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Fracturing in the Solid Earth

Hiroyuki Nagahama*

ABSTRACT

In the Solid Earth, fracturing is a pervasive phenomenon: weathering, explosion, impact,
faulting, earthquake and so forth. Several empirical studies on fractures have demonstrated a
power-law dependence of the cumulative number N (r) of fragments of which sizes are larger than
size r, N(r)~r~2. This i1s taken as evidence that the fracturing is a scale-invariant process
concerning the size distribution. Therefore, fractures can be described from the viewpoint of
fractal. This description derives mathematically Gaudin-Schuhmann relation and Charles’
relation and is sufficiently in incorporation of the three theories on size reduction: Rittinger’s,
Kick’s and Bond’s theories. The fractal dimension (D) provides a measure of the relative
importance of large versus small objects and is related to both energy density for fracturing and
Weibull’s coefficient of uniformity (w) when the “size effect” of tensile strength is taken into
consideration. Fracture surface is also a typical example of fractals. The specific surface area
S of each fragment is plotted as functions of the mean fragment size 7. Then the surface fractal
dimension D’ can be defined by S~ #2'-%. The D’-value for fractures increases as the energy of
fracturing increased. This indicates that the surface fractal dimension D’ can be a measure of
fracture intensity. By analyzing the self-affinity of fracture trace curve, however, the fracture
trace actually seems to be self-affine but not self-similar. Similarly, the growth pattern of
various fractures, such as faults, pull-apart basins, landslides, crater morphologies and stream
patterns, over a wide range of size scales is not necessarily isometric (self-similar). Therefore, the
scaling law should be represented as Cy = C{, where Cy, and Cx are scale ratios on ¥ and X
between fractures in scale. Moreover, this relation can also be extended to the relation between
individual and system of the fracture and the relationship between the displacement and
thickness of the ductile shear zone.
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1. INTRODUCTION

Fracturing is a pervasive phenome-
non : weathering, explosion, impact,
faulting, earthquake and so forth.
Takeuchi and Mizutani (1968), Hart-
mann (1969), Turcotte (1986, 1989) and
Mizutani (1989) have discussed fractures
in a wide range of size scales. A variety
of statistical power-law relations have
often been used to correlate data on the
size distribution of fragments (ex.,
Gaudin, 1926 ; Schuhmann, 1940 ;
Hawkins, 1960 ; Hartmann and Hart-
mann, 1968 ; Hartmann, 1969 ; O’Keefe
and Ahrens, 1985). A power-law rela-
tion between number and size is by
definition a fractal (Mandelbrot, 1982).
This 1s taken as evidence that fracturing
1s a scale invariant process concerning
the size distribution.

Since Rittinger (1867) proposed his
theory on size reduction, a number of
theories on size reduction have been
developed empirically and theoretically.
Among them, Rittinger’s, Kick’s and
Bond’s theories have widely been refer-
red to. However, many discrepancies
between these theories and actual size
reductions have arisen.

Therefore, Section 3 describes frac-
turings from the viewpoint of fractal and
material strength. This desecription
derives a variety of simple power-law
relations on fracturing and is sufficiently
in incorporation of the three theories
mentioned above. Then the present
author discusses theoretically the size
distributions of fractures in the Solid
Earth.

When a piece of material is fractured,
the fracture surface is rough and irregu-
lar. The shape of the fracture surface is
affected by the material’s microstructure
such as grains whose characteristic

length 1s large relative to the atomic
scale, as well as by macrostructure such
as the size, the shape of a specimen, and
the notch from which the fracture begins
(Mandelbrot et al., 1984).

Most fracture surfaces have been found
to be fractal with the surface fractal
dimension D’ greater than 2 (Avnir et
al., 1983 ; Mandelbrot et al., 1984;
Cahn, 1989). In this case, surface frac-
tal dimension D’ is shown to be a meas-
ure of roughness and irregularity of the
fracture surface. By the fracture experi-
ments of glass, Nii et al. (1985) pointed
out that the fractal dimension of the
fracture surface can be used to estimate
the energy of fracturing, and can be a
useful parameter of the nature and
process of fragmentation. The surface
fractal dimension D’ can represent not
only the degree of irregularity of the
fracture surface but also a measure of the
intensity of fracturing.

By the research of San Andreas fault,
Aviles et al. (1987), Okubo and Aki
(1987), and Power et al. (1987) insisted
that the shape of seismic faults is also the
fractals. On the other hand, Dieterich
(1978), and Okubo and Dieterich (1984)
pointed out that the fault roughness
influences the physical properties of

fault on the frictional instabilities by the

frictional slip experiments. Therefore,
quantitative considerations of scaling
law on the roughness and irregularity of
fracture in the Solid Earth and its
measurement are also important subjects
of structural geology and seismology.

In Section 4, the present author will
explain the relation between the energy
density of fracturing and fracture sur-
face. Then, for testing the suitability of
fractals for describing the scaling of
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fracture surface in the Solid Earth, he
will examine several natural surfaces in
the rock over a wide range of size scales.
These results have significant implica-
tions about the scaling of both surface
topography and mechanical properties of
fractures.

Many quatitative studies of scaling of
fractures, namely, fault, joint, crack and
so forth, have been conducted by Allégre
et al. (1982), Mandelbrot et al. (1984),
Brown and Scholz (1985), Scholz and
Aviles (1986), Power et al. (1987), Aviles
et al. (1987) and Power et al. (1988), by
considering the roughness of fracture
surfaces as geometric parameters. How-
ever, there are few studies on both grow-
ing processes and scaling laws on fracture
sizes such as displacement, thickness or
length (ex., Ranalli, 1977 ; Scholz, 1982 ;
Watterson, 1986 ; Hull, 1988). Quanti-
tative considerations of scaling laws on
fracture sizes in the Solid Earth and
their measurements are important sub-
jects of structural geology and seismo-
logy. One of the effective approaches is

to examine empirically the relationships
among the fracture sizes in the Solid
Earth on greatly different scales (Hull,
1988).

Therefore, in Section 5, the present
author explains the relation between the
growth pattern and a power-law size
distribution of fractures and the growth
pattern of fractures on the Solid Earth is
allometric. Then we will find the scal-
ing property of fractures.

By these scaling law on size distribu-
tions, shape and growth pattern of frac-
turing, we can compare the mechanical
properties of fractures in the Solid Earth
of great different scales. To take an
instance, we can discern the mechanical
properties of large fractures on a regional
scale on analogy of fractures on the
microscopic scale by the aid of these
scaling laws. Therefore, the purpose of
this paper is to examine the extent of
similarity concerning the size distribu-
tion, shape and growth pattern of frac-
tures in the Solid Earth.
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3. FRACTURING AND FRACTAL DISTRIBUTION

a. FRACTALS

In order to understand the scale in-
variant process or a phenomenon in a
wide range of sizes, Mandelbrot (1977,
1982) has introduced a fractal concept.
A fractal distribution N (7), such as frag-
ments (ex., Hartmann, 1969) i1s defined
as

N(r)y~r? (1)

where r, N(r) and D denote a charac-
teristic linear dimension, the cumulative
number of objects larger than r and the
fractal dimension, respectively. No
characteristic length scale enters into the
definition (1). If scale invariance ex-
tends over a sufficient range of length
scales, the fractal distribution provides a
useful description of the applicable sta-
tistical distribution. The fractal dimen-
sion D provides a measure of the relative
importance of large versus smail objects

/ /
/
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Fig. 1. A collection of 3-dimensional hyper-
cubes with various sizes (hatched ones),
which are arranged randomly. In this
case, J =64, I =16, D=3 log 16/log 64=
2.0.

(Mandelbrot,
1989).

1977, 1982 ; Turcotte,

b. FRACTURING

Fracturing is an irreversible pheno-
menon. It breaks rocks into a big collec-
tion of pieces with no apparent size scale,
a fractal distribution. In order to ex-
plain how dose such a fractal distribu-
tion result in a fracturing, the present
author proposes a fracturing “cascade”
model as follows.

Suppose a hypercube with sides R,
and a huge strain energy. In the first
step, divide it into J subcubes with sides
R, = R,J ~'3(J >8), and choose random-
ly I subcubes to hatch (Fig. 1). In the
second step, divide each of I subcubes
into J sub-subcubes with side R ,=
R,J-13=R,J %3, and choose randomly [
sub-subcubes to hatch. Repeating the
same procedure, the hypercubes with
side R, = R,J ~"/® will be newly hatched
in the n-th step. Let the hypercubes be
fragments and suppose that the energy is
dissipated by fracturing the I hyper-
cubes and not in the others (J —7I) in
each step. Then, the total energy for
fracturing has decreased from those in
the J fragments of size R, into those in
I(< J) fragments with size R, ,,. This
phenomenological model is similar to
that of Matsushita (1985), Sammis et al.
(1986) and Turcotte (1986,1989) for
fracturing and resembles the 3-model on
the energy transfer cascade in a fully
developed turbulent flow by Novikov
and Stewart (1964) and Frisch et al.
(1978). The set of these energy-
dissipated regions has fractal dimension :

D=3log I/logJ (2)
0<D<3.

In the volume of side R=R,, the total
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number of the hypercubes with side r=
R, 1s (R,/R,)*=(R/r)® and the total
number of the hypercubes in the dis-
sipated regions in (R/r)?. If we meas-
ure the dissipated region with the scale r,
the volume V, of the dissipated region is
(R/r)Pr3. Accordingly, the occupation
ratio P, of the volume V, of the dissipat-
ed region versus the whole volume V = R3
18 given by
P,=V,/V=(R/r)>=*=(R/r)*, (3)
1=3—D. (4)

Now, let E, be the average dissipated
energy per unit volume in the dissipated
region, then

ETV:ETVT (5)

where FE, is the energy in the whole

region. In (R/r)? hypercubes of side r,
E, is given by
E,=EP~'~r " (6)

The relation (6) represents that E, 1is the
r-dependence and 1s equivalent to
Walker-Lewis’ relation given by

E=Crnt? (7)

(Charles, 1957 ; Schuhmann, 1960 ;
Tartaron, 1963) where E is the energy
input of fracturing per unit volume of
material and C is the constant. Com-
parison of (6) and (7) gives ’
pu=n—1 (8)

In this model, the dissipated energy is
not equal to zero in only D-dimensional
set of hypercubes. This assumption
indicates that they are uniform in the
D-dimensional set and are filled uni-
formly with the whole body when ;=0
(D =3).

When the dissipated region has D-
dimensional fractal set, the cumulative
number N (r) of fragments (hypercubes)
of which size are larger than r 1s given by
the relation (1). The incremental num-
ber dN(r) is related to the incremental
mass dM (r) of fragments as

AN (r)~r—3dM/(r). (9)

From (1) and (9), we can get

M(r)y~r—P+3 (10)
where M(r) is the cumulative mass of
fragments with a radius (volume!’?) less
than r. This relation (10) is equivalent
to Gaudin-Schuhmann relation given by

M(ry [ r]*

=17 ()
where M, is the total mass, g is related
to the mean size of fragments, and & 1s

constant.
From (10) and (11),

h=3—D. (12)

Therefore, combining (4), (8) and (12)
gives Charles’ relation

h—n+1=0 (Charles, 1957).

When the h-value (or n-value) is large,
there are a larger number of coarse frag-
ments and less dispersion and vice versa.
From the relation (4) and (12), we can
infer that the h-value (or =n-value) is
related to the fractal dimension (D) of
the set of the dissipated regions.

c. ENERGY-SIZE REDUCTION RELA-
TIONSHIPS IN FRACTURING

(1) Three theories on energy-size
reduction

The present status of the theory on size
reduction of material is extremely un-
satisfactory. The basic underlying
concept has not been known well as yet.

Rittinger (1867) postulated that the
energy for size reduction would be pro-
portional to the area of new surfaces
created by fracturing. Rittinger’s hy-
pothesis can be stated mathematically as
follows :

__ surface area ar?
weight — (x/6)r*-§

)

=3 (13)

S : specific surface area, r : particle size,
J : specific gravity.
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Therefore, S is inversely proportional to
the particle size. When particles are
reduced in size from r, to r,, the energy
input of fracturing per unit volume E is
given by

E=C,(1/r,—1/n) (14)

where C, is a constant.

Kick (1885) proposed, instead of Rit-
tinger’s hypothesis, that the energy for
fracturing depends only upon the reduc-
tion ratio, and that equivalent amounts
of energy should result in the equivalent
ratio of size reduction. An original
mathematical treatment of Kick’s theory
is introduced by Bond and Wang (1950)
as follows :

Let p be the energy in hp — hr per ton
required to reduce one ton of rocks of size
r to size r/2. 'This represents one reduc-
tion step, and f steps are required for
reduction to size r/n. The reduction
ratio is given by n=27. Taking the
logarithm of it gives f=Ilogn/log?2.
The total input energy is the sum of that
for each step. In the first step, size r is
reduced to r/2, and in the second step
size r/2 is reduced to r/4. In the final
step, r/277! is reduced to r/27. The
number of particles per ton increases 2°
times at each step. Therefore, the total
energy E for fracturing is

E=p+23p(271)%+(2%)2p(272)3
+(23)°p(273)3 4--ee e +(23)7 !
p(2'7)3 =fp=(log n/log 2)p.
(15)

The relation (15) depends on the reduc-
tion ratio n =27, and is independent of
particle size. When the size is reduced
from 7 to r,, the energy input of frac-
turing per unit volume E is given by

E=C,logn=0C,log(n/r.) (16)

where C, is a constant. Moreover, the
relation (16) can also be derived from the
consideration based on the principle of
similarity as applied to the fracturing
process (Andreases, 1957).

Bond (1952) has proposed that since

neither Kick’s nor Rittinger’s hypotheses
seem correct for fracturing a compromise
between the two would be more applica-
ble. Bond’s theory is introduced as fol-
lows: The strain energy in a cube is
proportional to its volume r3 The
strain energy effectively follows the
newly formed crack surface, with area of
r 2. Then the proportionate energy
absorbed 1s r?® which is intermediate
between r2 and r®. Variance of particle
number of similar shape in a unit volume
1s as much as 1/7% so that the energy
input per unit volume should be propor-
tional to #2%/r® or 1/,/r. Therefore,
when the size of particles is reduced from
r, tO 15, the energy input of fracturing per
unit volume E is given by

E=C,(l/yr—1/yr)  (17)

where C, is a constant.

(2) Fractal theory on energy-size
reduction

In the brittle materials with cleavages,
as a varlety of minerals, new fractures
are created as the input energy increased.
In this case, Rittinger’s theory is suita-
ble. On the other hand, when the elas-
tic energy stored in very hard materials
arrives at the maximum permissible dose,
the materials are broken into fragments
similar in shape. In this case, Kick’s
theory is suitable. But these two types
of fracturing cooperate in the actual
fracturing. In this case, it 1s concluded
from the relation (6) that the energy for
the size reduction is proportioned to r”
where D is the fractal dimension of the
set, of the dissipated hypercubes. Thus,

Table 1. Fractal dimension D and three the-
ories on energy-size relation.

Theory on energy-size reduction D n
Rittinger’s theory 2.0 2.0
Bond’s theory 2.5 1.5
Kick’s theory 3.0 1.0
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in the size reduction of particle from size
r, to 7, the energy input of fracturing per
unit volume E 1s given by

E=Cy(r,"?—n"7?) (18)

where C, 1s a constant. The three old
theories mentioned above are sufficiently
general to be incorporated into this
theory.. The energy relation (18) is the
same as Kick’s theory when D= 3.0 (n=
1.0), Bond’s theory when D=2.5 (n=1.
5) and Rittinger’s theory when D=2.0
(n=2.0) (Table 1).

d. THE SIGNIFICANCE OF FRACTAL
DIMENSION D

According to the summary on fractal
of fragments by Turcotte (1986, 1989),
the D-values in a wide range of size
scales vary considerably but most lie in
the range 2<D<3. When the fractal
dimension is less than 3, the volume
(mass) of small fragments is negligible.
When the fractal dimension is greater
than 2, the surface area of small frag-
ments dominates. Volume (mass) 1is
conserved through fracturing while sur-
face area increases. The creation of
surface area by fracturing requires ener-
gy. Thus Turcotte (1989) infers that the
fractal dimension will increase with an
increase of the energy density available
for fracturing. The relation (18) indi-

cates the Turcotte’s hypothesis. By the
a 3‘0 ® L]
(o] L [ J [ ]
2 s
C
el o
5 297 ¢
©
°
o
L 20 T T
60 70 80 9.0

log (energy density;erg/g)

Fig. 2. Fractal dimension D of the fragment
size distribution vs. the energy density.
(Data from Matsui et al., 1982).

fracture experiment of tuff (Matsui et al.,
1982), the fractal dimension (D) of the
fragments seems to become steep with an
increase of the energy density (Fig. 2).

By the renormalization group studies,
Turcotte (1986) shows that the fractal
dimension (D) is a measure of the frac-
ture resistance of materials and predicts
fragile materials to have a smaller fractal
dimension. The present paper demon-
strates that D-value is related to the
fractal dimension of the assemblage of
the energy-dissipated hypercubes. But
from a viewpoint of fractal, D-value
dose not give us a specific value concern-
ing the fracture mechanism. Thus in
this section the present author will dis-
cuss the relationship between D-value
and the fracture mechanism from a
viewpoint of the material strength.

Majima and Oka (1969) and Oka and
Majima (1969) assumed that the fracture
1s only possible when the tensile stress
reaches the tensile strength of the rock
and proposed that the energy for size
reduction is proportioned to the 3(1—
2/w)th order of particle size r, where w
1s a coefficient of uniformity when ‘“size
effect” of tensile strength is taken into
consideration. When particles are re-
duced from size r, to size r,, the energy
input of fracturing per unit volume FE
can be given by

E=C,(r, 5% —r,~5w) (19)

where (,, is a constant relating to tensile
strength, Young’s modulus of the rock, a
standard size and the number of particles
of standard size (Majima and Oka, 1969 ;
Oka and Majima, 1969). Thereafter,
from the experimental study, Kanda et
al. (1969, 1970) proposed that E can be
given by

E:Oy(727k/w—T1Ak/w) (20)

where C, and % are constant. In this
relation (20), the k-value is determined
to be 5 by the disk splitting experiment
and is determined to be 6 by the sphere
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splitting experiment. The relation (20)
holds for a single particle. Such an
approach can be extended to the
comminution of particles by using statis-
tical methods (Schuhmann, 1960). In
fact, the relation (20) permits an accu-
rate energy calculation for selected
comminution experiments (Majima and
Oka, 1969; Oka and Majima, 1969).
Therefore, combining (18) and (20) gives

D=3—Fk/w. (21)

The relation (21) indicates that the
D-value is related to the Weibull’s coeffi-
cient of wuniformity (w) when ‘‘size
effect” of tensile strength is taken into
consideration. When the volume of
material 1s constant, the relative disper-
sion of material strength decreases as
w-value increases (Weibull, 1939a;
1939b ; Mogi, 1962a). Therefore, it is
concluded from the relation (21) that the
fractal dimension (D) increases as the
relative dispersion of the strength de-
creases.

e. SIZE DISTRIBUTIONS OF FRAG-

MENTS IN THE SOLID EARTH

(1) Size distribution of fault gouge
Generation of fault gouge may be

related to displacement of a shear frac-

ture or a fault. Fracturing or milling of

fault fragments reduces the size rapidly.

Then the translation and rotation of
particles as rigid bodies without much
milling result in a decrease in the rate of
change of medium size. Therefore, the
evolution of fault gouge can be charac-
terized with the aid of cumulative fre-
quency curves.

Specimens from four active fault zones
were used to characterize the fault
gouges (Fukushima, 1984MS): (A) the
Sodezawa Fault, Nagano Pref., Chubu
District, Japan; (B) the Kizugawa
Fault, Kyoto Pref., Kinki District,
Japan; (C) the Hananoki Fault, Mie
Pref., Kinki District, Japan; (D) the
Atotsugawa Fault, Gifu Pref., Chubu
District, Japan. KEach curve 1is con-
structed by the correlation between the
cumulative percentage of grains (by
volume) and the grain size of fault gouge
on a double logarithmic scale (Fig. 3).
Here these size distributions are straight
lines at some angle to the abscissa. By
these results, it is concluded that the size
distribution of fault gouge can be repre-
sented by the Gaudin-Schuhmann rela-
tion (11). Therefore, the slopes of the
curves are equal to (3— D)-values of the
size distributions of fault gouges. The
D-values of fault gouge lie in the range
from O to about 2.6. They may increase
as the distance from the fault plane (slip
plane) decreases. In other words, the

Table 2. Power-law relation of fracture size.

r P

Source

Detail

Fault length 0.52

Kodama (1976)

Normal fault (Experiments)

1.30 Yamaguchi & Hase (1983) Lineament
1.70, 1.95 Ohno & Kojima (1988) Lineament
Fault width 0.39-0.94 Ogata (1976) Fracture thickness
0.39-0.94 Ogata & Honsho (1981) Fracture thickness
0.60, 1.40 Ohno & Kojima (1988) Fracture thickness
Joint length 0.30, 0.80 Segall & Pollard (1983) Joint
Crack width 0.78-1.50 Watanabe (1979) Micro-crack
Displacement 0.30-1.40 Kakimi & Kodama (1974) Normal-slip fault
0.30-1.40 Kakimi (1980) Normal-slip fault
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D-value of fault gouge increases as the
faulting process proceeds. Therefore, it
is concluded that the D-value of fault
gouge can be a useful parameter of the
nature and process of faulting, such as
the intensity of shear fracture or the
activity of faults.

(2) Size distributions of fractures in
the Solid Earth

The previous workers (Table 2) have
detected distributions of fracture size,
such as length, width and displacement
on the ground surface. All of these
distributions take power-law distribu-
tions as:

N(r)y~r=* (22)

where r and N(r) denote the fracture
size and the cumulative number of frac-
tures larger than r, respectively, and P is
constant. The relation similar to (22)
also represents the frequency-magnitude
relation for earthquake (Aki, 1981),
where the square root of the area of fault
break corresponds to r in the relation
(22). This relation has been traced to
the size distribution of seismic faults by
Wesnousky et al. (1983). It is notable
that the power-law form of relation (22)
holds over a wide range of fracture sizes
and for any sampling size. The power-
law frequency distribution (22) is similar
to the fractal distribution (1).

Ranalli (1976, 1980) has derived the
distributions of fault lengths from the
stochastic model of faulting. His model
is afforded by the Kolmogorov-type
breakage process. However, the size
distribution derived from Kolmogorov-
type breakage process is not the power-
law distribution but log-normal distribu-
tion (Kolmogorov, 1941 ; Aithchison and
Brown, 1957). In the section (3—Db), we
can find that a pair of fracture sizes
forms a power-law distribution. This
derivation 1s simplest one from self-
similarity assumption which is different
from Ranalli’s (1976) assumption. This

suggests that relation (22) indicates a
self-similarity in frequency-magnitude
and is apparently valid for various frac-
ture scales from microcrack to large
fault; not only the fault results over the
long geologic past but also seismic fault.
In other words, fracturing in the Solid
Earth is also regarded as a scale-
invariant process concerning the size
distributions.

According to the power law relation of
fracture sizes (Table2), the most P-
values lie in the range O0<P <2. Be-
cause the relation (22) is detected on the
ground surface which is regarded as a
cross-section through self-similar hyper-
cubes shown in Fig. 1, the P-value is
equal to the fractal dimension of the
cross-section of the fragments hypercubes
and lies in the range O0< P <2. Wata-
nabe (1979) discovered that the P-value
about crack width trends to decrease as
the rock porosity increases. Kakimi
(1980) pointed out that P-values about
fracture displacement appear to be relat-
ed to the tectonic conditions in the fault
region, such as the homogeneity of
mechanical structure, stability of stress
distribution and sharpness of regional
deformation. These facts suggested that
the P-value actually reflects the rock
properties and tectonic conditions which
are related to the structural uniformity
(w) discussed in Section 3—d.

(3) Gudenberg-Richter relation

The frequency-magnitude relation for
earthquakes relation i1s also similar to
relation (22). Under many circum-
stances, the number of earthquakes
N (M) with a magnitude greater than M
satisfies the empirical relation (Guden-
berg and Richter, 1954)

log N(M)=—bM +a (23)

where a and b are constants. The b-
value is widely used as a measure of
seismicity. Aki (1981) showed that the
relation (23) is equivalent to the defini-
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tion of fractal distribution (1). Turcot-
te (1989) introduces that as follow :

The moment of an earthquake 1s
defined by :

M,=énd (24)

where £ is the shear modulus, A is the
area of the fault break and 7 is the mean
displacement on the fault break. The
moment of the earthquake can be related
to its magnitude by

log My=gM +h’ (25)
where g and h’ are constants. Kanamori
and Anderson (1975) have established a
theoretical basis for taking g¢=1.5.
These authors have also shown that it is
a good approximation to take

M, ~r? (26)
where r=A'? is the linear dimension of
the fault break. Combining (23), (25),
and (26) gives,

N(r)~r-2® (27)
This relation (27) is equivalent to the

relations (1) and (22).
(21), and (27) gives

D=3—k/w=2b (28)

The relation (28) indicates that the
fractal dimension (D) of regional or
world-wide seismic activity is simply
twice the b-value as a measure of seis-
micity and is related to the energy
density for fracturing and the Weibull’s
coefficient of uniformity (w) in the Solid
Earth. By the results of laboratory
experiments of the fracturing of various
materials, Mogi (1962b, 1967) pointed
out that the b-value increases with both
the increasing degree of heterogeneity
and increasing density of cracks in the
medium. The relation (28) is not con-
tradictory to Mogi’s (1962b, 1967) results.
Therefore, the b-value gives some infor-
mation about mechanical structures of a
seismic region, such as the degree of the
structural nonuniformity of the earth’s
crust.

Combining (1),

4. FRACTURING AND FRACTAL SURFACE

a. FRACTAL SURFACE AND ENERGY
DENSITY FOR FRACTURING

Fractals are the concern of a new
geometry (Mandelbrot, 1982), whose
primary objective was to describe the
great variety of natural structures that
are irregular, rough, having irregularities
of various sizes that bear a special scal-
ing relationship to one another (Man-
delbrot et al., 1984). Crushed fragments
are sieved into several fractions and have
the irregular and rough fracture surfaces.
Fracture surface is also a typical exam-
ple of fractals (Mandelbrot, 1982 ; Nii et
al., 1985; Brown and Scholz, 1985).
The specific surface area S of each frac-
tion is plotted as functions of the mean
particle diameter 7 (Nii et al., 1985).
The surface fractal dimension D’ 1s
defined by

S~ '3

(Avnir et al., 1983). (29)

Fractal geometry characterizes the scal-
ing structure of a fracture surface by D’-
value that can range from 2, when the
surface is smooth, up to 3 (Avnir et al,,
1983 ; Mandelbrot et al., 1984). This
surface (2<D’<3) is called fractal sur-
face.

By the fracture experiments of the
glass, Nii et al. (1985) pointed out that
the surface fractal dimension of frac-
tured glass increases with the impact
energy of fracturing (Fig.4) and is a
measure of the intensity of fracture.
This indicates that the surface fractal
dimension D’ of the fracture surface can
be used for estimating the energy density
of fracturing, and can be a useful param-
eter of the nature and process of fragmen-
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Fig. 4. Surface fractal dimension D’ as a
function of the energy density (Data
from Nii et al., 1985).

tation. Therefore in the next subsec-
tion, the present author will examine the
surface fractal dimension of fault frag-
ments.

b. FRACTAL SURFACE OF FAULT
FRAGMENTS

The empirical relations between the
mean diameter and the surface area of
fault fragments have been summarized
by Kanaori et al. (1980) and Kanaori et
al. (1982). These studies indicate that
the specific surface area S is plotted as
functions of the mean particle diameter 7
for fault fragments (Fig.5) and S in-
creases as 7 decreases. The power-law

Table 8. Surface fractal dimensions D’ of fault fragments.
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Fig. 5. The specific surface area S (cm?/cm?)
as function of mean particle diameter 7
(mm). ©: Straight Creek tunnel. @:
Henderson Mine tunnel and Haulage
tunnel (Data from Brekke and Howard,
1973).

relations (29) can express these empirical
relations and surface fractal dimensions
of fault fragments can be obtained from
the slopes of these relations. The sur-
face fractal dimensions of fault frag-
ments are summarized in Table 3.
According to Table 3, the D’-values of
fault fragments lie in the range from 2.47
to 2.74. These results indicate that the

MTL : Median Tectonic

Line.
Fracture D’-value Source
Atotsugawa F. (Amodani) 2.57 Kanaori et al. (1982)
(Makawa) 2.50 Kanaori et al. (1982)
2.70 Kanaori ¢t al. (1980)
MTL (Yoshinogawa) 2.74 Kanaori et al. (1980)
(Kinogawa) 2.62 Kanaori et al. (1980)
Neodani F. 2.66 Kanaori et al. (1980)
2.72 Kanaori et al. (1980)
Straight Creek tunnel 2.47 Brekke & Howard (1973)
Nast tunnel, Henderson 2.47 Brekke & Howard (1973)
Mine tunnel, and Haulage tunnel
Weathered rocks 2.60 Nossin & Levelt (1967)
Same particle sizes 2.00
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D’-value increases with increasing inten-
sity of faulting. Therefore, the D’-
value can be a useful parameter of the
nature and process of faulting.

c. SELF-AFFINITY OF FRACTURE AND
FAULT GEOMETRY

Since the geometrical similarity of
fractures (fault, joint, crack and so forth)
was examined (Tchalenko, 1970 ; Tchal-
enko and Ambraseys, 1970 ; King, 1983 ;
King and Nabelenko, 1985), many quan-
titative studies of scaling of fractures
have been conducted by Allegre et al.
(1982), Mandelbrot et al. (1984), Brown
and Scholz (1985), Scholz and Aviles
(1986), Power et al. (1987), Aviles et al.
(1987) and Power et al. (1988), using the
surface roughness of fractures as geo-
metric parameters. They pointed out
that the irregularity of fractures can be
characterized quantitatively by a fractal
dimension or power spectrum and there

is a remarkable similarity among the
fracture surfaces. However, Power et
al. (1987) found that the roughness of
fault surfaces can not be described by a
single parameter and the amplitude of
the topography increases in an approxi-
mate proportion to the wave length
under consideration. Then, they point-
ed out that the fault surface dose not
seem to be self-similar and is strongly
anisotropic. Therefore, the vertical
variation of fault trace must be scaled
differently from any horizontal one.
When given patterns are scaled differ-
ently in different directions (or scaled
anisotropically), they are called self-
affine fractals. For testing the suit-
ability of fractals for describing the scal-
ing of fault trace, the self-affinity of the
fault trace will be examined by the
scale-independent analysis (Matsushita
and Ouchi, 1989) in this subsection.
Measure curve length, N, and standard

(A)

Z

l 0.4mm
X

(B)

1
Tmm

Z W‘“

X

[ 0.1mm

1
1mm

Fig. 6. Fracture surface. A: Westerly Granite, 2.5 vertical exaggeration (after Power et
al., 1988), B : Natural joint surface, 10 x vertical exaggeration (after Brown and Scholz,

1985).
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deviations for two appropriately chosen
coordinates, X and Z, of a curve in two
dimensions between many arbitrary
pairs of points on the curve by using the
smallest fixed scale (yard stick) for many
pairs of points on the curve and check by
log—1log plots of X and Z versus N
whether they scale as

X ~ NHx (30)
Z~NHz (307)
where the exponents Hy and H, are in

general different. If so, they are then
related to each other as

Z ~XH (31)
(a)
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ez
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Fig. 7.

H. Nagahama

where the exponent H is given by
H=H,/Hy. (32)

We can check the scaling relation be-
tween the exponents because H charac-
terizes the self-affinity of curves. Let us
apply the method to a real fault trace.
Fig. 6A illustrates a fracture trace shown
by Power et al. (1987). Regarding this
curve as being given, we calculated the
curve length N and standard deviations
of coordinates X and Z (Fig. 6A). We
repeated the procedure for many pairs of
points. The results are shown in Fig.
7A, where X and Z are plotted against
N. As is expected, the standard devia-
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Dependence of the standard deviation of two coordinates X and Z on the curve length

N between many pairs of points on the fault trace shown in Fig. 6. A: Westerly Granite
(after Power et al., 1988), B : Natural joint surface (after Brown and Scholz, 1985).
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tion of the X coordinates is proportional
to the trace length, i.e., X ~ N and Hy—=
1. On the other hand, that of the Z
coordinates shows an approximate de-
pendence of Z~ N7z with H ,=0.57.
The fact that the fracture trace such as
the one shown in Fig. 6A is approximate-
ly self-affine with Hy=1 and H,<1
means that they can be represented by a
fractional Brownian motion with H =
H,=0.5.

One more example is given in Fig. 6B,
which was taken from natural joint sur-
face (Fig. 1; Brown and Scholtz, 1985).
We again calculated the dependence of
the standard deviations of X and Z
coordinates of this curve, on the curve
length N. The results are shown in Fig.

7B. As is expected, the standard devia-
tion of the X coordinates is proportional
to the curve length, i.e., X ~ N and Hy, =
1. On the other hand, that of the verti-
cal coordinates shows approximate de-
pendence of Z~ N#z with H ,=0.78.
This fault trace is a self-affine curve with
H,=1 and H,<1.

The present author has applied a sim-
ple and useful method (Matsushita and
Ouchi, 1989) to analyze and check the
self-affinity of fault trace curve. These
results indicate that the fault trace seems
to be self-affine and not self-similar.
The relation (30) and (30") may be useful
to investigate the self-affinity of fault
trace.

5. ALLOMETRIC GROWTH OF FRACTURE ZONES

a. FRAGCTAL DISTRIBUTION AND
ALLOMETRIC GROWTH

Let N(X) and N(Y) be the cumula-
tive number of two different kinds of size
parameters X and Y which are depend-
ent. If N(X) and N(Y) can be repre-
sented respectively by,

NX)~X ™ (33)
N(Y)~Y > (33)
where Dy, and D, are constants, the rela-

tions (33) and (33") give the relationship
between two size parameters :

Y ~ X% (34)
where the exponent £ is given by
B=Dx/Dy. (35)

The power-law relation (34) has been
quite common and used for the descrip-
tion of the growth pattern in biology and
paleontology. Huxley and Teisser
(1936) first termed it allometric growth,
and depicted the growth of one part
relative to that of the whole body or a
standard part. According to this study,
the correlation of the geometric size
parameters Y and X of growth pattern
could be expressed as a general form by

the power-law relation (34). Thereafter
the theory of allometric growth has been
developed by biologists and paleonto-
logists (ex., Hamai, 1941; Reeve and
Huxley, 1945; von Bertalenffy, 1960,
1968 ; Gould, 1966 ; Rosen, 1967).
Relation (34) can be derived from the
theory of allometric growth as follows
(ex., Rosen, 1967) : ’

Let Ry=(1/X) (dX/dt) and Ry=(1/
Y) (dY /dt) be the relative growth rates
of X and Y, respectively. If R,/Ry is
a constant, say 3, and 4X and 4Y are
the values of (dX/dt) and (dY/dt)
integrated over an infinitesimal period of
time At, then

AY ) 4X =pY/X. (36)

We approximate equation (36) to con-
tinuum and obtain the following equa-
tion :

dY /dX =pY / X. (37)

Relation (37) means that the ratio of
infinitesimal increases of Y and X
within an infinitesimal time increment is
proportional to size ratio (Y /X). The
general solution of this differential equa-
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tion (37) is expressed by a power-law
form as relation (34). Hence, it is con-
cluded that if R,/R, is a constant g
then the relationship between Y and X
obeys the power-law form as relation (34)
and the growth pattern is, by definition,
“allometric™.

The parameter g of the relation (34) is
the ratio between the relative growth
rate of one part of the growth pattern
and the relative growth rate of the refer-
ence part of the growth pattern. Hux-
ley and Teisser (1936) defined isometric
as a special case of allometric, where the
growth rate of one part is proportional to
the reference part, which corresponds to
the case of #=1. In this case, the simi-
larity keeps strictly through the growth
process and the growth pattern is strictly
self-similar. On the other hand, the
growth pattern where A=1 1s called
anisometric. In this case, similarity
does not hold through the growth process
and the growth pattern is self-affine.
The relation (34) together with (35) is
useful to investigate the self-similarity of
growth pattern.

b. GEOMETRIC SIZE PARAMETERS
OF FRACTURE

Ogata (1976) proposed the relationship
between the thickness 7'(m) of breccias
and the length L(m) of faults in granitic
rocks as follows,

L—48 T0%. (38)
Moreover, Ohno and Kojima (1988)

mathematically predicted that the rela-
tionship between the fault length and

thickness may be expressed by relation
(34) from the power-law distributions of
them. These indicate that the growth
pattern of faults 1s allometric (especially
self-affine).

Similarly, the relation (34) has already
been found among geometric size para-
meters of various fractures in the Solid
Earth : stream patterns (Hack, 1957),
landslides (Fujii, 1969), pull-apart basins
(Aydin and Nur, 1982 ; Ito, 1989), and
crater impact morphologies (Baldwin,
1965 ; Pike, 1967, 1974). These indicate
that the growth patterns of these
phenomena are also allometric. Wol-
denberg (1966) and Pike (1967) have
already adopted the idea of allometric
growth for river systems and crater
impact morphologies, respectively.
According to various fractures in the
Solid Earth it should be emphasized that
the idea of allometric growth can be
extended to the geometric size para-
meters of fractures, not only river sys-
tems and crater morphologies but also
faults, landslides and pull-apart basins.

c. DISPLACEMENT AND GEOMETRIC
PARAMETER OF FAULTS

The theory of allometric growth can
depict the growth of one part relative to
that of a standard part. Thus when we
regard the displacement of a fault as a
standard part, we can investigate the
relationship between the displacement
and other geometric size parameters of a
fault.

Table 4. - Relationships between the displacement D,(m) and the length L(m) of faults.

Relationship Source Details
Dy,=10"510[12 (Iida, 1965) Earthquake fault length (Dip-slip)
D,=10+01 092 (Iida, 1965) Earthquake fault length (Strike-slip)
D,=0.02 L7 (Ranalli, 1977) Fault length (Strike-slip)

=0.02 L log L
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Table 5. Relationships between the displacement D,(m) and the thickness 7'(m) of faults.

Relationship Source Details

,=9.6 T+10 (Otsuki, 1978) Fracture thickness (Experiment)
D,=114.8 T*07 (Otsuki, 1978) Minor fault thickness
D,=56.2 T (Otsuki, 1978) Fault thickness (Strike-slip)
D,=51.29 Tt17 (Miyata, 1978) Fault gouge thickness
D,=2.11 T2 (Kojima et al., 1981) Minor fault thickness
D,=31.5 T3¢ (Kojima et al., 1981) Micro-fault thickness
D,=4.65 T2 (Kojima et al., 1981) Fault breccia thickness
D,—=94 T0833 (Robertson, 1983) Fault thickness

(

D,—63 T

Cataclasite thickness

(1) Relationship between size para-
meters of faults

The empirical relations among thick-
ness 7' of gouge or breccia, length L, and
displacement D, of faults have been
proposed by many workers (Table 4, 5).
These studies indicate that the empirical
relations can be expressed by the power-
law relation (34) and are allometric, not
necessarily self-similar. But these data
correspond to different faults of various
sizes, not a single fault at different posi-
tions of ones. Blenkinsop and Rutter
(1986) noted that individual faults may
exhibit D,— T relationship and its rela-
tion is different to that of the global
population. However, 1t 1s pointed out
that the New Jersey fault shows the same
positive correlation of individual faults
as they do for the fault population (Hull
et al., 1986 ; Hull, 1988). Hence, these
relations (Table 4, 5) represent the aver-
age trends of faults.

Ranalli (1980) has already adopted the
idea of allometric growth for the length
and offset of the brittle strike slip faults.
According to relations of faults (Table 4,
5), 1t should be emphasized that the idea
of allometric growth can be extended to
the relationship between any two differ-
ent kinds of fault size parameters, not
only L and T, but also D of faults.

(2) D,— T relationship of ductile
shear zones

Figure 8 summarizes the published
data on displacement D, versus thickness
T of natural mylonitic zones dominated
by intracrystalline plasticity, from differ-
ent geological environments. The thick-
ness of mylonitic zones is defined here as
the sum of these constituents. In almost
all cases, the displacement along the
mylonitic zones was calculated by using
the simple-shear assumption and deflect-
ed foliations. A few mylonitic zones
have the certain net slip (Mitra, 1979 ;
Sgrensen, 1983). All of the data were
reported from metamorphie, igneous, or
highly consolidated sedimentary rocks.

This empirical relationship between
D, and T of mylonitic zones, which
ranges in size from order 102 (m) to 10°
(m), can be expressed by the following
regression relation, :

D, =24 T (39)

with a correlation coefficient »=0.99.
This result is slightly different from
Mitra’s (1979) or Hull’s (1988) results,
due to the additional data for large
mylonitic zones. The positive relation
is expected, as thickness is actually plot-
ted against 7§ where § is the average
shear strain, rather than independently
measured displacement (Hull, 1988).
Because the exponent value of the rela-
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Fig. 8. Correlation between the displacement D,(m) and the thickness 7'(m) of mylonitic

zones on double logarithmic scale.

tion (39) is nearly equal to 1, § is const-
ant irrespective of the size of mylonitic
zones.

From pseudotachylite zones cutting
the Lewisian gneiss in the Outer He-
brides, Sibson (1975) proposed the rela-
tionship between thickness and separa-
tion with a correlation coefficient y =0.
94 as follows,

D,="1277 T, (40)

This relation (40) is a significantly better
fit than a linear relation, and indicates
that the change in displacement for a
given change in thickness is larger as the
size of pseudotachylite zone increases.
That is to say, the thicker the pseudo-
tachylite zone, the higher the tectonic
activity proportion of D, versus 7.

The relationship for mylonitic zones
and pseudotachylite zones can also be
expressed by the power-law form as rela-
tion (34). Because relations (39) and
(40) deal with an ensemble of mylonitic
zones or pseudotachylite zones, the rela-

tions (39) and (40) represent average
trends of the mylonitic zone and pseu-
dotachylite zone, respectively.
Therefore, it should be emphasized
that the idea of allometric growth can be
extended to not only the D, — T relation-
ship of faults, but also D,— T relation-

ship of ductile shear zones such as my-

lonitic zones and pseudotachylite zones.
In this paper, “ductile” means the strain
in which material continuity is main-
tained or in which discontinuity is very
small.

d. INDIVIDUAL AND SYSTEM OF
FRACTURES

The relationship between the cumula-
tive size (r¢=737;) of a fracture size or

fragment size and the largest size (7payx)
of them can be expressed by
(41)

1/D
Tmax ~ Ts !

(see Appendix). Moreover, noting m
~r®, the relation (41) can be written by
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W?’max"’msl/D (42)
where my,, is the largest mass of frag-
ments and mg(=321m,) is the camulative

mass of fragments. Since we can iden-
tify fpax(max) With an individual of a
fracture system and ry(m,) with the
population in the fracture system, the
relations (41) and (42) indicate that an
individual in a fracture system is related
allometrically to system of the fracture.
Therefore, the relations (41) and (42)
indicate the growth constraints of a frac-
ture in a fracture system.

The power-law distribution has an
upper limit of fragment size. Gault et
al. (1963) determined this limit from a
number of laboratory and field experi-
ments. In this study, he developed a
relationship between the largest frag-
ment in the ejecta basket and the crater
size. This relation is given by

Mypax = 0.2 m 5. (43)

This relation (43) indicates the size of
the largest ejecta fragment increases with
crater size. In this result, we can
recognize that the growth constraint of a
fracture in a fracture system is given by
the relation (42).

e. SCALING LAW OF FRACTURES IN
THE SOLID EARTH

Kanamori and Anderson (1975) and
Scholz (1982) found a linear relationship
between the thickness of a fault and the
amount of slip during a single seismic
event, and proposed a scaling law as
follows,

Oy: CX
Cy= Yz‘/Yja c :Xi/Xja (44)
?:,jil, 2, ...... , N

where dimensionless Cy, and Cy are re-
spectively defined as scale ratios on Y
and X between faults (¢ and j) of differ-
ent size scales. The growth pattern
shown by the relation (44) is isometric
(self-similar). Scholz (1987) has derived
a model based on wear theory which
predicts a linear relationship between
displacement D, and gouge thickness 7.

On the other hand, Watterson (1986)
and Walsh and Watterson (1988) derived
the relationship D,~ W? where W is the
length of semi-major axis of top loop, on
the basis of an “arithmetic” growth
model. This “arithmetic” model bases
on that the ratio between the amount of
slip and fault length is constant for all
slip events of a single fault. This condi-
tion means that slip always occurs when
the shear stress on a fault plane reaches a
fixed critical value and ceases when the
amount of slip is sufficient. to have reduc-
ed the stress to another fixed value
(Walsh and Watterson, 1988). This is a
special case of the anisometric growth,
where =2 and can not be expressed by
the relation (44).

According to various fractures in the
Solid Earth, the growth pattern of frac-
tures over a wide range of size scales 1is
not necessarily isometric (self-similar).
Therefore, the scaling law of fractures
over a wide range of size scales should be
represented as:

Oy = OXﬁ. (4:5)
Moreover, this relation (45) can also be
extended to the relation between indi-
vidual and system of the fracture and the

D, — T relationship for the ductile shear
zone.

6. CONCLUSIONS

This study of fractures in the Solid
Earth can be summarized as follows :

1) Several empirical studies on frac-
tures have demonstrated a power-law

dependence of the cumulative number of
fragments of which sizes are larger than
size r, N(r)~r=2. This i1s taken as
evidence that the fracturing is scale
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invariant process concerning the size
distribution.

2) Fractures can be described from a
viewpoint of fractal. This description
derives mathematically Gaudin-
Schuhmann relation and Charles’ rela-
tion and is sufficiently general in in-
corporation of the three theories on size
reduction : Rittinger’s theory, Kick’s
theory and Bond’s theory.

3) The fractal dimension (D) pro-
vides a measure of the relative import-
ance of large versus small objects and 1s
related to energy density for fracturing
and the Weibull’s coefficient of uniform-
ity (w) when the “size effect” of tensile
strength is taken into consideration.

4) The D-values of fault gouge may
increase as the faulting process proceeds.
Therefore, the D-value of fault gouge
can be a useful parameter of the nature
and process of faulting, such as the inten-
sity of shear fracture or the activity of
faults. Moreover, the P-values of frac-
tures in the Solid Earth may reflect the
rock properties and tectonic conditions.
These results are in incorporation of
Conclusion (3). This may be suitable to
the b-value as a measure of seismicity.

5) Fracture surface is also a typical
example of fractals. The specific sur-
face area S of each fraction is plotted as
function of the mean particle diameter
of the fault gouges. Then the surface
fractal dimension D’ can be defined by
S~ 723,

6) The D’-value of fault fragments
may increase with increasing intensity or

activity of faulting. Therefore, the sur-
face fractal dimension D’ may be a
useful parameter of the nature and proc-
ess of fault.

7) This author checks the self-affinity
of fault trace curve by the scale-
independent analysis (Matsushita and
Ouchi, 1989). These results indicate
that the fault trace seems to be self-affine
and not self-similar.

8) The growth pattern of wvarious
fractures, such as faults, pull-apart
basins, landslides, crater morphologies,
and stream patterns, over a wide range of
size scales is allometric and not necessari-
ly 1isometric (self-similar). Therefore,
the scaling law should be represented as
C,=C4*. Moreover, this relation can
also be extended to the relation between
individual and system of the fracture
and the D,— T relationship for the duc-
tile shear zone.

The new theoretical concept introduc-
ed in this paper is the fractal concept for
fracturing in the Solid KEarth. The
fractal concept can derive a variety of
simple power-law relations for fracturing
and is sufficiently in incorporation of the
empirical relation for fracturing in the
Solid Earth. A question arises why the
fracturing in the Solid Earth is scale-
invariant process and by what kind of
mechanism the scaling exponents (D, D',
H, ) are determined. To solve it one
has to know details of dynamics of
fracturing, which is a very difficult
problem open to the fracturing.

7. APPENDIX

Now, let r, be the cumulative fracture
size in a fracture system. Then 7, can be
approximated by
r— [ Td[,ﬁ]:f“ DO

s rmin rP rmin 7071
1 D

=DO [~ = gt Ot

rmin T2 D

where 7,;, is the smallest size of one.
Therefore,

C= 7‘s'rminl—D [ D1 J

D (a)

Here, let 7,,, be the largest fracture size
of a fracture system. Then,
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C

'rm ax

1=

(b)

Combining (a) and (b), the relationship
between r; and 7., is given by

D—1
'rmax:OUD:{Ts'rmm[ D J}

or

1/D
Tmax ~ Ts .

This mathematical derivation is equal

to the Beckmann’s (1958) allometric

growth model for the city pouplation.
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