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   Abstract : Since the middle of 1980, the vertical profile of the atmospheric sodium 
layer has been observed by a laser radar at Mt. Zao Observatory  (38.1  N,  140.6'E) in 
northern Japan. The vertical column content of sodium shows a remarkable seasonal 
variation, being minimum in May and becoming almost twice of the minimum value from 
October through next February. The height distribution of the sodium density also shows 
a characteristic seasonal variation. The height at which the density is enhanced pre-
dominantly decreases gradually from July to November and then turns up again in the 
upper region of the layer in next February. The averaged nocturnal variation in the 
column content shows a post-midnight enhancement maximizing at  1h--2h L.T. The 
vertical profile of the density also shows a pronounced nocturnal variation characterized by 
a wave-like structure. The short period fluctuations (time scale of about  1-2  hr) are 
superposed frequently on an ordinary nocturnal variation. The density profile in these 
fluctuations are also characterized, in general, by wave-like features.

1. Introduction 

   Since the discovery of a radiation at 589.2 nm in the nightglow spectrum in the late 

1920's, attempts have been made to obtain informations about the vertical distribution 

and the abundance of free sodium atoms in the upper atmosphere. Since 1950, the 

atmospheric sodium layer has been studied by means of twilight resonant scattering 

techniques and rocket-born photometers, and a comprehensive review paper was given 

by Hunten (1967). At the end of the 1960's, the tunable laser radar (lidar) technique was 

developed, and the direct observation of the sodium layer became possible. This lidar 

technique improved the accuracy of measurements to a large extent and made an epoch-

making progress in the study of the sodium layer. Up to now, this technique has been 

employed by a number of research groups in the world, and series of the observational 

results have been reported using data obtained at four  locations  ; Winkfield, U.K.  (51°N) 

(Gibson and Sandford, 1972), Haute Provence, France  (44°N) (Megie et  al., 1978), Urbana, 
U.S.A.  (40°N) (Richter et  al., 1981), and  Sao Jose dos Campos, Brazil  (23°S) (Clemsha et 

 al., 1982). 

   The winter maximum and the summer minimum in the abundance of sodium was 

already reported based on twilight obsevations as summarized by Hunten (1967). 

Recent lidar observations by Gibson and Sandford (1971), Megie and Blamont (1977), and 

Simonich et  al. (1979) have confirmed the result mentioned above. There are, however, 

systematic differences among the results reported from different locations, and the 

latitudinal characteristics were pointed out by Simonich et  al. (1979). As for the
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nocturnal variation, the lidar technique has given an important information about the 

vertical profile of the sodium layer. One of the most characteristic features is the wave-

like structure showing a downward progression of the phase throughout the night, and is 

suggested to be associated with the propagation of gravity waves (Blamont et  al.,  1972  ; 

Shelton et  al., 1980) or tides (Kirchhoff and Clemsha,  1973  ; Clemsha et  al., 1982). In 

early days in the history of the lidar technique, observations were possible only in the 

nighttime because of a much higher noise level in daytime. But recently, excellent 

developments in the lidar system have been made and the measurement of the daytime 

sodium layer becomes possible (Gibson and Sandford,  1972  ; Clemsha et  al., 1982). 

Especially, Clemsha et  al. (1982) have succeeded in obtaining the diurnal variation of the 

sodium layer by making continuous observation over a number of complete diurnal 

cycles, and showed the existence of pronounced semidiurnal oscillations in the vertical 

column abundance and the height distribution of sodium. They also pointed out that the 

semidiurnal oscillation is dominant in the higher region of the layer, whereas in the lower 

extreme of the layer a diurnal oscillation predominates. 

 In 1972, the lidar observation of the sodium layer was also successful at Mt. Zao 

Observatory  (38°N) located in northern Japan (Aruga et  al., 1974), but the height resolu-

tion was not satisfactory because of an insufficient output energy of the transmitter. In 

1980, a new system which consists of a transmitter having a much higher output power 

in the sufficiently narrow bandwidth and an improved receiving system was developed, 

and a more accurate observation has since been available at our observatory. The 

instrumentation of this system were already described, in  detail, in the previous paper 

(Kamiyama et  al., 1981). The purpose of the present paper is to present the characteris-
tics of the sodium layer relating to its seasonal, nocturnal, and short period variations 

based on the data taken during 73 nights in the period from August, 1980 to December, 

1982, at Mt. Zao  (38°N). 

2. Outline of the Lidar System and Data Analysis 

   Principal characteristics of the lidar system used now at Mt. Zao Observatory are 

given in Table 1. The solution of  1  x  10-4  mol/  / of rhodamine 6G dissolved in isopro-

panol is utilized as the source material for laser emission. The spectral narrowing and 
tuning to the sodium D2 line are performed by employing a set of two tilted Fabry-Perot 

filters inside the cavity and the third Fabry-Perot filter acting as the output mirror as 

                     Table. 1 Characteristics of the lidar system

Transmitter

Wavelength 

Divergence 

Transmitted bandwidth 

Repetition rate 

Output energy 

Pulse duration

589.0 nm 

3 mrad 

16 pm 

0.25 Hz 

80 mJ/pulse 

 2.2  ,us FWHM

Receiver

Effective area 

Field of view 

Bandwidth 

Height resolution

0.2  m2 

5 mrad 

 2  nm 

1.5 km
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Fig. 1 Realtime data of return signal counts. The background noise level decided 
   from the counts in the channels from 151 to 250 is also indicated. (a) Return 
   signal counts integrated for 4 minutes,  19h33'  —37' JST on Oct. 11, 1982, during 
   which 51 laser pulses were transmitted. (b) Same as in (a), but integrated for 59 

   minutes,  19'33m-20'32m JST on the same day, during which 524 laser pulses were 
   transmitted.

well. The output wavelength is continuously monitored by using a sodium resonance 

cell, a spectrometer, and a Fabry-Perot interferometer provided with the reference 

spectrum of a sodium lamp. The duration of the photon counting for each channel in the 

receiving system is set at  10 psec corresponding to the range resolution of 1.5 km. The
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counts of return signals for each channel are accumulated in MCA (multichannel 

analyzer) for four minutes while about 60 shots of laser pulses are ordinarily transmitted. 
The accumulated counts stored in MCA are transferred to a floppy disk, being written 

in a given format, with the aid of the micro computer system within one minute before 
the next four mintutes period of the measurement starts. Examples of the height 

profiles of the return signals are given in Figs. la, b for the height range up to 130 km. 
The depression of counts for the region below 25 km is concerned with the limit of the 

pulse pair resolution of our counting system and the geometry of the receiving telescope 
with respect to the transmitting telescope (Kamiyama et  al., 1981). 

   The calibration of the absolute sodium density has been carried out by adopting the 
method established by previous works (e.g., Aruga,  1972  ; Megie and Blamont,  1977  ; 

Simonich et  al., 1979). Assuming that almost all of the atmospheric attenuation af-
fecting the laser beam takes place in the troposphere and the lower stratosphere, the 

sodium density,  N  Na, at a given altitude,  hi,,,,„ is given by 

                      NNa—NRnsNa(dal dS2)R h2No                                               (1)                            n
sR(dcil dS2)No hR  ' 

where  NR denotes the number density of the Rayleigh scattering molecules at a reference 

altitude, hR,  nsNa and  nsR the received counts of the signals from altitudes,  km, and hR, 

due to the resonant and the Rayleigh scatterings, respectively. Here,  (dal  d-(2)Na and 

 (daldS2)R are the differential back scattering cross sections for the resonant and the 
Rayleigh scatterings, denoting the scattering angle by Q, respectively. When C is 
defined as 

                         NR      C = (2) 
 nsR id' 

one may obtain from the usual laser radar equation 

 C=1  no  (do"  d..(2)R  Zlh  K  A  TR}-'. (3) 

Here,  n, denotes the number of the transmitted photons,  Z1h the height range concerned, 

K the overall efficiency of the lidar system, A the effective area of the receiving 
telescope, and TR the atmospheric transmittance. Thus, the value, C, might be expected 
simply to be constant throughout the region above a certain height, say 15 km, above 

which the atmospheric attenuation can be neglected. Practically, however, C-value 
varies with height in some altitude ranges. One of the reasons for this change in C is 

that the counting rate,  nsR, for the lower atmospheric region (<25 km) is suppressed to 
some extent due to the limit of the pulse pair resolution of our photon counting system. 

Another reason is concerned with the Mie scattering which is not taken into account in 

 (1  ). On the other hand, C may vary with time because the number of the transmitted 
photons, no, the atmospheric transmittance,  TR, and the overall efficiency of the lidar 
system, K, can be changed. The temporal change in C, however, does not affect the 

estimation of the sodium density, A T,,,,, because the counting rates due to the resonant and 
the Rayleigh scatterings,  nsiva and  nsR, respectively, are affected in the same proportion 

to the changes in  no, TR, and K.
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 Fig.  2 The C-values plotted as a function of the channel and height. Error bars 
   correspond to the statistical errors due to the limited count rates of return signals. 

   The adopted  C-value which is determined by averaging C-values in the selected 
   channels is shown by the dashed straight line.  (a)  19'33m  —  37"'  JST, on Oct. 11, 

   1982.  (b)19h33"'-  20h32"'  JST, on the same day.

   Then, the value, C, is calculated from (2) as a function of height by using observed 

data for  nsR and the assumed model for NR. The vertical distribution of the atmos-

pheric density is calculated by employing the temperature data obtained at Sendai 
District Meteorological Observatory for the region below 30 km and those given in the 

U.S. Standard Atmosphere Supplements (1966) for the upper region. Examples are 

given in Figs. 2a, b, which show C-values as the function of the channel number of MCA



156 FUMIHIKO TOMITA AND HIROSHI KAMIYAMA

or altitude. Fig. 2a is calculated from data for  nsR taken in the period from  191133"1 to 

 19"37m JST on Oct. 11, 1982. Adopting the values for channels from 22 through 30, 
except for 26, the averaged C-value is determined as  C. In Fig.2b, C-values are 

calculated based on the data taken in the period from  19'33m to  20'32m JST on the same 
day. The constancy of C with respect to height is considerably improved, and  C is 

determined by averaging the values for channels from 21 through 32, except for 27, 28, 
and 30. In case where  C can not be determined uniquely because of a steps-like change 

in C, a probable range of  C is estimated and the corresponding uncertainty in the sodium 
density is taken into account as an experimental error. As for the differential back 

scattering cross sections,  (d6ldS2)R is quoted from the literature (Handbook of Geophys. 
and Space Environments, 1965), and  (dal  d-Q)Na is obtained according to Simonich et al . 
(1979). 
   The laser bandwidth was measured with a Fabry-Perot interferometer of 60 pm free 

spectral range and a microdensitometer, and was found to be  16+1 pm. Then, the 
uncertainty in the evaluation of  (da/dQ  )Na is approximately  +6% . Owing to the strict 
temperature control to  0.005°C for the filters, the tuning is sufficiently stable throughout 
a night. Another uncertainty in the determination of the absolute sodium density is 

introduced statistically due to the limited photon count, it is estimated to be approxi-
mately  +14% for a four minutes integration time, and  +4% for one hour integration 

time. The error arising from an uncertainty in the vertical distribution of the atmos-

pheric density is considered to be much smaller. The results of the observation will be 

prestented in following sections. 

3. Seasonal Variation 

   Column contents of the atmospheric sodium are calculated for each vertical profile
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of the sodium density derived from hourly integrated data, and are averaged over each 

observational period which is scheduled for about two weeks centered around every new 

moon epoch. These averaged values for the period from September, 1980 to December, 

1982 are plotted in Fig. 3. Error bars represent either the probable error of the disper-

sion or the extent of uncertainty in our estimation whichever is larger. Because of an 

unfavorable weather condition, the number of observations in winter is limited. In order 

to estimate a value at the middle of each month, linear interpolations between adjacent 

points in Fig. 3 are adopted. Then, taking averages for respective months, the seasonal 
variation in the monthly abundances is plotted in Fig. 4. One may see the maximum of
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5.1 x  109 atoms  cm-2 in October, followed by a slight depression in December, the 

secondary maximum of 4.7 x  109 atoms cm-2 in next February, and the minimum of 2.3 x 

 109 atoms cm-2 in May. Such a seasonal variation showing the maximum in winter and 

the minimum in early summer is consistent with the results so far reported (Gibson and 

Sandford,  1971  ; Megie and Blamont,  1977  ; Simonich et al., 1979). Our result obtained 

at Mt. Zao  (38°N) characterized by the broad maximum in winter seems to be, however, 

of a plateau type which is not similar to those obtained at higher latitudes  (44°N,  51°N), 

but common to that at a lower latitude  (23°S). 

   To inquire further into the seasonal variation, the monthly profiles of the density 

distribution are shown in Fig. 5. In this figure, sodium density profiles averaged over 

each month are given by the solid lines, together with the annually averaged profile 

shown by the light dotted lines for reference. The regions where the density enhances 

over the annually averaged profile are indicated by hatching. One may see a charac-

teristic seasonal variation in the structure of the layer. The altitude of the hatched 

region decreases gradually from July to November and then turns up again in the upper 

part of the layer in next February. The peak altitude shows obviously the seasonal 
variation with the amplitude of about 4.5 km. This type of variation of the peak altitude 

is similar to the results obtained at higher latitudes  (44°N,  51°N), whereas no variation 

has been shown at a lower latitude  (23°S). The seasonal characteristics of the structure 

of the layer can be illustrated in a different manner as shown in Fig. 6. This contour 

map gives the difference between the height distribution of the sodium density  (cm-3) and 

that of the annual average as the function of month, and the regions where the absolute 

difference exceeds 200  cm-3 are indicated by the two different shading areas corre-

sponding to their signs. The peak altitude averaged over a year is also indicated in the 

figure. It is evident that the amplitude of the seasonal variation is much larger in the 

bottom side of the layer than in the higher part. The sodium density shows the 

minimum in April and the maximum in November in the lower part of the layer, whereas 

in the higher part the density shows minimum in May, the maximum in September, being 

followed by the secondary maximum in February.
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Fig. 6 Contour map of the deviation of the monthly average profiles from the annually averaged 

   profile. Deviation of the density is given in  cm-3.
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4. Nocturnal Variation

   Various sorts of nocturnal variations in the sodium layer have so far been reported. 

One of the most interesting features is the wave-like structure showing a downward 

progression of the phase angle (e.g., Rowlett, et  al., 1978 ; Simonich et  al.,  1979  ; 
Clemsha  et  al., 1982). 

   The averaged nocturnal variations of the column content of sodium observed at Mt. 

Zao are shown in Figs. 7a, b, c, which show the three sorts of trends depending on the 

range of the nocturnal variation, respectively. In order to obtain the nocturnal trend 

from  20' to  4' JST, only the data taken continuously for more than five hours are selected 

for statistics. In order to avoid an influence of a peculiar variation obtained in a certain 

night when the level of the observed values is relatively high and consequently a range 

of the variation can be large, the  following procedure is employed. The averaged level 

of sodium contents for each night is normalized to the averaged level of whole data, and 

the relative variation in each night is reduced or enhanced by a factor corresponding. In 

Fig. 7a for the small range of the variation  (range  <2  x  109 atoms cm-2), although the 

result at  4' JST is not presented because of the  insufficient number of data, a general 

tendency is seen that the column content increases toward dawn. In the cases of greater 

amplitudes of the variation, one may see the post midnight enhancement maximizing at 

about  1' JST. This characteristic is similar to the result reported by Clemsha  et  al. 

(1982), whereas Simonich et  al. (1979) found no obvious variation in their statistical 
result. 

   Some examples showing characteristic variations in the vertical profile of the 

sodium density are given in Figs. 8 through 11. Each of the profiles is obtained from 

hourly integrated data and is shown by the solid line. The averaged profiles for the 

respective nights are also shown for reference by the dotted lines in the same way as in 

Fig. 5. Also shown in the upper panel is the trend of the hourly values of the column 

content. It is pointed out that the pronounced feature common in these examples is the 

decrease, with time, in the altitude where the density makes enhancement. In one of the 

most remarkable variation in Fig. 8 (Mar.  11  —12, 1981), the height of the density 

enhancement descends at the rate of about 2 km  hr-' on an average accompanying the 

increase in the column content. In this figure, one may see the much more pronounced 

nocturnal variation in the sodium density in the lower part of the layer than in the higher 

part and also the downward phase progression. These characteristics are shown more 
obviously by contour maps in Figs. 12a, b. In Fig. 12a, the differences between each 

profile and the averaged profile over a night are shown in terms of the sodium density 

 (cm-3), while in Fig. 12b they are given in the percentage deviation from the average at 
respective height. The areas for large deviations of contents from the average in the 

both figures are indicated separately by shading in the same way as in Fig. 6. One can 

clearly see the enhanced variation of the sodium density in the lower part of the layer in 

Fig. 12a, and the downward phase progression in Fig. 12b. In the latter figure, the wave-

like structure reveals a vertical wavelenght of  14-20 km and a period of about 12 hr.
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This wave motion seems to be of the same type as semidiurnal oscillations reported by 

Clemsha et al. (1982). Another example given in  Fig.  9 (Apr.  7-8, 1981) shows such a 

feature more clearly as illustrated in Figs. 13a, b. In Fig. 13b, the vertical wavelength is 

estimated to be 16-22 km, and the striped pattern of the percentage density deviation is 

much more obvious than in Fig. 12b. In the case of an example given in Fig. 10 (Jul. 13 
 —14, 1982), a narrow peak at the altitude of about 97 km appeared suddenly at about 23h 

JST and its altitude decreases slowly at a rate of  0.4-0.5 km  In—'. Fig. 11 (Oct.  21-22, 
1982) is an example showing the existence of semidiurnal oscillations in the column 

content and the vertical distribution. The oscillations in the sodium density at the 

altitude of 82 km and 93 km, respectively, were of completely out-of-phase indicating the 

vertical wavelength of 22 km and period of about 12 hr. 

   Our data collections have been carried out usually at every five minutes as men-

tioned earlier. Therefore, the variation of the vertical profile of the sodium layer can be 

studied with a higher time resolution. In Fig. 8 (Mar.  11  —12, 1981), the secondary peak 

at an altitude of  97-98 km could not be observable at about  3h JST, and at the same time 

the main peak at a lower altitude showed remarkable enhancement. This event was 

illustrated in Fig. 14 at 20 minutes intervals by profiles estimated from ten minutes 

integrated data. The averaged profile for the period from  0h00"1 to  3h10m is also shown
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    lines), and column content (the upper panel) observed during the period,  Oh00`"  —3h1Om JST, 

    on Mar. 12, 1981.

by dotted lines. From the figure, this event can also be understood as the result of a 

wave motion in the sodium layer. Fig. 15 (Jul.  13  —14, 1982) shows the details of the 

variation in the profile from  22h35m to  1h35m in the same way as in Fig . 14. In this figure, 
the narrow peak appeared suddenly at the altitude of about  97---99 km at  22555m JST . 
The density of the peak decreased toward 23h35m JST and then turned to increase toward 

 1h15m JST. It is obvious that the increase of the peak density from  23h55m to  1h15m was
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as in Fig. 14, but during the period,  22h35"1-1'35m JST, on Jul. 13-14, 1982.

accompanied with a decrease in the altitude of the peak. These features are thought to 

be reflecting a combined effect of atmospheric oscillations and sodium chemistry.

5. Short Period Fluctuations

   As mentioned in the previous section, short period fluctuations in the sodium density 

profile are suggested to be quite useful for better understanding of the mechanism 
dominating in the sodium layer. For example, Fig. 16 illustrates the nocturnal variation 

in the sodium column content during the night, Jul.  31—Aug. 1, 1981. Although column 

contents are estimated at every five minutes, running averages of adjacent three values 

are plotted in order to smooth out noisy fluctuations. One may see in this figure that 

short period variations characterized by a period of about one hour or so are superposed 

on the general increasing trend. In the shaded portion of this figure, the sodium content 

shows an enhancement by more than 20% within 20 minutes. The nocturnal variation 

of the profile based on hourly integrated data for this night is shown in Fig. 17. The 

descending feature of the wave-like structure can obviously be seen in this figure. The 

secondary peak which appeared below 90 km during the period from  2' to  31i JST is of 

particular interest. Vertical profiles of the sodium density in this period are shown at 
five minutes intervals in the lower panel of Fig.18. Each of the profiles is provided by 

employing 15 minutes integrated data in order to reduce noisy fluctuations arising from 

the photon-counting statistics. The dotted lines represent the averaged profile for the 

period concerned, and column contents are shown in the upper panel of the figure. One 
can see a downward shift of the wave-like structure which is similar to the result shown 

by Shelton et  al. (1980). The density variations at the altitude of 83 km and 95 km are
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profiles on Jul.  31—Aug. 1, 1981.

in-phase, and those at 89 km and 98 km are also in-phase, whereas both of the pairs are 

out-of-phase. From these characteristics, it is obvious that there are short period 

oscillations having a vertical wavelength of  9-12 km and a period of about 60  min. 

This kind of oscillations were also reported by Rowlett et  al. (1978). In another example
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period fluctuations during the period,  23"25"  —24"00" JST, on May 17, 1982.

 (23'25m  —24hOr JST, May. 17, 1982) shown in Fig. 19, the variations of the sodium density 

at the altitudes of 87 km and 98 km, respectively, seem to be in-phase, whereas the phase 

of the variation at 92 km is quite different from that of the above pair. In this event, the
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     Fig. 21 Short period fluctuations during the period,  20930m  —215050 JST, on Oct. 11, 1982. 

vertical wavelength is found to be about 11 km and the period is estimated to be  30-50 

 min. 

   There is another kind of events in which the sodium density is enhanced simulta-

neously at almost entire height range concerned . In the lower panel of Fig. 20  (3'10m 
 —40m JST , Dec. 4, 1981), one may see that the sodium density increased at almost all 

altitudes in accord with the enhancement of the column content shown in the upper panel 

of the figure. Note that, however, the altitude of the maximum density decreased
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gradually throughout this period. In another example shown in Fig. 21  (20}130m  —21'05m 

JST, Oct. 11, 1982), the sodium density enhanced simultaneously at almost all altitudes 
following the increase of the column content. It is not clear now whether this type of 

fluctuations in the sodium density at almost all altitudes are caused by a kind of a wave 

motion in the atmosphere or by the deposit of sodium atoms into the atmosphere at the 

altitudes concerned.

6. Discussion and Summary 

   The column content of the nighttime sodium layer show a pronounced seasonal 

variation in northern Japan  (38°N), showing the maximum in October, a slight depression 

in December, the secondary maximum in next February, and the minimum in May. This 

variation is of same type as that observed at a low latitude in the southern hemisphere 

 (23°S), with the phase shift of a half year, by Simonich et al. (1979) rather than those 

shown at  44°N by Megie and Blamont (1977) and at  51°N by Gibson and Sandford (1971) 

in the northern hemisphere. The winter (December-January) to summer (June-July) 

ratio in the column content at  38°N is found to be 1.3 which lies between those obtained 

at Kitt Peak  (32°N), U.S.A., from the twilight observation (Hunten, 1967) and at Haute 

Provence  (44°N), France, by the lidar observation (Megie and Blamont, 1977), and is 

consistent with the result reported by Simonich et al. (1979). The peak altitude of the 

layer is low in winter and high in early summer, the range of the seasonal change being 

about 4.5 km. This value corresponds to an intermediate characteristic between the 

result at higher latitudes  (44°N,  51°N) and that at a lower latitude  (23°S) where no 

seasonal change is reported. The height where the density is enhanced predominantly 

decreases gradually from July to November and then turns up again in the topside region 

of the sodium layer in next February. This characteristic seasonal change in the profile 

of the sodium layer is thought to be closely related to the annual variation of the 

atmospheric composition involved in sodium chemistry in the altitude region concerned. 

   The nocturnal sodium layer shows a large variety of variations, reflecting not only 

a possible change in the source of atmospheric sodium but also a combined effect of the 

dynamics and chemistry of the sodium layer. 

   The averaged nocturnal variations of the sodium column content shown in Figs. 7a, 

b, c are considered to be due to the dynamical effect of the wave motion. From our 

observed data, results shown in Fig. 8 through Fig. 11 are selected as particularly clear 

examples. In these results, the profiles of the sodium density are superposed by wave-

like structures with a vertical wavelength of  14-22 km and the downward phase 

progression with speeds ranging from 0.4 to 7 km  hr--'. Although the downward phase 
velocity is consistent with early works (Rowlett et al.,  1978  ; Simonich et al., 1979), the 

vertical wavelength found from the present observations is larger than that reported in 

the previous paper but is smaller than that reported by Clemsha et  at. (1982). 

   The short period fluctuations having periods of about 1 hr or so are frequently 

superposed on a nocturnal variation of the sodium layer. Most of them are  accompa-

nied by the descending wave-like structures in which the vertical wavelength is esti-
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mated to be  9-12 km. Although these features are consistent with the results reported 

by Rowlett  at al. (1978) and Shelton et al. (1980) , a more detailed study will be required 
to confirm that these perturbations are due to the propagation of gravity waves (Shelton 

et al., 1980). It is noted here that in some cases of the short period fluctuations , the 
wave-like structure can hardly be seen and the sodium density enhances simultaneously 

at almost all altitudes of the layer as shown in Fig . 21. 
   The morphological study of the nighttime sodium layer observed with the  lidar 

technique in northern Japan  (38°N) are presented in this paper . The structural varia-
tions of the sodium layer with various time-scales suggest that the stratification of the 

sodium layer is related not only to the change in the composition of the atmosphere in 

the height range concerned, but also, to a large extent , to atmospheric tides or wave 
propagations.
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