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   Abstract : This study investigates the effects of the velocity model on the hypocenter 
determination using data from a quarry explosion. Travel times were observed within 
about 7 km around the quarry. The shot position was determined for three different 
velocity  models  ; the model derived from travel time data and two arbitrary models. The 
results are summarized as follows. (1) Errors in determined shot position are small 
irrespective of velocity models if the observation points surround the shot. (2) In cases of 
biased distribution of observation points, an improper model causes unstable solutions. (3) 
A knowledge of the average velocity structure can make a considerable contribution to 
determining the shot position so long as the origin time is not concerned. 

   Deviation of the determined shot position from the true location was compared with 
the errors estimated by three different methods.

1. Introduction 

   In recent years, the accuracy of hypocenter determination by small networks has 

been studied through numerical experiments (Peters and Crosson,  1972  ; Lilwall and 

Francis,  1978  ; Uhrhammer,  1980  ; Duschenes et al.,  1983  ; Pavlis and Hokanson,  1985  ; 

Pavlis, 1986). In these studies errors in the velocity model are not considered or 

assumed to be small compared with velocity uncertainties inherent in the real earth. It 

may be  difficult to choose a  'reasonable' extent of the modeling error in numerical 

experiments, because the modeling error varies greatly from region to region. 

   In order to investigate the effect of modeling errors on hypocenter location in the 

actual cases, studies by using the observation data from artificial earthquakes are useful. 

Asano (1954) determined locations of explosions by a small (100 m x 100 m) network and 

examined the hypocentral errors. Using the data from large seismic explosions, Asano 

(1959) and  Horiuchi et al. (1981) investigated accuracy of hypocenter determination by 

the networks of the Japan Meteorological Agency and the Tohoku University, respec-

tively. However, studies of this kind are few. 

   In this study, we examine the influence of the velocity model on hypocenter determi-

nation by using travel times from a quarry explosion.
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2. Data

   The locations of shot and observation points are shown in Fig. 1. We observed 

seismic waves using 2-Hz geophones and portable FM cassette recorders at three to five 

points for one shot. Recorded signals were sampled at 250 Hz and first arrivals were 
read on the graphic display. Reading errors were mostly within  +/-0.02  —0.02 sec. Shot
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Fig. 1 Location of quarry explosion (cross) and observation points (solid circles and open 
   squares). Open squares indicate the observation points used for determination of shot 

   position, and solid circles those used for determination of the velocity model.
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 Fig. 2 Travel time curve. Open squares indicate the data used for determination of the 
   shot position, and solid circles those used for determination of the velocity model. 

   Solid lines are the travel times expected theoretically for model I given in Table 1.
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times were recorded by using a disposable pick-up (a small speaker) which was put on 

the explosive hole. We observed signals for every shot at the point (reference point) 

where the travel time from the shot position was accurately determined. When shot 

times were not recorded on the explosive hole, we calculated them from the arrival time 

at the reference point. 

   In this region a seismic refraction profile was investigated by Nishizawa et al. (1988). 

In this study, however, we derive a simpler velocity model from the travel time data of 

the quarry blasts. Travel times observed are shown in Fig. 2. Using the data shown by 

the solid circles, the velocity structure was approximated by a two-layer model with P-

wave velocities of 3.0 and 4.8 km/sec and a layer boundary at 0.65 km depth. The 

standard deviation of residuals of all travel time data is 0.06 sec and is much larger than 

reading error (0.02 sec). 

3. Determination of Shot Position 

   We determined the shot position for three different velocity models given in Table 

 I. Model I is the two-layer model obtained from observation data. Model II is a single 

layer model, in which the P-wave velocity is roughly equal to the average velocity of

Table  1. Velocity Models Used to Determine the Shot Position

Model
Velocity 
(km/sec)

Layer Thickness 
   (km)

 II 

 III

3.0, 4.8 

 4.0 

  5.0

0.65,  co 

  00 

 co

Table 2. Obtained Depth and Origin Time

Depth 
(km)

Origin Time 
  (sec)

Model  II  III  II  III

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j)

 0.1 
 -0 .1 

-0 .1 

 0.1 
 -0 .2 

 0.1 

 -0 .5 

 0.1 

 0.1 

 0.1

-0 .1 

 0.2 

 -0 .2 

-0 .1 

 -0 .2 

-0 .3 

 -0 .2 

 -0 .1 

 -0 .2 

 -0 .2

 -0 .1 

 -0 .2 

-0 .2 

 -0 .1 

 -0 .2 

 -0 .1 

 -0 .2 

-0 .1 

-0 .2 

 -0 .2

 0.04 

 0.00 

 -0 .02 

 0.13 

-0 .05 

 0.14 

-0 .16 

 0.10 

 0.05 

 0.11

0.20 

0.20 

0.16 

0.26 

0.17 

0.31 

0.14 

0.24 

0.18 

0.26

0.38 

0.39 

0.41 

0.44, 

0.34, 

0.50, 

0.42 

0.49, 

0.38, 

0.47,

0.48 

0.42 

0.55

0.51 

0.43 

0.52

True depth and origin time are -0.2 km and 0.00 sec, respectively. Origin time of (d)-(f) and 
(h)-(j) did not converge, but oscillated for model  III.
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Fig. 3 Epicenter locations determined for model I (solid circles),  II (open circles) and III 
   (open squares). The true location is at the origin of coordinates. Open squares 

   connected by a line indicate that the solution did not converge, but oscillated between 
   them. Location of observation points are also shown by crosses.
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Model I. As can be seen in Fig. 2, a line with 4.0 km/sec slope fits approximately the 

travel time data. Model III is also a single layer model, and its velocity is assumed to 
be higher than that of model II. Shot position was determined by using Geiger's method. 
In order to get stable solutions, the epicenter and origin time were calculated for fixed 

values of the shot depth. Depths were varied at 0.1 km intervals and the solution that 

gives the least sum of squared residuals was found. 
   Table 2 and Fig. 3 show the results  for various sets in configuration of observation 

points relative to the shot position. The deviation from the true location for model II 
is similar in extent to that for model I. This indicates that a knowledge of the average 
velocity structure like model II is very useful when only hypocenter positions are 

concerned. The location errors found for model III are not large compared with those 
for the other models when observation points are distributed uniformly around the 

epicenter (cases (a) and (b)). However, the solutions for model III do not converge in the 
cases of (d) through (f) and (h) through (j). This suggests that some knowledge of the 

velocity structure is necessary to get stable solutions in the case of a biased distribution 
of observation points. Comparing cases (c) to (f) with (g) to (j), it can be said the velocity 

structure is more important than the number of stations, so long as the azimuthal 
coverage of observation points is the same. 

4. Estimated Error and Actual Error 

   Now we compare the deviation from the true position for model I with the errors 

estimated in the following three different ways. 1) The parameter standard errors 

obtained with the least squares solution. This may be the most conventional error 
estimates. 2) Errors computed through a numerical simulation. The data for the 
simulation were produced by computing travel times from the true shot position for 

model I and then adding errors which are caused by reading errors and velocity fluctua-
tions. Considering quality of data and scatter of travel times in Fig. 2., we assume that 

the reading errors are normally distributed with the standard deviation of 0.02 sec, and 
that the velocity fluctuations are uniformly distributed between —10 and 10%. The 

travel time error resulting from a velocity fluctuation is given as 

 LlT=Tx4VIV (1) 

where T is a travel time and  4  VI V is a velocity fluctuation. The shot position was 

determined for 50 different data sets based on the method used in the preceding section, 
and then the standard deviation of 50 samples of hypocentral and origin time errors were 

calculated. This procedure is similar to that used by Lilwall and Francis  (1978) and 
Duschenes et  al. (1983) for evaluating hypocenter resolution of small seismic networks. 

3) Error bounds. Pavlis (1986) has shown that the total error in hypocenter determina-
tion is a combination of three  terms  ; the measurement error, modeling errors (difference 

between the velocity model and the true structure) and a nonlinear term (errors due to 
linearization of the nonlinear problem). Hypocentral errors due to the second term are 

bounded as



278 AKIKO HASEMI AND TADAYASU  SAM

 1,,A,  I  51Z1uTiir,,IS, (2) 

where  1h, is error of the i-th parameter,  Liu is an upper bound of slowness error  11  Vtrue 
 -1/  17.0det,  A  , is an element of the pseudoinverse of the matrix A with elements  37;1 
 3h1, and  S; is the length of ray path. If we assume the standard deviation of measure-

ment error to be 0.02 sec and the upper bound of slowness error to be  +  /  -10%, the 
measurement error term is negligible compared with the modeling error term. Non-

linear term is almost impossible to evaluate without a priori information about the size 
of hypocentral error, and is usually small compared with the modeling error term (Pavlis, 
1986). Therefore we estimate hypocentral errors by the bounding criteria given by (2). 

The error in the depth cannot be obtained by the parameter standard error and the 

bounding criteria, because the least squares equation is solved for the fixed focal depth. 
   Table 3 gives the estimated errors with errors in the determined shot position for 

three different configurations of observation points. The standard deviation of 50 

samples of errors obtained by the simulation tends to give underestimated errors. 
Twice the parameter standard errors is also sometimes slightly smaller than the errors 

in the determined shot position. Since underestimation of errors are not desirable, the 
errors in hypocenter determination should be estimated by the maximum error obtained 

through simulation or by the bounding criteria. The bounding criteria may be more 

preferable due to the following two reasons. Firstly the values in column 3) in Table 3

Table 3. Errors of the Shot Position

0) 1)  2)-1 2)-2 3)

 LIX 

 JY 
(b)  JZ 

 JOT 

 JX 

 Y (d) 

 JZ 

 JOT 

   LIX 

 JY 
(f)  LIZ 

 JOT

0.19 

0.15 

0.10 

0.00 

0.51 

0.40 

 0.30 

0.13 

0.49 

 0,06 

0.30 

 0.14

0.48 ( .29) 

0.68 ( .53) 

0.10 ( .10) 

0.50  (-  .01) 

0.34  (  -  .06) 

0.08  (-  .05) 

0.46  (  -  .03) 

0.34 ( .28) 

0.10  (  -  .04)

0.16  (-  .03) 

0.18 ( .03) 

0.18 ( .08) 

0.04 ( .04) 

0.34  (-  .17) 

0.18  (  -.22) 

0.28 ( .02) 

0.09  (  -  .04) 

0.40  ( -  .09) 

0.16 ( .10) 

0.27 ( .03) 

0.10 ( .04)

0.37 (.18) 

 0.40 (.25) 

0.40 (.30) 

0.09 (.09) 

0.66  (.15) 

0.41 (.01) 

0.40 (.10) 

0.19 (.06) 

0.88 (.39) 

0.43 (.37) 

0.40 (.10) 

0.18 (.04)

0.57 ( .38) 

0.63 ( .48) 

0.08 ( .08) 

0.72 ( .21) 

0.38  (  -.02) 

0.13 ( .00) 

0.87 ( .38) 

0.48 ( .42) 

0.12  (  -.02)

 JY  , and  LIZ are the errors (in km) in the east-west, north-south and the vertical 
directions, respectively.  JOT is the origin time error (in sec). Column 0) is the deviation of 
the shot position determined for model I from the true position. Column 1) is twice the 
parameter standard errors. Column  2)-1 and 2)-2 are the standard deviation and the maxi-
mum absolute value of 50 samples of errors calculated for 50 different data sets, respectively. 
Column 3) is errors calculated by using the bounding criteria given by equation (2). 
Numerals in parentheses are the difference from the values given in column 0). The cases (b), 
(d) and (f) correspond to those in Fig. 3.
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are nearly the same as or larger than those in column 2)-2. This indicates that the 

bounding criteria gives fairly exact error bounds. Secondly error bounds can be calcu-

lated in the process of the hypocenter determination with minor modification of the 

computer program. 

5. Summary 

   The results in this study are summarized as follows. (1) Errors in determined shot 

position are small irrespective of velocity models if the network is developed so as to 
surround the shot point. (2) An improper model causes unstable solutions in cases of 

biased distribution of observation points. (3) A knowledge of the average velocity 

structure can make a considerable contribution to determining the shot position so long 

as the origin time is not concerned. (4) It is preferable that hypocentral errors caused 

by the modeling error are estimated by the bounding criteria. 

   In the present study, data were restricted to  P--wave arrival times. In the case of 

hypocenter determination of natural earthquakes, S-wave data are also used and other 

conditions such as velocity structure, focal depth and reading errors may be different in 

each case. However, studies using artificial earthquakes with known positions and 

origin times may be helpful to understand problems in hypocenter determination.
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