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 Abstract  : A stick-slip experiment is carried out in order to clarify the effects of stress 

nonuniformity on rupture propagation. The simulated fault prepared for the experiment 

has two hollow holes to produce an extremely nonuniform stress field. The rupture 

propagation is found to be arrested temporarily or completely at an edge of the holes. 
This rupture arrest is caused by a high shear strength due to a high concentration of normal 

stress and by deficiency in the strain energy available in localized regions near the edge.

1. Introduction 

   From the viewpoint of seismology one of the most interesting subjects in the source 

process of earthquakes is how earthquake faulting starts and stops, or how the size of 
earthquake is determined. It is considered that various kinds of nonuniformities such as 

those in structure, material and stresses play an important part in controlling rupture or 

slip propagation on faults. The nonuniformities are thus considered to be the key to the 

arrest mechanism of rupture propagation. Kikuchi and Takeuchi (1971), Husseini et al. 

(1975), Das and Aki (1977), Aki (1979), King (1986), and others have actually suggested 

some mechanisms of rupture  arrest  ;  insufficient strain energy available, high strength 

barrier, fault bend, etc. It should be meaningful to examine experimentally the dynamic 

behavior of stick-slip propagation on a simulated  nonuniform-fault. 

   Some experimental studies have been made for the effects of nonuniformities on 

stick-slip propagation using large scale rock samples. Dieterich (1981) performed 

experiments on a granite sample having a 2 m long pre-cut fault with a large scale 

biaxial testing machine. He observed unstable slip events whose rupture areas were 

confined to a part of the entire fault. He concluded for the confined slip events that the 

minimum dimension of slipped area depended both on the roughness of the sliding 

surfaces and on the normal stress applied to the fault. Using the same loading appara-

tus that Dieterich (1981) did, Lockner et al. (1982) generated confined stick-slip events by 

means of selectively varying pore pressures or effective normal stresses. High pore 

pressures were introduced in the two fault-end regions so that free sliding might occur
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prior to the occurrence of a stick-slip event. Even when the central locked region of the 
fault slipped and a stick-slip event occurred, the slip did not propagate through the fault-

end regions where shear strain had not been sufficiently accumulated. 

   Kuwahara (1985), Ohnaka et  al. (1986), and Kato et  al. (1989) have carried out stick-

slip experiments using rock samples with about 40 cm long simulated faults to examine 

the effects of nonuniformities of sliding surfaces and/or local stresses on the dynamic 

behavior of stick-slip. Kuwahara (1985) observed the arrest of stick-slip propagation 

for the first and, sometimes, for the second event in a series of slip events generated 

repeatedly. He attributed the rupture arrest to the nonuniformity of local stress fields, 

which was decreased with an increase in the event number. Kato et  al. (1989) prepared 

a granite sample whose sliding surfaces were artificially undulated so that the local 

normal stress and, consequently, the local shear strength became nonuniform along the 

fault. They found that stick-slip events stopped propagating at high normal stress 

regions or high strength barriers. 

   In contrast to the high strength barrier, we may expect that a weak region of a fault 

prevents the shear stress from concentrating strongly at the vicinity of a crack tip not 
to provide a sufficient amount of strain energy necessary for further advance of ruptur-

ing. The region can be regarded as a barrier to dynamic rupturing, though its stress 

state is contrary to that of the high strength barrier. This may be similar to high pore 

pressure regions in the experiments by Lockner et  al. (1982). In the present study we 

prepare a rock sample with hollow holes in a pre-existing fault. The holes, of course, 
have no strength and no stresses, and can be considered as an extreme case of materials 

of small elastic constants.

2. Experiment 

2.1. Method 

   The detailed description of our experimental procedure have already been given in 

Kato et  al. (1989). We recapitulate it and describe rather in detail the rock sample
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specially designed for the present study. The rock sample, 30  cm  x 30 cm x 10 cm in size, 

was biaxially pressed at a constant shear strain rate of  10-6/s with a loading apparatus 

to generate stick-slip events on a pre-existing fault of about 40 cm in length. The rock 

sample was made of Higashiyama granite, whose P- and S- wave speeds are 5.5 km/s 

and 3.3 km/s, respectively. 

   Figure 1 shows the sample configuration. Two rectangular holes (notches), whose 

depths and widths are 3 cm or 7 cm and 1 cm, are bored in a fault surface. The distance 

between the center lines of the two notches are 6 cm along the fault strike. The sliding 

surfaces of the granite sample were carefully ground with abrasive to have a sufficiently 

small waviness. We measured the topography of the two sliding surfaces with a stylus 

profilometer. We obtained the cutoff wavelength of about  10  pm for the power spectra 
of the surface traces. According to Kuwahara (1985), stick-slip is easy to occur on the 

sliding surfaces of this degree of the surface roughness in the case of granite sample. 

   The relative displacements across the fault and the shear strains near the fault were 

measured with sti  ain gauge sensors. The sensors were aligned along the fault as shown 

in Fig. 1. The dynamic strain signals were amplified and digitized with a resolution of 

8 or 10 bits at a sampling frequency of 500 kHz or 1 MHz. This recording system had 

to be triggered because of limited memory length of 2048 words per channel. Since an 

acoustic emission event was expected to accompany a stick-slip event, the acoustic 

emission detected with a piezoelectric transducer was used as a trigger source. In 

addition to the sensors for dynamic strain measurements, we pasted strain gauge sensors 

along the fault to monitor the quasi-static fields of shear strain near the fault. These 

signals were continuously digitized at a sampling frequency of about 6Hz and stored in 

a mini-computer system.

2.2. Results 

   Figure 2 shows examples of the time histories of relative displacements and shear 

stresses observed for a stick-slip event. The event was generated on the fault with the 

notch depth of 3 cm at an average normal stress of 5.0 MPa. The time of sharp onset 

in relative displacement was taken as the rupture time at each sensor position. The 

observed rupture times are plotted in Fig. 3 as a function of distance along the fault. 

The data designated as A in the figure were obtained for the stick-slip event shown in 

Fig. 2. It is noted that the two notches were located between sensors 3 and 4, and 

between sensors 6 and 7, respectively. The rupture of event A, which had been initiated 

at some point near sensor 7, propagated rather unilaterally toward the position of sensor 

8, as seen in  Fig.  3. We have no information whether the rupture propagated also 

toward sensor 6 at a small speed or the rupture was initiated again at some point near 

sensor 6. However, if we assume that the rupture propagated from sensor 7 to sensor 

6, the apparent rupture velocity VR between the two sensors is calculated to be about 400 

 m/s. The apparent rupture velocity in the other notch region between sensors 4 and 3 

is about 800  m/s. These values are much lower than the rupture velocities (greater than 

2 km/s) observed in fault regions without notches. We confirmed that most of the slip
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Fig. 3 Space-time views of rupture propagation for stick-slip events on the fault with 

   two holes. The average normal stress  or„ and the hole depth  / are given in the figure.
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Fig. 4 Histograms for the observed apparent rupture velocity VR between sensors 3 and 
   4, and between sensors 6 and 7 at an average normal stress of 7.5 MPa. (a) The case 

   of 3 cm in hole depth. (b) The case of 7 cm in hole depth. The average value of 
 for each case is indicated by an arrow in the figure.

events showed a similar time delay in rupture propagation at the vicinities of the holes. 

In some few cases we observed the complete arrest of rupture propagation near a hole. 

The holes on the fault are thus found to act as barriers. 

   Figure 4 shows histograms for the observed apparent rupture velocity VR between 

two sensors which sandwich a hole  (i.e., sensors 3 and 4, or sensors 6 and 7). The data 

were obtained at an average normal stress of 7.5 MPa in the cases of two notch  depths  ; 

(a) is for  1=3 cm and (b) is for  1= 7 cm. In the latter case of notch depth, we found two 
events in which the rupture stopped propagating near a hole and did not start again. 

These two special cases of the complete arrest are included in the number of stick-slip 

events having VR in the range between 0 km/s and 0.2 km/s. These histograms together 

with the mean values of the apparent rupture velocities clearly indicate that the local 

values of VR near holes are abnormally small in comparison with the values of 2 to 3 

km/s observed in the other fault regions. It is also clear from the figure that the values 

of  VR are distinctly smaller in the case of  1=7 cm than those in the case of 3 cm. It is 

noted that the same tendency was observed also for other cases of average normal 

stresses, though the results are omitted here.

3. Discussion 

3.1. Effect of Static Stress Field 

   Let us consider the case that a rock specimen as used in the present experiment is 

biaxially compressed to be under an elastically equilibrium state. It is reasonable to
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Fig. 5 Grids and coordinates used in the finite element calculation of two-dimensional 
   stress field in the rock sample with two rectangular holes of 3 cm depths. The 

   calculated results for shaded elements along the simulated fault F-F' are given in 
 Figs.  6 and 7. Symbols A, B, C, and D represent sample sides where boundary 

   conditions are given (see text).

expect for the specimen that not only the shear stress but also the normal stress 

concentrate in the vicinities of the notch edges on the fault. This normal stress concen-

tration may enhance the shear strength of the fault. Kosuga and Anami (1989) and 

Anami and Kosuga (1990) have made numerical simulations for the stress field produced 

in a biaxially compressed rock sample whose configuration is the same as ours. They 

compared the shear strain field computed by means of a finite element method with that 

we measured, and found that the comparison is generally satisfactory with some excep-

tions. We recalculate the stress field in the rock sample by the same method as Kosuga 

and Anami (1989) with finer grid intervals to examine in a greater detail the stress field 

near the holes. The finite element grids and coordinates are shown in Fig. 5. We treat 

the problem as a two dimensional one and assume the condition of plane stress in the 

calculation. This is because the sample thickness of 10 cm is shorter than the fault 

length of 40 cm, and, besides, the calculated results can be compared only with the 

measured strains on the free surfaces of the sample. It has been shown by Kosuga and 

Anami (1989) that the stresses calculated by a plane stress finite element method is very 

similar to those on a free surface calculated by a three dimensional method. The 

boundary conditions on sides A to  D in Fig. 5 are assumed as  follows  ; 

 u  0,  csx,  =  0 on side A, 

 v  =  0,  crx,==  0 on side B,
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 7.5  MPa,  Gxy  =  0 on side C, 

 6„  =2.5  MPa,  =  0 on side D, 

where  o-,, is the stress tensor and  u and  v are displacements in the x and y directions, 

respectively. 

   The calculated stress field in the sample is close in general to the results given by 

Kosuga and Anami (1989), and hence we present here only the results of particular 

interest for stresses along the fault (F-F' in Fig. 5). Figure 6 shows the ratio of the shear 

stress to the normal stress applied to the fault, and Fig. 7 the strain energy density in 

shaded elements along the fault (Fig. 5). The figures show that these quantities are 

distributed anti-symmetrically about the holes. The results in Figs. 6 and 7 indicate that 

the rupture may be arrested at left sides of the holes in the figures. However, we have 

no information whether the rupture stops at the left side or the right side of a hole, 

because the resolution of our measurement is limited by the sensor interval of a few cm 

(Fig. 1). The effect of the holes of 7 cm depths on the rupture deceleration is more 

significant than that of 3 cm depths as found in Fig. 4. Kosuga and Anami (1989) have 

stated that the stress nonuniformity around the holes of 7 cm depths is larger than that 

of 3 cm depths. This and our results indicate that the stress nonuniformity around holes 

plays an important part in the rupture arrest. 

3.2. Effects of the Dynamic Loading 

   In addition to the effect of the stress field in a static equilibrium, the effect of 

dynamic stress field is important on the rupture propagation. When rupture is propagat-

ing, the shear stress is concentrated dynamically in a region near the rupture front to 

accelerate or to maintain the rupture velocity. This is the general situation of propagat-

ing rupture. In the present case in which rupture approaches an edge of a notch, 

however, a sufficient amount of shear stress concentration is not expected in the notch
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region. In other words, the strain energy available is insufficient for breaking the 

contact of fault surfaces near the other edge of the notch. It is suggested that this 

deficiency in strain energy or in shear stress concentration causes the halt or the arrest 

of rupture propagation. 

   As seen in the examples of Figs. 2 and 3, most of the rupture events that had stopped 

near a hole started to propagate again. The mean values of the time interval for events 

at an average normal stress of 7.5 MPa (Fig. 4) are 40  us for  1=3 cm and 304  ,u  s for  1= 

7 cm. In calculating the mean  time interval we excluded the results of two events for 

 1  =  7 cm where rupture stopped completely. Since this time interval is too short for the 

ram of our loading apparatus to make a  significant increase in the applied stress, the 

rupture is considered to start again spontaneously. Stress concentration at the opposite 

edge of the notch due to Rayleigh waves, which travel along the inner surface of the 

notch, may contribute to the delayed rupture. Assuming 2.8 km/s for Rayleigh wave 

velocity, we obtain the travel time of 54  is for  1=7  cm and of 25  fits for  /  =  3 cm. The 

time interval of rupture halt is considerably longer than these travel times. This result 

suggests that the delayed rupture in the region near the notch edge is explained by the 

delayed stress concentration due to Rayleigh waves in cooperation with the time-depen-

dent property of shear strength (e.g., Das and Scholz, 1981). 

4. Conclusion 

   We found from the present stick-slip experiment that the propagation of shear 

rupture is arrested temporarily or completely near a hollow hole along the fault. This 

rupture arrest is caused by cooperation of a high shear strength due to a high concentra-

tion of normal stress with deficiency of the strain energy available in the vicinity of a 

hole edge. Although no large hollow holes exist along active faults in the real earth, the 

regions of small effective elastic constants are considered to play a similar role in 

controlling the dynamic behavior of rupture propagation.
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