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 Abstract  : A deuterium/hydrogen Lyman a absorption cell photometer has been devel-
     oped for the Nozomi spacecraft which is the Japanese first planetary spacecraft to Mars. 
     This photometer aims to observe the Martian hydrogen and deuterium corona and their D/ 

     H ratio. Unfortunately, the Nozomi spacecraft project ended in failure by engine and 
     telemeter trouble during the insertion phase to Mars in December 2003. In this paper, we 
     summarize the performance of the developed D/H absorption cell photometer and the 
     results of simulation studies on D/H ratio retrieval from Martian corona measurement. 

1 Introduction 

   There is no evidence on the existence of massive liquid water in the present climate 

system of Mars. However, from the geological features of massive water flows on the 

Martian surface, it is suggested that Mars had enough water to form a global layer 500 

m thick or greater in the past (Carr, 1979, 1986, 1987, 1990). One of the water loss 

mechanism is generally thought to be atmospheric escape to space via the Martian 

exosphere (Chamberlain,  1969  ; Fox,  1993  ; Hunten, 1982,  1990  ; Liu et  al.,  1976  ; Vis-

conti,  1977  ; Zahnle, 1986). Deuterium atoms which have chemically the same character-

istics as hydrogen atoms but twice mass condensate through these processes. There-

fore, the atmospheric D/H ratio increases in the evolutionary history of the Martian 

atmosphere. The detection of the D/H ratio has been challenged despite of its difficulty. 

   The first attempt of D/H ratio measurement was performed by Owen et  al. (1988). 

They had measured the emission ratio of the water molecular band in the Martian lower 

atmosphere using the 3.6-m infrared telescope with a Fourier transform spectrometer at 

Mauna Kea, Hawaii. They reported a D/H ratio of  9+4  x  10' from the emission 

intensities of HDO and  H2O. Bjoraker (1989) also performed similar spectroscopic 

observations at Kuiper Airborne observatory and obtained a D/H ratio of  7.8+0.3 x 

Later, the Phobos spacecraft performed a solar occultation observation of HDO and  H2O 

absorption using the Augustine infrared spectrometer (Korablev et  al., 1993). However, 

only the upper limit of the D/H ratio was obtained as  5.0  x  10-4 within a statistical 

uncertainty of the detection. Analysis of the SNC (Shergottites, Nakhlites and  Chassin-  
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gnites) meteorites which are thought to have come from the surface of Mars also 

provided information of the Martian D/H ratio as  8.1+0.3  x  10' on the Martian surface 

(Watson, 1993). Krasnopolsky et  al. (1998) detected deuterium Lyman  a line using the 
Hubble space telescope. They reported that the deuterium Lyman  LY intensity is a  23+ 

6 Rayleighs at the limb of Mars. Corresponding HD/H2 ratio of the upper atmosphere 

is a factor of 11 times smaller than that of the ratio of HDO and  H2O of the lower 

atmosphere. 

   The discrepancy in the vertical direction urged the construction of photochemical 

models, thereby enhanced the knowledge of the hydrated and deuterized compounds. 

Yung et  al. (1988) first constructed a photochemical model including deuterized com-

pounds which had become a standard model later. They defined the partitioning index 

 (R  =(HD/H2)/(HDO/H20)) to generalize the formation rate of the deuterized compounds 
in the air. They estimated a value of R  =1.6 under an assumption that H2 and HD can 

not be controlled only by the isotopic exchange  HD+  H20  .(=>  HDO+H, on the thermal 

equilibrium condition. However, Krasnopolsky's observations (Krasnopolsky, 1998) 

denied the model result  (R  =  0  .09)  . Extensive efforts were paid to the depletion mecha-

nism of the deuterium in the vertical direction because such investigations give the upper 

limit of escape. It was pointed out that there is either an unknown loss mechanism to 

reduce the partitioning index or a catalyst to increase the efficiency of the isotopic 

reaction (Yung et  al., 1998). Several plausible mechanisms have been proposed so far. 

   Fouchet et  al. (2000) applied the isotopic condensation effect at the hygropause. 

Cheng et  al. (1999) constructed a photo-induced fractionation effect (PHIFE) theory. 

They applied to the vertical depletion of the deuterium on the Martian corona and 

explained a factor of 2.5. Bertaux et  al. (2001) discussed a combination of the photo-

induced fractional effect (PHEFE) and the condensation/evaporation fractional effect 

(CEFE) which can produce a cold trap for deuterium in the atmosphere of Mars. The 

recent model (Bertaux et  al., 2001) gives a reasonable explanation by a factor of 9.5 

difference of the D/H ratio with an estimation of smaller quantity of the water. 

   Novel findings and scientific achievements on the D/H ratio in the past two decades 

are summarized as follows. (1) Low D/H ratio in the upper atmosphere (Krasnopolsky 

et  al.,  1998)  ; comparatively high condensation of HDO/H20 ratio in the lower atmo-

sphere (Owen et  al.,  1998  ; Bjoraker.,  1989)  ; high D/H ratio in the SNC meteorite 

(Watson et  al., 1993) on the Martian surface. (2) Successful development of a photo-
chemical model to explain the discrepancy of the discrete D/H ratio value at altitudes 

of 3-levels (Bertaux et al., 2001) with an  affirmative implication of under ground water 

(Krasnopolsky et  al.,  1998  ; Krasnopolsky, 2000). 

   The Nozomi spacecraft is the Japanese first planetary mission to Mars. The main 

target of Nozomi is to investigate the interaction processes between the Martian upper 

atmosphere and the solar wind with 14 scientific instruments (Tsuruda et  al., 1996). One 

of these instruments is an ultraviolet imaging spectrometer which consists of a D/H 

absorption cell photometer (UVS-P) as shown in Fig. 1 and a grating spectrometer 

(UVS-G) (Fukunishi et  al.,  1999  ; Taguchi et  al., 2000a, 2000b). As Mars has no intrinsic
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       Fig. 1. View of the hydrogen and deuterium absorption cell photometer (UVS-P). 
          The UVS-P consists of a solar blind type photomultiplier and hydrogen and 

          deuterium absorption cells. The weight  of UVS-P is 0.6 kg. 

magnetic field, it is generally believed that the solar wind interacts directly with the 

Martian upper atmosphere so that the upper atmosphere environment is strongly 

controlled by solar activity. The UVS-P is applied to imaging observations of the 

Martian deuterium corona as well as the hydrogen corona. Collaborated observations 

have been proposed among Nozomi and several missions of NASA and ESA. However, 

the Nozomi spacecraft was abandoned by engine and telemeter trouble during the 

insertion phase to Mars in December 2003, and this project ended in failure. However, 

similar projects of D/H ratio measurement using the absorption cells (Esposito et  al., 

1998) at the Cassini mission as well as the PFS (Planetary Fourier transform 

Spectrometer) of the Mars Express mission (Formisano et al., 2002) encourage us to 

report our work. In this paper, we summarize the performance of the developed D/H 

absorption cell photometer and the results of simulation studies on D/H ratio retrieval 

from Martian corona measurement. 

2 Development of the D/H absorption cell photometer 

   The UVS-P is a solar blind type Lyman  a photometer with deuterium and hydro-

gen absorption cells, which enables us to obtain information on (1) the kinetic tempera-
ture of hydrogen Lyman  a emission and (2) the D/H ratio of Lyman  a emissions. 

2.1 Principle of the absorption cell photometer 

   The principle of detecting the kinetic temperature of hydrogen is to utilize the 

transmission property of the absorption cell, which can be mathematically expressed as 

the convolution of the incident emission and the absorption cell profile. Hydrogen 

molecules never absorb the Lyman  a emission at static condition. However, by activat-

ing the filaments inside the cells, thermally dissociated hydrogen (or deuterium) atoms 

are generated. Then the generated hydrogen (deuterium) atoms resonantly scatter
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incident Lyman  a emission. Since resonantly scattered photons are re-directed omni-
directionally, the photons except for those in the direction of the optical axis cannot 

reach the detector. Consequently, the absorption cell works as a narrow-width negative 
optical filter which exclusively absorbs the Lyman  a emission. By controlling the 

electric current of the filaments inside the cell, the absorption cell profiles is controlled. 
The transmittance of the cell,  T(A), is given as a function of wavelength A as 

 T(A)=exp(—  r(i)) (1) 

where r is the optical thickness of hydrogen atoms given by 

 z--  nr  /-  a(A)-  L (2) 

and  nH is the hydrogen atom density produced by dissociation of hydrogen molecules 

inside the cell, L is the optical path along the cell, and  6(2) is the absorption cross section 
of the hydrogen Lyman  a line. The absorption cross section c(A) is expressed as a 

Gaussian function as 

                 c(A)= au- exp[( ZIA.1 )21  (3) 

where  JA—  A—  Ao is the difference of wave length from the line center, and 

 Ac_  A  .( 2kTatom)(4)  C\ mHi 

Furthermore,  ao (cm2) is the absorption cross section at the line center, expressed as 

                                                              1 

                            4/Tre2                                         MI/ 2 
•                  (1°= mg:2°•( 2kTato.  )•ii(5) 

In equation (5), index f is the oscillator strength, which represents the degree of scatter-

ing, 0.4164 for hydrogen and 0.4165 for deuterium. Furthermore, me (g) is the mass of 

electron, e (C) is the charge of electron, c is the light velocity, k is the Boltzman constant, 

mH (g) is the mass of hydrogen atom, and  Tatom (K) is the atomic hydrogen gas tempera-

ture. The source line spectrum of hydrogen Lyman a emission is expressed as a 

Gaussian form, which is given by 

               S(A)= So• exp[ ( 2Al: )] (6) 
where 

 As_  A  .( 2kT,V                                               (7)  C1MxI 

In equation (7),  T, is the kinetic temperature of an incident Lyman a emission source. 

The incident Lyman  a emission transmitted through the absorption cell changes its 

spectrum form, and has a normalized profile as 

 G(A)=  S(A)  •  T(A)   =  Sn(A)- T(A) (8)  So
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where  .5  n(A) is the normalized spectrum of the incident light. The wavelength integrat-

ed transmission ratio, TRN, is given as 

                                                                                    0. 

                     fS(A) •  T  (A)  dA 
 TRN  =—  (9) 

 f  Sn(A)clA 
From (9), the transmission ratio can be determined by 4  parameters  : (1) temperature of 

the incident Lyman  a emission source, (2) Doppler shift of the incident Lyman  a line 

center from the line center of the cell absorption profile due to the relative motion of 

spacecraft, (3) optical depth of the absorption cell, and (4) temperature of hydrogen 

atoms inside the cell. In case that the absorption cell is accurately calibrated, it is 

possible to estimate the kinetic temperature of the incident Lyman  a emission. 

2.2 Principle of the  D/H  ratio measurement using the absorption cell photometer 

   By combining the hydrogen and deuterium absorption cells, the emission rate of 

deuterium to hydrogen Lyman  a can be also detected, where these utilize the absolute-

ness of the Lyman a emission lines and the transmittance of the absorption cells. The 

absorption cell photometer is modeled as shown in Fig. 2. Then the model can be 

formulated as follows. 

               TH1' CH+ TD1' CD+BG=S1 (10) 

                  TH2 • CH--l--TD2' CD+ BG- S2(11) 

where  TH1,  TH2  (TD1, TD2) denote the transmission of the hydrogen (deuterium) at each 

operation  mode  : 1 and 2. CH and CD denote the hydrogen and deuterium Lyman  a 

intensities, respectively.  B, denotes background light including dark noise. Here,  Bc 

term is omitted under an assumption of no background light, thereby the equations can 

                      H cell ON D cell OFF Photomultiplier 
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      Fig. 2. Schematic diagram of the D/H absorption cell photometer. The hydrogen 
          and deuterium Lyman a emissions are separately detected by changing the 

          transmission of the deuterium or hydrogen absorption cell.
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be solved by matrix inversion as 

 . 

       1 TD2. SI TD1• S2' (12) 

   ,CD,(TH1 • TD2— TD1•TH2)TH2 • S1 + TH1 • S2, 

           1  TD2  •  e  •  Ul•  tl  TD1  •  e  •  7/2  •  t2)  ±  TD2•($  •  Ul  •  tl)  +  TD1•(e  •  U2•  t2)                                                (13) 
 detTH2•$• Ul• tl-h TH1• $ • U2• t2)± T112•($ • Ul• t1) + T111•($ • U2• t2) 

where the signal SI (S2)= E • ui(u2)• tt)u                                               1s2,,1—  TH  I  •  ItH  TD1'  UD and  u2=  TH2•  U11 
 TD2•  UD, det  —  TH1'  TD2—  Tpl• TH2,  uH is the intensity of hydrogen,  14D is the intensity of 

deuterium,  e is the photometrical sensitivity, and  tt  (t2) is the measurement time of mode 
 1(2). The  signal-to-noise ratio (hereafter it is referred as SNR) can be given from the 

ratio of the expected signal and signal fluctuations as 

                  TH2. e • Ul•1-1+ TH1 • e •112 • 12  SNR(D)=  (14) 
                 TH2• $ • Ul• tl +  TH1  •  e  •  Zi2  •  t2 

                   S/r--•  (  TH1  •  TD2 TH2.  TD1)•  UD1  (15) 

               v/  TH2  •  TH1  •  UH  TH2•  TM'  UD+  TH1  •  TH2•  UH+  TH  I  •  TD2'  UD 

Under an ideal condition that  TH1=1.0,  TD1=1.0 in equation (15) and assuming that  t1= 

 t2=  t, the SNR of the deuterium signal can be reduced as 

                             A/T-1( TD— TO.l'ID1     SNR(D) =   (16) 
 2  T112.  UH+  TH2•  TD1•  Up+  TD2• 

 1(TD—  TN).  UD1   Ale  •  t (17) 
 i/2  TH  •  UH 

 (... the intensity of hydrogen  uH> the intensity of deuterium  up) 
From equation (17), it is found that the SNR of deuterium measurement is proportional 

to the square root of the measurement time, and the ratio is related to the transmission 

of the hydrogen absorption cell. 

3 Application to imaging observations of the Martian hydrogen and deuterium 
   corona 

   As an initial step to retrieve the Martian D/H ratio, images of the Martian corona 

are simulated. The Lyman  a intensity of the Martian hydrogen and deuterium corona 

is calculated. The model considers a resonance scattering process in the Martian 

coronas by Monte Carlo simulation. Note that this model was originally developed for 

an analysis of geocorona (Ito, 2001). In the model, the atomic hydrogen density distribu-

tion is assumed as the same profile obtained by the Mariner Series (Anderson et  al., 1971, 

1974). The atomic deuterium density is assumed by multiplying a factor 9 x  10' to the 

hydrogen model, which gives a good approximation to the nadir or bright limb. The 

temperature of the corona is assumed to be 350 K for both hydrogen and  deuterium 

coronas. No  CO, atmosphere is assumed. The position of Nozomi spacecraft is
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assumed to be located at  (0,  -2Rm, 0) in Mars Sun-equatorial coordinates. False-color 

maps of Lyman a emissions of hydrogen and deuterium are shown in Figs. 3(a) and (b). 
The maximum intensities of the hydrogen and deuterium corona are simulated as 

 —5,000  [IZ] and  —25 [RI, respectively. 
 By substituting all parameters listed in Table 1 into equation  (17),  31) distribution of 

 the  SAW of the deuterium corona can  be obtained as shown in Fig. 4. It is found that 
the  SAW_ of  deuterium corona observation for one hour is  —0.4 at maximum. We have 

also calculated the averaged intensity of the hydrogen and deuterium Lyman a emissions 

 Raleigh 

                      01111E1A1    (a) 2500  5000 

                                     Simulated Martian  Lyman  ^lnkr,  prnia.lein 

                                                                               

, - 

                   O 

 300 200  100 

 Local  longitude  [ded 

 Rail  gh 

 NM: 

 (b)  0 20  4D 
 RimuirthAd  ,frrinrt alpha  effassian 

 zr                                                                                                                                                            . . 
• 

                                          +-^ 

• 

                         -51 

 JUU 200  1C0  0 

 Local  longitude   [clad 

       Fig. 3. False-color plots of  the  Martian hydrogen and  deuterium corona. The 
          hydrogen corona with a  brightest limb intensity of  —5,000 and  (b) the 
 deuterium corona with a brightest limb  intensity of —25  'R  I.
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                  Table 1. List of parameters used for this simulation. 

             Items Values 

 Sensitivity  (17)  2.83  x  [cps;  R] 
                 Integration time  (IT) 3.600  [sec1 

                    Nozomi position  (.1-,  e. z)  (0.  —2  Hu. 0) 
                 Transmission of  hydrogen  ( 0.6 

 Tranmissiun of deuterium  (TD) 

 31)  image of deuterium  SNP. 

 0.4 

 0.3 I11) ‘ 
     SNR 1,b1+ 

     0.1  UNA, 90 

 fi*  • 0 
 0- 

      180  . -•  13') 
                         )0 o-90 Latitude  0 

                            Longitude 

 Fig. 4. Three-dimensional  display of the  SNR per 1 hour in the case of  deuterium 
         corona measurement with  Tx —  0.6 and  Tn  —0.9. 
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             Fig. 5. Schematic  diagram of the NOZOMI spacecraft location.
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at 25 positions around Mars as shown in Fig. 5. The distance of the Nozomi spacecraft 
from the center of the Mars is given as 1.044  R.1 (150 km altitude), 2  RM, 5  RM, 10 R, and 
15  RN,, while the local time of the spacecraft is given as 0, 3, 6, 9 and 12 hours, respective-

ly. The averaged scattering intensities of the H and D Lyman a emissions are obtained 

by averaging the whole Lyman a emissions inside the disk direction. The result is 
summarized in Table 2. The averaged hydrogen and  deuterium Lyman a emissions 

obtained from our Monte Carlo simulations  are  ---5,600  [R] and  -28  [R] at the 
dayside periapsis (1.044  RM), respectively, while they are -205  [R] and  -1  [R] at the 

nightside apoapsis (15  Rm). 

4 Application to the remote sensing of the D/H ratio in the Martian Corona 

   In order to accurately estimate the SNR of the D/H ratio from the actual observa-
tion of the Martian corona, we must consider actual background intensity and dark 

noise. However, under the present simple condition that the corona is pure hydrogen 
and  deuterium gases, the SNR of D/H ratio can be expressed as 

 SNR(DIH)-SNR(D) (19) 

Consequently, the SNR of the D/H ratio can be estimated  by the  SNR of the  deuterium 
signal. 

   Imaging observations of the Martian hydrogen and deuterium corona are performed 
by the spin scan and orbital motion of the Nozomi spacecraft as shown in Fig. 6. The 

SNR of the D/H ratio can be estimated from equation (17) using the averaged intensity 
of hydrogen and deuterium corona listed in Table 2 as well as the orbital information of 

the spacecraft. The result is summarized in Table 3. Note that the periapsis is 1.044 

                Table 2. Averaged intensities (Rayleigh) of hydrogen and 
                     deuterium Lyman  a scattering emissions viewed from 

                     25 positions around Mars. 

                  Distance 1.044  R,I1 , 2  R11 5  RM 10  Rm  15  RAI 

 AD'  146.5'  60.0' 19.2'  10.4'  7.2' 

 12  :  00  5,810  2,856 1,405 1,188 1,114  
9  :  00 4,830 2,522 1,282  1,080 1,011 

         H  6:00 3,469 1,744 847 697 660 
 3  :  00 2,142 970 398 329 307 
 0  :  00 1,110 582 263 218 205 

 12  :  00 28.0 13.8 6.8 5.7 5.4 
 9  :  00 23.3  12.2 6.2 4.9 4.9 
         D  6  :  00 16.7  8.4  4.1  3.4 3.2 
 3:00 10.3 4.7 1.9  1.6  1.5 
 0  :  00  5.4 2.8 1.3 1.1  LO  

' AD denotes Angle Diameter of the Martian disk from an 
                   assumed altitude of the Nozomi spacecraft.
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              Fig. 6. Schematic diagram of the spin scan orbital motion method. 

                 Table 3. Estimated  SATR of the deuterium  Lyman  a mea-
                     surement at different locations of the Nozomi space-

                         craft. 

 Altitude  ().044  Rif 1  RA, 2 RA,5R,15 R,  (150  km) 
 LT 

 12  :  00 L969 3.115 2.806  2.215 1.621 
               9  :00 1.384  2.257 1.991 1.502 1.161 
 6  :  00 0.972 1.609  1.394 0.948 0.802 
 3:0{) 0.886  1.385  1.274 0.878  0.745  

0  :  00  0.867 1.432 1.233 0.852 0.698 

 Re distance (150 km altitude), and the apoapsis is 15  R, distance, while the orbital period 
is 38 hours. The observation time  f„,, is estimated by the time for scanning the Martian 

disk as 

 Tob,=  3397/velocity  (Tr/4  sin(S2/2)) (20) 

For example, in case that the Nozomi spacecraft is located at an altitude of 1 the 

 SATR of the D/H ratio can be estimated as  —3.1. From this estimation, it is concluded 
that the D/H absorption cell photometer has sufficient instrumental performance . 

5 Summary 

   In this paper, we summarize the performance of the developed D/H absorption cell 

photometer on board the  Nozomi spacecraft and the results of simulation studies on D/ 
H ratio retrieval from Martian corona measurement. The developed cell has sufficient 
instrumental performance and thereby contributes to the measurement of the D/H ratio 

in the Martian corona. The major results obtained in this study are summarized as 
 follows. 

 1. A  D/H absorption cell has been developed for the Nozomi spacecraft . By



       A D/H LYMAN ALPHA  PHOTOMETER FOR THE NOZOMI SPACECRAFT 119 

    measuring the absorption cell profiles, we have obtained quantitative parameters 

    such as optical depth and kinetic temperature to characterize the absorption cell 

     profile. 
 2. A  hydrogen/deuterium Lyman a scattering property has been calculated using 

    Monte Carlo simulation and a radiative transfer equation. The maximum inten-

    sities of the hydrogen and deuterium Lyman a emissions have been estimated  as 
 —5,000  [R]  and  —25  [R], respectively. 

 3. Imaging observations of hydrogen/deuterium corona and the retrieval of the 

    Martian D/H ratio from the observation data have been investigated. In case that 

    the transmission ratios of the hydrogen and deuterium Lyman a emissions are 0.5 

    and 0.9, respectively, the  SNR of globally averaged D/H ratio is estimated to be 
 —2.0 at 150 km altitude. The estimated SNR demonstrates that the D/H absorp-

    tion cell photometer has good enough performance to retrieve the Martian D/H 

     ratio. 
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Appendix 

Calibration of the absorption cells using the 6VOPE spectrometer 

   As pointed out in Section 2, it is essential to understand the absorption cell property 

in order to correctly retrieve the kinetic temperature of incident Lyman  a  emission. in 

order to quantitatively measure the absorption cell property, we have used a  VUV 

spectrometer facilitated at  Tukuba High Energy Particle Laboratory. This 

spectrometer is called 6VOPE  (6.65-m vertical dispersion off-plane eagle spectrometer) 

(Ito et  al., 1986). Optical setup for calibration of the absorption cell at 6VOPE is shown 
in Fig. Al. We have measured the absorption cell profiles. Examples of measured 

absorption profiles and fitted profiles are shown in Figs. A2(a) and (b) for the hydrogen 

and deuterium cells. By performing least square fitting of a Gaussian function to the 

measured profile, we have successfully obtained unique  parameters  : kinetic temperature 

 (Tatom) of hydrogen (deuterium) atoms and the optical depth  (To) which identify the 

absorption cell profiles. 

   The relationship between the atomic temperature and the filament power consump-

tion of the hydrogen and deuterium cells are summarized in Figs. A3(a) and (b). Also, 

the relationship between the optical depth and the filament power consumption of the 

hydrogen and  deuterium cells are summarized in Figs. A4(a) and (b). The atomic 

hydrogen gas temperature TH and the optical depth  rtf of the hydrogen absorption cell 

are given as 

  Pre-disperser  system   >0  -4— Main grating  spectrometer 

 Grating G2 
           Curvature radius:2188.5 mm  E  1409  mm                                         )11, Slit S2 

 Notch lines:204 lines/mm  10  ki  m 

 90_  Cell  Main  grating  G3 
 —700  mm Curvature radius:6650  mm 
 Focus plane Notch  lines:1200  lines/mm 

                                                                 Blaze  wavelength:550 nm 

   \   Slit  S1 
                       A 

 13500  mm  

 plane  min-or  2024  inn 

   Source point  20_ 
 70A 

 y 

 Grating  G1 
                            Curvature  radius  : 2188.5  film 

                          Notch lines :204  lines/mm 

      Fig. Al.  Layout of the absorption profile measurement of the cell using the  6\TOPE 
            spectrometer.
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     Fig. A2. Examples of absorption profile measurements and fitted Gaussian  curves for 

        the hydrogen  cell (a) and the deuterium Lyman cell (b). 

                                                Hydrogen absorption cell 
                                1000 , 

 (a) 
    900 1 : 

 op 
 800 
 Li 

                      k  700  --, 

 • 

                      2 
                                                         • •• 

       

..?, 600..- = 

                                                                                •                                           

                    . • .•              •I 500 : . . .. 

   •                    

n  0.5  1  1.5 2 2.3 3 & 5 

 Power [WI 

                                            Deuterium absorption cell 
                                   1000   ,  ,  ,  ,  ,  ,  ,  ,  , 

        (b) 
 900  :-  .  -:                                                                                          

.. 
      p2  800  7  • 

 • 

       ta ••••     E 700 - - 
  2 . 

             •2' 600  :  • 

                       1•{                        W  500  

                0 0.5 1 1.5 2  2.5 3  16 
 Power  NA 

    Fig. A3. Variations in the kinetic temperature of atomic gas in the cell as a function 

        of filament power consumption and a least square fitting to them , for the hydrogen 
       cell (a) and the deuterium cell  (b).
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       Fig. A4. Variations in the optical depth of the absorption cell  as  a function of 
 filament power consumption and a least square fitting to them, for the hydrogen 

          cell (a) and the deuterium cell  (b). 

 TH-101  P+381 (Al) 
 =3 .1  x  P  —  3.1 (A2) 

where  P [W] is the filament power consumption. The atomic deuterium gas tempera-

ture  T, and the optical depth rD of the deuterium absorption cell are given as 

 TD=126xP+499 (A3) 

 rD=1.9  x  P  —  1.6 (A4) 

The values of  rD and  rD are assumed to  be zero in the range in which these values become 
negative. From these fitting results, we have quantitatively evaluated the performance 

of the absorption cell.


