72) and the third column by Eq. (71).
The last column is the usual Neumann series with a =0. The Neumann series is
convergent for A =0.5, but divergent for A =2, From Table I and II, we reach
two conclusions;

(1) The convergence of the accelerated series is much faster than that of the
original one.

(2) In the acceleration method, the convergence radius is greatly enlarged.

In this case, the accelerated series is convergent if
x| < 46 , (81)
except around the close vicinity of the eigenvalue at X =0.6253,

Table I. Convergence of iterations of Eq. (79) with A=0.5. The first column uses o deter=-
mined by Eq. (67), the second by Eq. (72), and the third column by Eq. (71). The
fourth column is the Neumann series (a=0). The convergent value is E(XO), Xy =
0.973907. The Neumann series converges very slowly.

5 Ba.(6T)  Ea. (72) Eq.(T71) a=0
1 4, 31237 4. 32384 4.32255 1.0
2 L. 31726 4, 31750 4, 31674 1.66604
3 4, 31757 4. 31756 4.31756 2.19736
b4 4.31755 2.62220
5 L,.31756 2.96191
10 3.87L39

Table II. Convergence of iterations of Eq. (79)
with A=2.0., For caption, see Table I,

§4, Applicati i
PP on to the Elastic The Neumann series diverges.

Scattering
v Fa.(67)  Ea.(12)  Eq.(T1) a=0
A. Removal of divergence
1 -0.211685 -0.211820 -0.212006 1.0
In this section, we apply 2 -0.202797 -0.202199  ~0.199009 3.66U17
the method proposed in §3 to 3 -0.202242  -0.202206  -0.202347 12.1653
the elastic scattering from I -0.202208 -0.202160 39.3550
various local and non-local 5 0. 202206 ~0.202208 126,321
potentials. We start from Eq. 6 -0.202205 Lok . L81
(27) with the kernel (28). 7 -0.202206  1294.17

In ref. 6, it was shown

that the Neumann series for

nucleon~nucleon scattering diverges when the relative momentum is less than

-1
about 0.6 fm ~. To get a convergence, the following method was proposedG).
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First, the Green's function is decomposed as

Gy == |Wk><uk|-+§k _ ’ (82)

K wk'l-+1uk , | (83)

where the function @k 1 is the first Sturm-Liouville function for momentum k.
’
See Eq. (13) and below that and also ref. 13. The Green's function ék is

defined by (82). The n-th iteration of the operator appeared in Eq. (13)
[q in Eq. (13) is being written as k] is given by this Green's function as
5" = 147 Gt . (84)
i=1

With the operator (84), the n-th iteration of Eg. (27) is expressed as

(n)

b 5 e - [$l+iZI\(n)lu>]<ulvl¢(n_l)>

’

T(n)

- culvie ™5 (85)

Here we have suppressed the suffix k for simplicity. Since mﬁ“) does not
involve contributions from the first Sturm-Lionville eigenstate, the series
(84) converges, and so does the iteration (85). Numerical calculations of Eq.
(85) was the subject of ref. 13. In the present paper, our concern is to study
the way of improving the speed of convergence of the series (84).

B. Numerical. examples

Let us denote the phase shift calculated from Eq. (85) with the series
(84) by 6n and that calculated from Eg. (85) with the series (84) but applied
the method of §3 by 6 . At each step, o is determined by Eq. (71). We cal-
culate the phase shifts for 1 MeV and 10 MeV for nuclear potentials and for 0.1
eV and l.eV for the atomic potential.

The results are given in Table III for the exponential potential6),

V(r) =-xe %, A=1.8927 fn 2, < =0.8615 fm T, (86)
in Table IV for the Yukawa potentialG)
-Kr - -
Vir)=-2 8, /c=1.5734 fm 1 ¢ -0.6329 fm 7, (87)
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and in Table V for the atomic potentiall5)

V(r) =-2"%Y(1 +;]_;-) -2,

4
_9 2 =-2r 9.4 27 .2, 27 27
(X—--Z- §‘e (r +§I' +9r +—2— +—2—-r+—4-) . (88)
The elastic channel in the Table III. Phase shifts Gn and 6 calculated by Eq.
-d - i i ; (85) for the exponentlal potential (86).
n-d ‘scattering is described as In calculating 6_, the acceleration
the scattering from a nonlocal method is applied to the series (8k4).
. . _.12) At each step, the parameter a_ is deter-
nonsymmetric potential mined by Eq. (71). n
87 Energy 1 MeV 10 MeV
U(Yl ry2) =3
n tan § tan 6 tan & tan 6
n n n n
3 T(yp*yy/2)
Sly oy /2] X,dx 9,4 (x)Vix,) 1 -1.507  -1.150 3.831  5.537
372N 2 -1.197  -1.117 4.659  5.350
-1.13 5.569
x ¢d(/ 2, ) |) (89) 3 0
1% §‘Y1 y2 4 -1.123 5.298
5 -1.119 5.365
=-1.117 5.3k6
where cbd(x) and V(x) denote the 7 ».351

wave function of the deuteron
and the phenomenological nucleon-

nucleon potential, respectively. Table IV. Phase shifts § and 6_ calculated by

The potential V(x) is chosen so Eq. (85) for the Yukava potential (87).
3 For captions, see Table II.
that it reproduces the Sl low

energy data7) . Energy 1 MeVv 10 MeV
—b.x n tan § tan 6 tan § tan 6
V(x) ='hc(—ple Py n n n n
1 -1.h471 ~1.028 26L.7 169.3
+p3e-2p2X 2 -1.083  -0.9641 155.3  158.6
3 -1.002 161.6
L ~-0.9766 158.8
-5p,x
+ -—
(py~P3yle "27)/x 5 -0.9681 158.7
6 -0.9652 158.6
with T -0.96h2

hc =197 MeV fm,

- J
p, =3.1344, p,=1.5502 fm T, Py =7.4616. (90)



With the potential (89), we have
solved the Schrddinger equation

6 = £+PGy US. (91)

We calculated (91) for E=10 MeV
and 26 MeV, reéspectively. The
value of ¢(x0), x0=2 fm is
printed in Table VI. The first
and fourth (second and fifth)
columns show the accelerated
values of ¢(x0), where a; is
chosen by Eq. (71) [Egq. (72)].
The third and sixth columns

show the Neumann series (a=0).
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Table V. Phase shifts 6§ and 6 calculated by Eg.
(85) for the atomic potential (88). For
captions, see Table IIL.
Energy 0.1 eV 1 eV
n tan Gn tan en tan dn tan en
1| -1.271 -0.8755 -9.37Tk  -6.381
2 -0.9416 -0.8502 -6.602 -6.195
3 -0.8761 -0.850L ~-6.301
h -0.8582 -6.223
5 -0.8529 -6.203
6 -0.8512 -6.197
T -0.8507 -6.195
8 -0.8504

Table VI. The value of ¢(x.) at x.,=2 fm obtained as the solution
he non-local potential (89).
second (fourth and fifth) columns are calculated values
for 10 MeV (26 MeV) by the acceleration method.
first and fourth (second and fifth) columns, a. are

of Eq. (91)

chosen by Egq. (71) [eq. (T72)].

for

columns show the Neumann series (a=0).

The first,

In the

The third and sixth

Energy 10 MeV 26 MeV

p 1| Fa.(71)  Ea.(72)  e=0 Eq.(71)  Eq.(72)  a=0
1 0.547 0.526 0.906 0.27h 0.327 9.75
2 0.707 0.768 0.306 0.368 0.360 5.01
3 0.952 0.909 1.22 0.361 0.363 4.38
L 0.996 0.991 0.L4bLY 0.363 3.51
5 1.06 1.0k 1.k2 2.87
6 1.08 1.07 0.L48Y 2.34
7 1.09 1.08 1.56 1.91
8 1.10 1.09 0.469 1.55

C. Concluding discussions

Examples in the present section show that the method proposed in sec. 3

is very useful; the acceleration of convergence is remarkable and the radius

of convergence is substantially enlarged.

This fact allows us to treat the

elastic channel of the n-d scattering by the perturbation-iteration for as

small energy as 10 MeV without making reductions into separable terms

6),12)
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Below 8 MeV, the convergence for this problem becomes.very slow and useless.
In sec. 5, we shall present a method that works even at lower energies.

Let us describe the price that we have to pay to enjoy the fantastically
fast convergence. This, of course, depends on the way of choosing the para-
meter a. If we calculate o from the condition (67), we have to compute ﬁz, ﬁ3,
ﬁ4 and their traces. If we calculate o from the condition (71), we have to
compute two one-dimensional integrals <ni|ﬁni> and <ni|ﬁ2ni> at each step of

iterations. If we calculate o from the condition (72), we have to compute

three one-dimensional integrals <Rnj ﬁni>, <ﬁ2ni|ﬁ2ni> and <ﬁni|ﬁzni> at each
step of iterations.

Of course, there might be some other possibilities of choosing the operator
T(a) than Eg. (52), or of taking the first approximation different from Eg. (43);

e.g.

o o 24
;l-n-+aXKn-+a2k Kzn . (92)

However, the method presented in secs. 3 and 4 certainly enjoys the rapid

convergence with a simple procedure.

§5. Elastic Scattering from a Non-local Potential

As shown in refs.6,10,12,the elastic scattering of neutron from deuteron
[Egq. (7.1)] is represented as the scattering from a non-local potential (89).
In these references, a method for treating this problem was presented. The
basic idea is first to express the non-local potential as a sum of real sym-
metric and hermitian parts and then to express each part as a sum of separable
terms. The separable terms that give large contributions are taken as the
unperturbed part and the remainder is treated as the perturbation. This
method converges very quickly for 26 MeV, but slowly for 6 MeV. At low ener-
gies we need many separable terms. Thus the method is impracticable at low
energy.

In §4, the method of acceleration proposed in §3 was studied for the
potential (89). Table VI shows that this method works well at 26 MeV, but
also impracticable at low energies, say, below 8 MeV.

In the present section, we present two methods that we have studied,
following the general idea of decomposing an operator K into two terms: A
large part is expressed as a separable term and the remainder is treated as
the perturbation.

A, Method I: Decomposition of the non-local potential

We decompose the non-local potential U as
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U(x,y7)U(xq,y)
U(xy,¥1) . (93)

(le) +
1

_-.B
U(x,y)«—UXl’y

The separable term on the right hand side of Eq. (93) is known as the Bateman
approximatioan). It coincides with U(x,y) on two lines x=x; and y=y; (We call-
these lines the Bateman lines). A serious problem is how to choose the point
(xl,yl). If the choice is wrong, the Bateman approximation might be very poor

and
NeBl > (ol . (94)

The set of the Bateman lines (xl,yl) may be found by the following manner.

(1) For each point, we compute the norm || UP|| and find a point for which ||UB
takes a minimum value. (2) For a fixed energy and for each point, we solve
the equation

¢==f-+GOUB¢ (f=sin kx) (95)

by the perturbation iteration [Eg. (95) is a part of Eg. (91)] and look for
the best choice of (Xl’yl)‘

As an example, we studied the second method for E=0.01 MeV and tried to
find (xl,yl) in the range l§x1§4 fm and lgyl§6 fm. We got +the following
results: (1) For this energy, this method converges only for very few choices
of (xl,yl). Actually only two choices have been successful; (2.0, 2.25) and
(2.75, 2.75). The region of convergence is thus very restricted. (2) The
rate of convergence is not very high. (3) If we fix the values of (xl,yl)
at the best choice, i.e. at (2.0, 2.25) and change the energy E, this method
gives convergent results only for E<1l MeV. As a consequence, this method does
not prove to be practical.

It turned out that the best choice for the Bateman lines are xl=2 fm and
y1=2.25 fm below 1 MeV. We illustrate in Table VII. the iterative solution
¢ (x=2 fm) of Eq. (95).

As we see from this table, this method converges rather slowly.

B. Method II: Decomposition of the kernel

In this subsection, we study the decomposition of the kernel K==G0U. We
decompose K similarly to the previous case as

K(x,y,)K(x,,y)
_ B 1 1
K(x,y) —le’y RTx ) . (96)

(x,y) +
1 Y l'yl

The separable term on the right hand side of Eq. (96) is energy dependent.
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Let us define the norms of the Table VII. Solution of Eq. (95) at the point x=2 fm.
operators K and KB by It turns out that x =2, ¥12.25 are the
best choice as the Bateman lines for
small energies. For energies higher than
NO(E)=/§::G(:TKT (97) 2 MeV the series diverges.
E 0.01 MeV 0.1 MeV 0.5 MeV 1 MeV
and n
/r—*——g*——"ﬁ—' 1 0.03591 0.1133 0.2512 0.3515
N(E %),y ) =/T (K7 XKD 2 0.04570 0.1249  0.1216  -7.582-1073
(98) 3 0.05094 0.1288 0.1497 0.2512
where Tr represents "the trace L 0.05290 0.1278 0.1h46 0.7387
of". We calculated the minimum 5 0.05373 0.1276 0.1462 0.1945
NM of N for fixed energies and 6 0.05407 0.127kL 0.1k4k57 0.1125
found the best set of Bateman 7 0.05420 0.1273 0.1458 0.1682
lines (Xl'yl) for each energy. 8 0.05426 0.1304
In this method, the set of the 9 0.05428 0.1561
Bateman lines (xl,yl) coincide 10 0.05429 0.1386
with the Bateman lines for
which the best convergence is
guaranteed. This is not the case for
Table VIDI. The best set of Bateman lines
the method I. The ratio of N /N (X ,¥.) for a given energy. For
is given in the Table VIII. thd rét”’“ /Ny» see Egs. (97)
and (98) and below that.
The results of iterations of
the equation E(MeV) (Xl’yl) NM/NO
¢ =£+K% (99) 1 1.5, 3 0.018
5 ‘ 1.5, k4 0.0kL9
for various energies are given in 10 1.5, 3.5 0.075

Tables IX -XI. For all energies in

Table IX. Eq. (99) is solved.

U being given by Eq. (89).

Table are chosen as x,=1.5 fm and y;=3.0 fm.
See Table VIII.
(99) at x=6.25 fu.

choice for E=1 MeV.
solution of Kq.

The kernel Kp is defined by Eq.

(96) with K=GgU,

The Bateman lines for all energies in this

" This set is the best
This table illustrates the

, B(MeV) 0.01 1 2 4 5 6 10 S

1 0.1983 0.9871 0.4357 -1.941 o 3.627 0.1062 -0.5757
2 0.2080  0.9865  0.4950  -2.Lk5 oy 3.79%  0.1102  -0.5648
3 0.2088  0.986L  0.hok2 2,08k g 3.749  0.1052  -0.5617
L 0.2089 0.4939  -2.070 % 3.754  0.1056 -0.5608
5 -2.113 5 3.759 -0.5606
6 -2.105 ® 3.758 -0.5605
T -2.103

8 -2.10k4
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Table IX (X, XI), the Bateman lines (xl,yl) are taken for the best set of the
Bateman lines for energy E=1 MeV (5 MeV, 10 MeV), namely (xl,yl)=(l.5,3),[(1.5,4),
(1.5,35)]. The convergence in Table X is faster than in other Tables and the

choice of the set of Bateman lines at (1.5,4) probably makes the perturbative

series of (99) convergent for all energies.

Table X. Eqg. (99) is solved. The kernel K, is defined by Eq. (96) with K=G U, U
being given by Eq. (89). The Bateman lines for all energies in this Table
are chosen at x.=1.5 fm and yl=h'fm. This set is the best choice for E=5 MeV,
See Table VIII.” This Table illustrates the solution of Eq. (99) at x=6.25
fm. From this Table, we see that this choice of the Bateman lines yield a
good convergence for the iterative procedure of Eq. (99) for all energies.

nE(MEV) 0.01 1 2 3 5 10 15 C 26
1 -0.04109  -0.134k4 3,488 -3.Lh72 -2.476 -2.108 -1.332 -0.3k09
2 -0.04676 -0.1234 2,956 -L4,113 -2.533 -2.100 -1.336 -0.3679
3 -0.04686 -0.1233 2.782 -L4.182 -2.099' -0.3669
i -0.0L4687 2.847  -4.190
5 2.851  -4.191
6 2.846

Table XI. Eq. (99) is solved. The kernel is defined by Eq. (96) with K=G.U,
U being given by Eq. (89). The Bateman lines for all energies in this
Table are chosen at x.=1.5 fm, y1=3.5 fm. This set is the best choice
for E=10 MeV. See Table VIITI. This Table illustrates the solution of
Eq..(99) at x=2 fm.

nE(MeV) 0.01 1 2 3 5 10 14 26

1 0.02545 0.2513  0.3531 83 0.5065 0.6486 0.7051 0.6901

> 0.02580  0.2555 0.3577 39 0.5149 0.6630 0.7211 0.72h2

3 0.02578  0.2553 ® £ 0.51h4  0.6623 0.7203 0.7215
B o= )

b B 0.7216

5

6

In this method we used a slightly different way of the iteration. At every
iteration step we use for computation of ¢(n)(xi) all previously calculated
(n) .
values of ¢ (x4) s
We have found the following aspects concerning the method II.
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(1)

(2)
(3)

(4)

(5)

C.

The possible region of Bateman lines (xl,yl) for which the method II

wyields convergence is much larger than that for the method I.

does not significantly.depend on energy.

This region

See, Fig. 1 and 2.

The rate of convergence is higher than that in the method I.

It is possible to choose a set of Bateman lines (x

vergence 1is guaranteed for all energies.

l,yl)‘fbr which the con-

The position of the best set of Bateman lines (xl,yl) does not signifi-

cantly depend on energy.

This reduction leads to convergent results even if the potential V is

stronger by a factor 10.

Conclusion of sec. 5

'Y

We may safely use the method II for treating the elastic channel of the

n-d scattering.

Fig., 1. The set of Bateman lines (x ;yl) and the convergence of
the iterative solutions of Eq. (99) for E=1 MeV. The
dark square A4 denotes the most favorable region. The
region marked by a-cross x ylelds a very slow conver-
gence or divergence. The scale of this Fig. is 0.25 fm.
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Fig. 2. The set of Bateman lines (x_,y.) and the convergence of

the iterative solutions of q.%99) for E=5 MeV. BSee Fig.
1 for captions. The scale of this Fig. is 0.25 fm.
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§6. Breakup’Channel I

A. Introduction

In solving three-body problems, the most difficult part in practice. is to
transform the wave function from one set of coordinates to the other. This is
represented by the operator P in Eq. (14) or Egs. (18) and (19).

In the bound three-body system7)’8)

, the wave function of the spectator
is expressed by the plane wave, while the wave function for the interacting

pair does not spread out to large distances, since the energy of the relative
motion of the interacting pair is negative. Besides, the wave functions of

the spectator and the interacting pair are folded to meet the binding energy
of the system, which is negative. As a result, the wave function of the three-
body bound state is restricted in a finite region. This fact makes the treat-
ment of three-body bound states much simpler than that of scattering problems.
In the breakup channel, both wave functions for the spectator and the inter-

acting pair are spread out to infinitely large distances. However, the trans-

formation of the wave functions described by one set of coordinates to another
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can not be done numerically at large distances. As a result, we have to find
an analytical formula for this purpose. In the sections to follow, we shall
demonstrate how we can handle the breakup channel restricting ourselves to a
system without Coulomb force.

‘ We divide this section into two Dparts: First, we discuss the transfor-
mation of the set of coordinate for the spectator wave function. This subject
was treated previouslyll)’7)’8).

However, we recapitulate it in sec. 6B for completeness. Next, using the
formula in sec. 6B, we discuss how to treat the interacting pair. This is
done in sec. 6C.

B. Coordinate transformation of spectator functions

Let |o> denote the spin-angular function in J-j coupling as defined by
Eg. (3-9) of ref.17. We designate by ug(p) the spectator function [Eq. (6-13)
of ref.17]

u, (py) = /% Pi, (PY) . (100)

This function is normalized so that
[Tug (py) u, (p'y) y2dy = § (p-p") (101.1)

and

f?ul(py)ul(py‘)dp==§%7 S{y-y') . (101.2)

We define g to denote the momentum of the interacting pair,

2 an2
3h pz) for E-§é—- 2 >0 . (102)

2_,m
= E- o

The heart of calculations in three-body bound states was to perform the
quadrature of the quantity

agq

wrqy D FTHe) = <af<ug (p) [Pluy (9> F T (x) (103)

as defined by Eq. (7-14) of ref.l17. We have seen in ref.l1l7 that Eq. (103)
is brought to the form "



145

coa

1 oo
“q Fal(x)==2pp1f4,dujL(kx)Appl(aal;u)fox'zdx'ijklx')Fal(X'),

a1q:
(104)
as given by Eq. (8-1) of ref.,17. Here x and x' represent the coordinates of
a pair, say i, and that of another pair, say j. XA and A; are given by
. >
3 > > > P
’>T=l;- + Dy and Ti=-(p + =) . (105)
The.fﬁnctioh A (aag;u) is given by Eg. (8-3) of ref. 17. For bound states,

P
the function F'(x') is decreasing with increasing x'. The FORTRAN program

(PERFECT I) for calculating the quantity (104) was given in ref. 18.

C. Treatment of interacting pair

. Now let us assume that the function F®!(x) in Eg. (103) takes the follow-
ing form

PO (x) = 5 LE. (=) =% x') . (106)
. L, (L +1) f
@i+ S5+ 2 Lo T 40
dx x dx x

In fact, when we iterate the series (14) or (18), (19), we have to deal with
the expression (106). We defer the study of = 0“(x')'to the end of sec. 7B.
In this subsection, we discuss how we can calculate Eqg. (104) if the function
F*!(x) takes the form of (106). .

If we put Eqg. (106) into the last integfal of Eg. (104), we get

fox’axiy (ax) ; 1, (5 = )
1 2+[d +2_<§1__J..1(L1+l)]+0’h
q1 ax2  x ax )

© o o . L |2 ' = O
=2 Oxfaxi Oux [Talaai (q><>—2——1 T +10('h 3 Jox'fax'jp (ax')E Vlx')

= 7 aq _%Lllz‘_fﬁ By fox 2ax jp laxt) 2% (x)
q: - i0 a°
1 m, (o ,2 . ~ O
= =) fox'“ax'j.  (ax') 2 "Hx")
qlz—)\12+i0 'flz In

= [-im6 (@1 = %) + Py ] (ﬁ)j?x'zdx'jm(xlx') =%x') . (107)

1" - M

As a result, Eg. (104) is expressed as
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12 2 n?
m

L P mp?)](%’%)ffx'zdx'jm(qlx')EO“'(x')

Oqpay (x) = —izTer(qx)Ap [ao, ;—(E
1

ardi 1

P

+4JA max

. . 1 m, (® 2 . 201,y
A min )\d)\jL(AX)APPI(Qal,U)P(W) (hz)fox' dX'JLl (}\1X')_ i X ) ’

(108)
Here, we have changed the inﬁegral over u to that over A as in ref. 17.
Also, we made use of the identity
2 2 2 2

q: =i =g” =217 . (109)

For given values of p and 1 the first term on the right hand side is
separable, and hence easily calculated. The second term involves the principal
18)

Now only remaining problem is to study the method of calculating the last
integral ]?xzdij(qx)Eu(x). If 2Z(x) is of short range with respect to x, this
integral can be calculated numerically.

value integral, which can be calculated with some care

§7. Breakup Channel II

A, Breakup amplitude

In this section, we derive the breakup amplitude. For the purpose of
studying the manner of calculations of the breakup channel, here we neglect
contributions from the elastic énd closed channels. Namely, we approximate
Eq. (7) by

(1) _ (1) ! - (2) (1)
¥ =0 +fE_Ep>0dEp|¢p>G0’qtllq <¢p|P‘¥ (110)
For simplicity and to be explicit, we write this equation as
|¥>=]e>+]["ap|u, (p)>|a>G(§2) (@) t_(q)<a|<u, (p) |PY> . (111)
o ,a a 2

Except the region of integration, the notations in this equation are in con-

formity with ref. 17. The operator Gézé(q)ta(q) was given in the from of Eqg.
14
(13), (15) or (16) which take in general the form of

Gé?;(q)ta(q) =A_(q) - lBa(q)>Fa(q-)<Ca(q) | . (112)
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Putting Eg. (112) into Eq. (111), we get
[v> = |8>+ ][ "aplu, (p) > |0>a (q)<a ku, (p) |PY>
[0
-gf dplu, (p)>]o>[B,(q) >V, (a) (113)

where

v, (@) =Fa(q)<Ca(q)l<a]<u£(p)|PW> . (114)

We introduce the operator B defined by

B = [1'—Zf'dpP|u£ (p) > [a>A  (q) <a|<u, (p) =t (115)
o

and express the equations for P|¥> and Va(q) in the form

p|¥>=B(P|¢> - ][ dpp|u, (p) > [a> B, (@) >V, ()] , (116)
Qo
V,(q) +0LZ'I dp'Maq,a.q.Va. (@") =F_(q)<C,(q) |<0Ll<u£(p) |BP|®> , (117)
where
Mog,arq' = Fal@ <Cal@ [xgige - (x>, (118)
Xorqr x) =<al<ug (@) Xy, 00> (119)
Xyrg' =B Plug, (e >]a’>[B_, (q")> . (120)
If we use Eqg. (120), Eg. (116) reads
P|W>=Bp|q>>-§j deOLan(q) . (121)

Suppose that we have calculated the function BP|3> as well as the function
agq
X(xq' a'q" (%), MOLq,OL'q' and Va(q),
successively. Hence let us assume that all guantities on the right hand side

of Eg. (121) are calculated.

From the function Xa'q" we can calculate ¥

By definition,

ug = /a3, (ax) , w_ = V/ah, "' (gqx), (122)
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where h( )(qx) is the spherical Bessel function defined by Messiahlg). From

Eq. (20), the Green's function Gézé behaves asymptotically as
’

(2) ei(qx-%Lw) ' . .
Go,q o0 ~IMguglmd = <dplax")| . - (123)

As a result , the breakup amplitude for the channel 1 with momentum p and
spin-isospin o is obtained by Eq. (11l1l) as

o (1,B)

0rp =-<jL(qx') [ta(q)<oc|<u2(p) |p|y>. | (124)

On the other hand, Eq. (15) and Eq. (16) read respectively,

(2) (2) 1 =
G qtq = %0 q g q|wq>l+<u T v <uq|Jq] , for L=0, (125)
qa''q''q
and )
L-1
[——1] L-1
(2) _al(2) 2 (2) (2) (=] . (2)
0,q q Go VI ) (G, v+ (G, g .V) -2 GO’q {g
n=0
. 1
= J_ |w_> <u_|J_ 11, for L2z21. (126)
q ql+qhwqw$ q'"q

Putting Eq. (125) and Eq. (126) into Eq. (111) , we express the amplitude
(124) as - g

(1L.B) _ __. 1 ,
T a,p <JL=0(qx)|[Jq q‘ q - 2T¥<u |Jq|wq> <uqqu]
<al<ug (p) |P[Y¥> for L=0. (127)

We can use this expression for L21, if the partial wave is not coupled. 1In
general, however,

L-1 -
N (2) , B4 12)

(l B) .

== 4
arg =-<Igta@x)| VI nzo (Gg g M+ (6L W Gy gl
1
Jqlwq>l-+<u T s <uq|Jq}]<u|<u£(p)]PlW> , for Lzl . (128)
q' g’ q
The amplitude obtained from the decomposition (13) is not so neat as

Egs. (127) and (128). By this reason, we shall not consider Eg. (13) in the
present paper any more. Also since essential aspects of our formulation
becomes clear if we demonétrate it for Egq. (127),.we shall not discuss Eqg.
(128) from now on.
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We remark that the factor Fa(q) of Egq. (112) is

1
Fald) =135 [T Tw > (129)
S e |

for Eg. (127). 1If we use Eg. (121), the first term on the right hand side of
Eg. (127) reads

_<jL=0(qx)|Jq<a|<u£(p)|P|W> = -<jL=0(qx)|Jq<a|<u£(p)BP|®>

R aqg .
+OLZ,I dp' <ip_o(@x) [Tgxg e (X)>V 0 (ah),
(130)

where we have used Eq. (119). The second term on the right hand side of Eq.
(127) reads

SIp=g(@x) 134 W T, (@) <C, (@) [<a]<uy (p) |PY>
= <Ji=0 (@) IJq|wq>Va(q) . (131)

Here we have used the definition (114). »
If we put Egs. (130) and (131) into Eg. (127), we obtain

(1,B)

. ' . o
a,p =" In=g (@) [Ig<al<ug (p) [BRIO> + | [ dp'<ip_o(@x) [Tgxgiqe o (x) >
[0

XV (@") + <3 o (@) IJqlwq>Va(q) . (132)

In conclusion, what we have to calculate are the functions <QI<u2(p)|BP|®>,

xa.q.aq(x) and V_(q). Here, the function V_(q) is caleculated by Eq. (117),
once the first two functions are calculated. As seen by Egs. (119) and (120),
two functions <a]<u2qn|BP|®> and Xa,q,aq(x) are of a similar structure. There-

fore, from now on, we will concenrate ourselves to the treatment of the
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. ogq
function Xa'q' .

B. Treatment of function Xa,q,uq

If we make use of Eq. (115), the function X,1q+ defined by Eq. (120) is
expressed as an integral equation A '

Xyq =Pluy(p)>[a>[B, (@) > + a'"f dp"Plu.,L..,(p")>\o¢">Aa.. (q")<oc"1<u£..j(p") 1%y
(133)

Here, the operator A, (q) and the function 4Bq(q)> is obtained by comparing
Egs. (112) and Eq. (125), as ' ‘

(2) 5 ' ' (134)

2al® =Gg g Ig
and
|B_ (q)> =c!? g |w > . (135)
a 0,9 "a''q

If we use the transformation coefficient Aulqlaq defined by Eg. (103),
we obtain the integral equation for xa,q,aq by utilizing Egs. (119) and (133)

as

od _

Xargr ™ =Bgepr PIBauta) >+ ][ a0 A PR (@, L (36)
We solve Eqg. (136) by'theﬁterative ﬁrocedure.

Xd'q'aq ;Zoxu;q'qq(m) ~asmn
with

a'q;aq(O)}=Aa'p'uPJBa;(q|)% , (138)
and

Xa.q,uq(m):=Zfldp"Aa;p"apAa"(q")Xa.q.a"q"(m_l) . | (139)

o

Equations (134), (135), (138) ahd (139) show that in the course of cal-
culations, we have to perform integrations of the form (104). Besides, the
function F'!(x) appeared in Eq. (104) always take the form of Eq. (106). By
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comparing these equations, we see that the function qu(x') in Eq. (106) stands

201 g1y = g > for Eq. (138), (140)

q'|wq'
and

(anu (m-—l)

5% (x) =33 Xy for Eq. (139) . (141)

Since both of these functions are short ranged, we can numerically calculate
Eq. (108).

aq (m)

C. Calculation of Xa'q'

In this section, we demonstrate the method for calculations of Eg. (138)
[Eg. (139)] with the function Ba.(q') [the operator Aa"(q")] given by Eg. (134)
[Eg. (135)].

(i) Calculation of Eq. (138)

The equation (138) is calculated by Eg. (108), making use of Eq. (140).
From Eq. (17), we see immediately that the function Jq.lwq.> is a product of
potential and the Jost solution fq,,

4> =V-£f .
Jq'lwq' q' (142)

with

f +g _VE_, . (143)

v a''tq

q' q'
The Jost solution is obtained by solving the Schrddinger equation for the
potential V with the boundary condition that it behaves as Wy at a large
distance from the origin. Since the Jost kernel gq.V is of the Volterra type,
we obtain the solution numerically by simply integrating inwards.

(ii) Calculation of Eq. (139)

Eg. (139) is calculated by Eq. (108), if we make use of Eq. (141). Here,
what we have to demonstrate is the method of calculating J_,X., 'aq(m—l)’
oq (m-1) g ta'q

when Xqtg? is known. For this purpose, let us introduce a function

Xu,q,“q(m)(x) defined by

og(m=-1) _ og (m)
anxavq- —VXO‘qu . (144)
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By Eq. (17) Xa'qlaq(m) satisfies the integral equation
og (m) _ ag (m-1)
XOL'q' —-(1+9’quq-)Xa|q|
- aq (m-1) og (m)
_Xalql +gq.VXq-q| (145)

This integral equation is solved by a simple iterative procedure with the

boundary condition that at a large distance from the origin the solution is
ag (m~-1)

alql

converges for the usual class of potentials satisfying the condition (33).

given by ¥x . As in the case of the usual Jost solution the iteration

D. Singularity of the operator'AgED"

The operator Aggp" defined by Eg. (108) is singular for some values of
p and p". The singularity is logarithmic and arises from the pincipal value
integral in the last term of Eq. (108). It appears if
2 2 2 2
E! =>‘max or g :Xmin

i,e. for ' p" =Pg =i(-123- t’i—g—%pz) . (l46)

In the neighbourhood of Pg the last term of Eq. (108) behaves like

2
q%-B -p"%+pp"

" ln I 2 p2 "2 w |
q“-§"-p"“-pp

(147)

For computation of Xg?q' from Eq. (136) we have to integrate such function over

p
(147) is finite and so is the integral on the right hand side of (136).

Integral over p" of a function which has logarithmic singularity like

Appendix A. Proof for regularization in Eg. (16)

In this section, we prove that Eg. (16) is reqular at the origin for a
partial wave %. For simplicity, we suppress the suffix g and keep only the
suffix 2.

The function Wy behaves near the origin' as
(22-1) !t

w .
2 x>0 X2+l

(A.1)
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As a corollary, let us demonstrate that once the function W, is multiplied by

GOJ, this behaves as

(22-1)11

1 1 1
L 56 zern 2 T =T

;E:T . (A.2)

GOJW
Proof:- With the explicit expression of Ggr we get

' . : S 2
GOsz = hz(x)fgjg(x')Jwg(x')x'2dx'-+]Q(x)th£(x')Jw2(x')x' ax'.
(A.3)

To see the behavior at small x, we divide the integral [: into two parts
jxc-+fm , where x~ is a sufficiently small fixed value. For small x, Eg. (A.3)
X Xc ¢

behaves as

 Ju (22-1) 1 x __x't (-1 2

0" " x>0 (22+1)1!x“l 0 (2e+1) 1! X,5L+l

dx’

%
X X (22-1)1t.2 2
jXe ({2A-l)it;2

NN IESARE] AL dx ' (A.4)
‘ x

(A.4) leads (A.2).
x—(£+l)

Now we observe that once the function W, that behaves as is
multiplied by the operator GOJ, the singularity is reduced to x—(l—l). Further
if the function GgIw, is multiplied by GOV, the singularity is further reduced
to x *73) | 1n fact, we have

(22-1)11 1 1 1 1 1
GnVG,HJIW (5+ 55 (T + 55=7) —— (A.5)
0"70% "2 x»0 (22+2)2 2 22-1""4  22-3 XZ 3

In this manner, we see that Egq. (15)[Eg.(16)] is regular at the origin
for the s-wave [the partial wave of 2z1].

One of the authors (J.H.) thanks to the Ministry of Education of Japan
for providing him the fellowship.
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