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   Abstract: A new self-consistent scheme is presented for determination of 

effective elastic constants of a composite having randomly oriented and randomly 

 distributed spheroidal inclusions. In general, such a composite may be regarded as an 

isotropic and homogeneous material from the macroscopic point of view. Regarding 

the macroscopically homogeneous composite as a matrix and introducing additional 

inclusions of a sufficiently small volume fraction into the matrix, the effective elastic 

constants of the new composite are calculated by the use of a dilute theory. The new 

composite is also macroscopically isotropic and homogeneous. Carrying out the above 

procedure successively, we, thus, obtain the effective elastic constants of a composite 
with an arbitrary amount of volume fraction of inclusions. The numerical calculation 

confirms the validity of our method for all volume fractions of inclusions: The computed 

constants lie between the upper and the lower bounds of Hashin and Shtrikman, agree 

with the exact solution in the so-called Hill's case, and show reasonable asymptotic 

behaviour as the volume fraction of inclusions tends to unity.

1. Introduction 

   The theoretical determination of effective elastic property of composite material 

is still an up-to-date problem in the field of material science. Recently, this problem 

has become of practical importance also in the field of solid earth science. An example 

is found in studies on the physical and chemical feature of the low velocity zone of seismic 

waves in the upper mantle. The low velocity zone is explained presumably by the 

effective property of material composed of solid and melting phases. Another 

example arises from the observation of anomalous changes in seismic wave velocities 

prior to the occurrence of a large earthquake. The dilatancy is well-known 

phenomenon in the study of rock-fracture mechanics. When the deviatric stress applied 
to a rock sample becomes sufficiently large, the volumetric strain increases inelastically 

with an increase in the applied stress. This inelastic increase in volumetric strain is 

called dilatancy and considered to result from generation of micro-cracks in the 

sample. An increase in number of micro-cracks causes a decrease in velocity of elastic 

waves. Thus, the quantitative analysis of velocity changes observed in the source region 

of a large earthquake should be a powerful means not  only to understand the physical 

process of earthquake occurrence but also to elucidate other possible premonitory 

phenomena.
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     In the geophysical problems described above, the composite to be modeled for 

 actual materials in the earth consists of phases whose elastic properties generally 
 differ greatly from each other. Although a large number of studies have been made 

 so far on the theoretical determination of effective elastic constants of composite 
 materials, the existing theoretical methods do not seem accurate enough in the case 

 of a large volume fraction of inclusions whose elastic property is of a great contrast 

 to that of the matrix. The present paper aims to propose a new self-consistent 
 scheme which will be abridged as NSC. The scheme will be applied to a composite 

 having randonly oriented spheroidal inclusions whose spatial distribution is also random. 
 The numerical results by our method will be presented to show its validity for all 

 volume fractions of inclusions. 

2. Critical Review of Existing Methods 

    A number of studies have been made on the theoretical determination of effective 
elastic constants of composite material. The problem under consideration is reduced 

essentially to the boundary value problem of the first kind or to that of the second 
kind, that is, the problem to find the stress field under the displacement condition given 

at the outer boundary of the composite or the strain field under the stress condi-
tion. The theoretical studies published so far may be classified into two groups. One 
intends to develop the so-called bounding method which gives us the upper and the 

lower bounds of effective elastic constants without any assumption for the geometry 
of its constitutents. The other is devoted to solve the boundary value problems for a 

composite containing inclusions of given geometry. The methods in this group result 
in the effective constants dependent on the shape of inclusions, and will be called the 
shape-dependent methods, hereafter. 

(1) Bounding methods (shape-independent methods) 
    The Voigt and Reuss averages are well-known as classical theories for bounding 

methods. In order to derive his average, Voigt (1928) assumed that the strain field 

within a composite was approximated by a uniform strain field with the same magni-
tude as that of the applied strain to the composite. On the other hand, Reuss (1929) 
considered that the stress field in a composite was expressed approximately by a 

uniform stress with the same magnitude as that of the applied stress. Hashin and 
Shtrikman (1963) later showed that the Voigt and Reuss averages can be regarded as the 

upper and the lower bounds of effective elastic constants of a composite material. 
Hashin and Shtrikman (1962, 1963) greatly improved the bounding theory to derive 

the so-called HS bounds of effective elastic constants of multi-phase materials from 
their own variational principle. The difference between their upper and lower 
bounds was found to be sufficiently small for the composites consisting of solid phases 

whose elastic properties do not differ so much from one another. The HS bounding 
method is practically highly useful to determine the effective elastic constants of such 
composites as above. The method, however, loses its practical usefulness for the
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composite having void or liquid inclusions, because the lower bounds of rigidity  and/or 
incompressibility become zero even for a very small volume fraction of inclusions. 

    There is a special cases where the rigidities of all constituent phases are the same 

(Hill's  case). Hill (1963) found the exact solution for the effective elastic constants in 
this case. The effective rigidity is identical to that of constitutent phases and the 

effective incompressibility is uniquely determined independently of the shape of inclus-
ions. The upper and the lower bounds of Hashin and Shtrikman for incompressibility 

are confirmed to degenerate to an identical value, which is consistent with the Hill's 
exact solution. 

(2) Shape-dependent  ntelhods 
    Generally speaking, the shape-dependent theories are based on the solution of the 

boundary value problem of the first or the second kind for a composite material having 
inclusions of specified geometry. When the volume fraction of inclusions is so small 

that the interactions among inclusions may be negligible (dilute case), the well-known 
solution of the problem for a single inclusion is directly applicable to the determination 

of effective elastic constants. The shape-dependent methods in dilute case may thus be 
considered to have been well established. In non-dilute case in which the volume 
fraction of inclusions is not small enough, the solution for a single inclusion cannot be 

used without any modification. In conventional shape-dependent theories, there-
fore, the interaction effect among inclusions is taken into account in some approximate 
way. 

    There is another approach to derive a shape-dependent method, which makes use 
of the dynamic theory of wave scattering due to an inclusion of specific geometry. 

However, the situation about interaction effect is similar to the static treatment. The 
single scattering theory, which corresponds to the dilute case, is well established, 

while the multiple scattering theory has not yet been available.  

(  i  ) Methods for dilute concentration 
   Eshelby (1957) has presented the solution of strain field in an ellipsoidal inclusion 

in an infinite material which is strained uniformly at infinity, where both the two 
materials are assumed to be isotropic and homogeneous. He suggested a method for 
the determination of effective elastic constants  by using his solution. One of the 
formulae derived from his method was obtained under the condition of fixed surface 

displacement, and the other under the condition of fixed surface traction. The formulae 

obtained from the two different boundary conditions are agree with each other to the 
first order term of volume fraction. This means that the method is valid for the case 
of dilute concentration of inclusions. In the Hill's case, the effective incompressibility 

determined by the methods is independent of the inclusion shape, but is not identical 
with the exact solution except for an infinitensimally small volume fraction, while the 
effective rigidity coincides with those of constitutent phases. 

   The approach using the theory of scattering waves was adopted by Mal and 
Knopoff (1967), Garbin and Knopoff (1973, 1975a, b),  Kuster and  ToksOz (1974a), etc. 

Their results are considered to be valid for a small volume fraction of inclusions, since
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their methods are based on the single scattering calculation. In spite of this fact, it is 
interesting to note that the result obtained by the method of Kuster and  Toksbz 

(1974a) agrees with the exact solution in the Hill's case. 

 (ii)  Methods for  non-dilute  concentration 
    Hill (1965) developed a method called the self-consistent scheme (SCS), which is 

considered to be applicable to a composite with a large volume fraction of inculsions. 

The method pressumes that the average strain and the average stress within one of 
inclusions can be evaluated by replacing the surroundings of the inclusion by an 
imaginary material whose elastic constants coincide with the effective elastic constants 

to be determined. Hill (1965) showed that his method yields the same results from 

the dual approach; from the displacement condition and from the stress one. 
    The result of SCS in the Hill's case is known to agree with the exact solution. 

Moreover, the SCS results in general lie between the upper and the lower bounds of 
Hashin-Shtrikman for all values of volume fraction. Walpole (1969) obtained analytical 

expressions for effective elastic constants in the case of disc-shape inclusions, where 
the disc-shape means the oblate spheroid with a sufficiently small aspect ratio. His 
results are found to agree with the upper or the lower bounds of Hashin-Strikmann, 

according that the elastic constants of inclusions are larger or smaller than those of the 
matrix. 

   Budiansky (1965) has derived the same SCS expressions as Hill's (1965) in the case 

of spherical inclusions through a slightly different procedure. Using a method similar 
to that of Budiansky (1965), Wu (1966) calculated the effective elastic constants in the 
case of disc-shape and needle-shape inclusions, where the needle-shape means the 

prolate spheroid with sufficiently large aspect ratio. Watt et al. (1976) confirmed that 
the results by Wu (1966) are equivalent to those by Walpole (1969) in the case of disc-

shape  inclusions. Generally speaking, the numerical computation of successive 
approximation is required for SCS to find the effective elastic constants. O'Connell 

and Budiansky (1974) have presented analytical formulae for approximate solutions 
of th SCS equations in the case of void or liquid disc-shape inclusions. 

   Hill (1965) pointed out that the SCS equations in the case of void spherical inclus-

ions have a positive root of effective elastic constant only when the volume fraction is 
less than  1/2, and stated that the results for large volume fractions are unreliable in 

such an extreme case as void inclusions. Bruner (1976) also has claimed that the SCS 
results in the case of void inclusions are physically unreasonable. Comparing the 
results of SCS with those obtained by scattering calculation to the second order, 

Chatterjee et  al. (1978) concluded that the SCS results are not to be trusted beyond 
the first order in volume fraction of inclusions. 

   The numerical computation of higher order scattering is almost impossible at 

present, and has been attacked only in some special cases. For instance, Chatterjee 
et al. (1978) computed the scattering waves to the second order in the cases of void 
and rigid spherical inclusions. Computing SH-waves to the sixth order scattering, 

Varadan et al. (1978) determined only one of five effective  moduli of a composite in the
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case where the inclusions of elliiptic cylinder were oriented in the same direction. 
   Any approximation method proposed for effective elastic constants of a composite 

in non-dilute cases should be tested by the following  criteria  : The effective moduli 

determined by the method should (a) lie between the upper and the lower bounds of 

Hashin-Shtrikman for all volume fractions of inclusions, (b) show the correct 
asymptotic behaviour at sufficiently small volume fractions, (c) exhibit the physically 
reasonable asymptotic behaviour as the volume fraction tends to unity, (d) reduce to 

the exact solution of Hill (1963) in the Hill's case, and (e) satisfy the dual approach 
requirement, that is, the same result should be obtained under the fixed displacement 

condition and from the fixed stress condition on the outer boundary of a composite. 
Among these criteria, (a), (b), and (d) have been proposed by Watt  et  al. (1976).

3. A New Self-Consistent Scheme 

   The purpose of this section is to present a new method for calculation of effective 

elastic constants of a composite material which is macroscopically homogeneous. For 
simplicity, we treat here a two-phase composite having a single type of inclusions 

whose shapes and elastic properties are the same, though our method is easily 

generalized to the case of multi-phase composite. Further, the random orientations of 
spheroidal inclusions are assumed to make use of existing theory. That is to say, the 
composite concerned is macroscopically isotropic. 

   Consider a composite of unit volume which contains a finite volume fraction,  vk, of 
inclusions. Let us assume that effective elastic constants Ck can be defined for this 
composite and estimated by some means. In most cases, these effective constants are 

physically meaningful and practically useful, when the composite can be regarded as a 
macroscopically homogeneous material. For instance, let us consider the problem of 

elastic wave propagation. In this case, the wave length should be long enough compared 
with the size of inclusion, and, further, the spatial distribution of inclusions should be 

uniform in the composite.  In logical consequence of this consideration, we may 
regard the microscopically heterogeneous composite as a  macroscopiclly homogeneous 
matrix with elastic constants Ck. Let us introduce an additional amount,  dvk+i, of 

inclusions into the macroscopically homogeneous matrix. If  dvk+, is sufficiently 

small compared with the volume of the matrix, the dilute theory is applicable to deter-
mine with a  sufficient accuracy the effective elastic constants of the composite with 
volume fraction  dyk+, of inclusions. 

   Starting from a truly homogeneous matrix without any inclusion, we may repeatedly 
introduce an infinitesimally small volume fraction of inclusions into the macroscopically 
homogeneous matrix to give a composite with a finite value of volume fraction. At 

each successive iteration we may use the dilute method, and finally find the effective 

elastic constants of the composite having an arbitrary amount of inclusions. This is 
the basic concept of our method, which will be called new self-consistent scheme 

 (NSC). 
   As explained above, a composite having a volume fraction  vk of inclusions is
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regarded as a macroscopically homogeneous matrix with elastic constants  C . The 
relation between average stresses p and average strains e in the matrix is given by 

 P  =  Cke (1) 

and the strain energy Ek is expressed by 

 2E  k  =  (e•Cke)  =  (p  •Ch-1p)  . (2) 

To introduce an additional small amount  dyk+i of  inclusions into the matrix , we have 
to replace the volume  dvh+1 of the matrix by the additional inclusions. In doing this, 
the given displacements or the given tractions at the outer surface of the matrix should 
be kept constant. The stress free strains  eTk, defined by Eshelby (1957), due to 
insertion of the inclusions is expressed by 

 eTk  —  The  , (3) 

where  T  k is a constant determined for given elastic properties of the matrix and 
inclusions of a specified shape. Following the theory of dilute concentration , the 
strain energy,  Ek+i, in the composite after the introduction of additional inclusions 

is obtained as 

 2Ek+l  =  (e  •  Cke)  dvh+,(e  •  ChT  ke)  , (4a) 

for the fixed surface displacements, and 

 2Eh+,  (p  •  Ck-lp)  dvh+i(p  •  T  hCk-1p)  , (4b) 

for the fixed surface  tractions. Writing  Ek+i in terms of the effective elastic constants , 
 Ck+1, of the new composite, we have 

 (e  •  Ck.fie) =  (e  •  Cke)  —  dvh+,(e  •  ChT  he)  , (5a) 
or 

 (P  .Ck-F1P)  (p  .Ck-1p)  dvk-1(p  •  T  hCh-lp)  , (5b) 

from (4a) or from (4b). 

   Since the orientations of the newly introduced inclusions are also random, we 
obtain the following expressions from (5a) for the effective incompressibility  Kk+i and 
for the effective rigidity  ith±i of the new composite as

 Kk+1  
                     7.7-— dvA(KA,/Ix,(1),a(11) 

                        k 

           µk+1 d                                  1.4,24+1B(Kk,jUk,IC(1),(1) (1)) 
 ittk 

From (5b) 

 Kh  
 —  1  +  dvh+1  A(Kh,pk, KO),14(1) , a (1))  K

k+1 

 =  1  d-dvh+,  B(Kk,  K(1),  #(1),  04(1)) 
 ilk+1 

Here A and B are coefficients determined by  Kk,  ph of the matrix and  K  (1)

 (6a)

 (6b)

and p,  (1),
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 am of inclusions. The aspect ratio  a is defined by where a denotes the half 
 length of axes of circular cross-section and c does that of the other axis of spheroid. 

 It should be noted that the total volume fraction after introduction of inclusions 
 is not equal to  ek+dek+i. Pre-existing inclusions are randomly distributed in the 

 matrix and the introduction of the additional inclusions into the matrix is done also 
 randomly. Some of pre-existing inclusions are statistically expected to be overlapped 

 by the additional inclusions. The overlapped part of the pre-existing inclusions must 

 be replaced by the new inclusions or, in other expression, the overlapped part of the 

 pre-existing inclusions must be removed from the composite matrix upon the introduc-
 tion of new inclusions. In this sense the overlapped part will be provisionally 

 called the removed part in this paper. It is noted that the whole of a pre-existing 
 inclusion is not necessarily overlapped by a new one. It is more probable that only a 

 part of a pre-existing inclusion is overlapped and removed from the composite 
 matrix. The removed part does not cause the real increase of volume fraction and 

 should be subtracted from  ek±dek+,. The volume fraction of removed part is 
 expected to be  vkdvk+,. Therefore the real volume fraction after the introduction of new 

inclusions should be expressed as 

 74+1  —  74-F-Aki_1(1-24)  • (7) 

On the other hand, the quantity  vk+dvk+i will be called the nominal volume fraction, 

 k+i, hereafter. As stated before the effective elastic constants of a composite with 
a given volume fraction of inclusions can be calculated by the successive use of  (6a) or 

 (6b) and (7) from  k  —0, where  vo=0. 
    Let us consider the limiting value of volume fraction as dvk tends to zero. If we 

introduce the same amount, dv, of inclusions at every iteration, the real volume frac-

tion  vn and the nominal volume fraction  Tin at the n-th iteration are written by 

 en  = 1 —(V                          1 — "; 

                                         n 

                                                (8a) 
                              Vn=  ndv 

The volume fraction of removed part,  ern, which is the total volume fraction of pre-exist-

ing inclusions replaced with the newly introduced inclusions at every iteration, is 
expressed by 

 v,,,  =  Vn—yn (8b) 

Consider the case where the real volume fraction v is attained by successive introduction 
of inclusions of an infinitesimally small volume fraction. The nominal volume fraction 

V is obtained from (8a) as 

 V  lim  V.=  —  In  (1—v)  . 
      dv-.0 (9) 

The volume fraction of removed part  Cr is written from (8b) as 

 Cr  lim  vr„  —  ln  (1—v)—  v  .  (10) 
 dv-P-3
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It is shown from (9) and (10) that V and  v, are finite values, except for the special case 

of  v=  1. 

   We cannot express analytically the limiting values of effective elastic constants 
calculated by the successive use of  (6a) or (6b). Their convergency, however, is 
apparent for a finite value of  V, as far as the coefficients A and B in  (6a) or in (6b) have 
finite values. 

   Further if  dv is taken to be small enough, practically equal effective elastic constants 
are calculated either form  (6a) or from  (6b) at each iteration. We can have the 
result as accurate as we desire by taking a smaller value of  dv. We, therefore, obtain 
the same result by the successive use of either expression. Our method of NSC is 

thus considered to satisfy the dual approach requirement stated in Section 2.

4. Numerical Results for Two-Phase Composites 

   The effective elastic constants are numerically calculated by the new self-
consistent method (NSC) for various two-phase materials. In order to examine the 
validity of the method, the results are compared with those by other methods such as 

SCS by Hill (1965), Wu (1966), Walpole (1969) and O'Connell and Budiansky (1974), 
KT by Kuster and  ToksOz (1974a), DSP by the expressions in the case of dilute 
concentration based on the displacement condition, and STR by the expressions for 

the dilute case based on the stress condition, as well as the upper  (HS+) and the lower 

 (HS-) bounds of Hashin and Shtrikman (1963). 

(1)  Hill's case 
   The effective elastic constants obtained by various methods in Hill's case are 

illustrated in Fig. 1. As is well known, the upper bound,  HS+, for the effective in-

compressibility coincides with the lower bound,  HS, and is equal to the Hill's exact 
solution (Hill, 1963). Although the effective incompressibilities by DSP and STR are 
independent of inclusion shape, they differ significantly from the exact solution. It is 

found, however, that the present method (NSC) based on DSP or STR expressions for 
dilute concentration gives the same result as the exact solution. The same results can 

be obtained also by SCS and KT independently of inclusion shape. The effective 
rigidity obtained by every method is identical with that of the matrix and inclusions. 

(2) Spherical inclusions 
   The results in the cases of void and liquid spherical inclusions are shown in Figs. 2 

and 3, respectively. The lower bounds  HS- for incompressibility and for rigidity are 

equal to zero in the case of void inclusions for all values of volume fraction, and those 
for rigidity are also equal to zero in the case of liquid inclusions. These are omitted 
from the figures. The NSC results lie between the upper and the lower bounds of HS 
for any value of volume fraction. The effective elastic constants by NSC are found to 

tend to those of inclusions as the volume fraction approaches to unity. The results of 
SCS are fairly close to those of DSP in both the cases of void and liquid inclusions. In 

the results of SCS the effective incompressibility and rigidity vanish at the volume
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fraction of 0.5 in the case of void inclusions , and the effective rigidity does at a volume 
fraction near 0.6 in the case of liquid inclusions . The resuls of KT coincide with those 
of  HS+ in both the cases. 

   The upper bound  HS+ for incompressibility is known to correspond to the effective 

incompressibility of a spherical material having a concentric spherical inclusions . 
Therefore, it is reasonable to expect that the NSC results should be less than HS+ , since 
a uniform distribution of small inclusions is presumed for NSC . The figures show

Fig.

1.0
a 

---

 Q0 =0.25 
 Kl/Ko  =0406 
 pu  /pa  =1.0 

 •

 kTSSC

       0 0.5 1.0 
                           VOLUME FRACTION 

 1. Effective incompressibility K calculated by various methods in 

 Po)•  K,  tt, and  e denote incompressibility, rigidity, and Poisson's ratio, 
quantities with subsrcript 0 and superscript  1 indicate those of matrix 
respectively  . 

 NSC; the new self-consistent method in our study , 
 HS- the upper and the lower bounds of Hashin and Shtrikman , 

DSP; the dilute method from the displacement condition , 
STR; the dilute method from the stress condition, 

 KT; the method of Kuster and  Toksbz, 
 SCS  ; the method of self-consistent scheme. 

 HS}, NSC, KT, and SCS are all equal to the exact solution of Hill .

 Hill's case  (pi-- 
respectively. The 
and of inclusion,
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:/r. 

 SC  S  DSP  111..Se 
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   0 I • ,--- \‘, I 
   0 0.5 0 0.5 1.0                               VOLUME FR
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2. Effective incompressibility  K and effective rigidity /1 in th case of void spherical inclus-
ions. The notations are the same as those in Fig. 1.
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Fig. 4.  KfIC, and in the 
 a=10_3 except for SCS. 

   ratio and are practically

 STR 

NSC

    0.1 
          VOLUME 

case of disc-shape 

SCS are calculated 

equal to NSC and

0 0.1 0.2 
 FRACTION 

inclusions. Calculations are done by 

for inclusions with infinitesimally small 

 to  HS-.

putting 
 aspect

further that the STR results are the worst, because they are larger than those of  HS+ 

for any value of volume fraction. 

(3) Disc-shape inclusions 
   An oblate spheroidal inclusion with a  sufficiently small  aspect ratio is here called 

a disc-shape one for the sake of convenience. An example is shown in Fig. 4 for the 

case where inclusions have finite and small values of elastic constants. Calculations of 
NSC, KT, STR and DSP are performed in the case of  ce=-10-3. For SCS, the expressions 

presented by Walpole (1969) are used, which are established to be valid when the 
aspect ratio of inclusions is sufficiently small compared with the ratios of elastic con-
stants of inclusions to those of the matrix, provided that the elastic constants of 

inclusions are less than those of matrix. The results of NSC are found to approach 
those of  HS- as the aspect ratio decreases, and they are, as shown in the figure, nearly 

equal to those of  HS- when  a=10-3. Walpole (1969) has proved analytically that the 
results of SCS are identical with those of  HS- in this case. Although KT is known to 
be valid only when the concentration of inclusions is dilute, it gives a better ap-

proximation to the results of NSC than the DSP. The results of STR are accidentally 
close to those of NSC.
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   Fig. 5 illustrates the results of NSC in the case of void inclusions for some 
values of aspect ratio, where the crack density  v0 defined by  v0=v1a is used instead of 
the volume fraction v. It is shown in the figure that the effective incompresibility and 

the effective rigidity, respectively, tend to certain values for a given crack density , as 
the aspect ratio decreases. This means that it is convenient to use crack density  v0 
instead of v as a parameter expressing the concentration of inclusions in the case where 
the aspect ratio of void inclusions is  sufficiently small. The results in this case are 

plotted against crack density in Fig. 6. The SCS results are computed by the use of 
the expressions presented by O'Connell and Budiansky (1974). The KT is found to 

give the values closest to those of NSC.  It is noted that the SCS evaluates effective 
rigidity smaller than any other methods. 

(4) Needle-shape inclusions 
   The effective elastic constants of NSC are easily confirmed to have some limiting 

values as the aspect ratio increases to infinity when the volume fraction of inclusions 
is kept constant. The shape of inclusion in this case is called needle shape. The 
results in the cases of void and liquid inclusions are shown in Figs . 7 and 8. The 
NSC results lie between the upper and the lower bounds of HS for all values of volume

 1.0

0.5
 oc 

 10-4 

 10' 

10-1

                                  

. . . .              0 ' " ' ' ' • • • • 
 0  1.0  0  1.0 2.0                                   C

RACK DENSITY 

Fig. 5.  RIK, and -Kilo of NSC versus crack density  vo(vo=vIcB) in the case of void inclusions . 

 1.0&  ......

0.5

 0  0.5 0 0.5  1.0 
 CRACK DENSITY 

Fig. 6.  KIK, and  Ku, versus crack density in the case of void disc-shape inclusions . SCS are 
   calculated from the formulae given by O'Connell and Budiansky (1974) .
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   HS
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            Fig. 8.  KIK() an  TOL° in the case of liquid needle-shape  inclusions  . 

fraction and tend to the elastic constants of inclusions as the volume fraction ap-

proaches to unity. The SCS results calculated by the expressions presented by Watt 
et al. (1976) are very close to those of DSP. 

5. Generalization to Multi-Phase Composites 

   Consider a composite material of unit volume which contains N kinds of inclusions. 
They are different in elastic properties  and/or in shape of inclusions. The inclusions 

of each kind are oriented at random and distributed homogeneously. This composite 
material can also be regarded as an isotropic and homogeneous material in a 

macroscopic sense, its incompressibility and rigidity being denoted by Kk and  itk, 
respectively. Let us introduce simultaneously small amounts  dyk+1(1) of all the 
kinds of inclusions into the composite matrix having effective constants of  Kk and  ittk, 
where  dvk+l(1) means the volume fraction of the i-th kind inclusions at the  (k+1)-th 

iteration. As far as the sum of  dvk+l(1) with respect to (1) is small enough, the effective 
elastic constants of the composite that contains the newly introduced inclusions can 

be evaluated by the use of the expressions valid for the dilute concentration of inclus-
ions similarly to the case of two-phase materials as
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 Kk+1 
 —1 yEdvk.4_1(i) A(Kk,KO), m(i),04(i)), 

                Kk 

 itle+1   — 1  —  E  dvk+i(i) B(Kk, K(1),  it(i),  ct(i))  , 
 Juk  i=1 

or 

 Kk 

                            L7 
                    = 1 +  Ecivk+i)  A  (Kk,KO),(i),(i)) 

 i=1 

   — 1  +  E  dvk+,(i)  B(Kk,  pk, KO), y(i),  04(0)  , 
 14k+1  ia1 

                                N 
 dVk+i =E  dvk+,(i)  , 

 i=1 

where the definition of quantities is the same as that in previous seci 
the quantities with superscript (i) denote those of the inclusions of the 

total volume,  vk+1, of all inclusions is expressed by (7).  For the real 
of inclusions of the  i-th kind, we have 

 Vk(i)—vh(1)  dyk+1+dyk+,(1)  . 

according to the same consideration as explained in the two-phase 
evaluate the effective elastic constants of the composite containing  NI 
ions by the successive use of  (11a), or  (lib), and (12) for arbitrary valu 

   In the above procedure  all kinds of inclusions were introduced 
simultaneously. It is, of course, possible to introduce one kind  of 

another successively. The above expressions are valid also in 
manner of introduction has an effect on the removed volume fraction 
kind and, consequently, on the estimated effective elastic constants. 

in detail, we consider the case of  clyk—dv=const. at all iterative st 
 values of  dvk(i) at the k-th step of iteration, we  further define 

 rho') =  clyk(i)  Iclv 

 E  rk(i) = 1 
 i=1
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 (11a)

 (11b)

         (12) 

 Is sections taking that 
of the i-th kind. The 

 real volume fractions

 (vk+,0)  . (13) 

in the two-phase case. We can 
site containing  N--kinds of inclus-
for arbitrary values of  vn(i). 

were introduced into the matrix 
 luce one kind of inclusions after 

valid also in this case. The 

volume fraction of inclusions of a 
astic constants. To examine this 
t all iterative steps. For given

                                             (14)  E1 
 i=1 

Let us consider first the case of simultaneous introduction. In this case  rk(i)—r(')=-- 
const. at all steps. The real volume fraction  v„(1) of inclusions of the i-th kind at the 

n-th interation is given by  v„(0 ---1,(1)v„, where  v,„ is the total volume fractions of all 
the inclusions as obtained by  (8). The nominal volume fraction  I/„(i) of the i-th kind 
inclusions is evidently written as  V„(1)-----r(i)V,„ where  17,,—nciv.  Therefore, the 
difference between nominal volume fraction and real one is equal to the volume fraction 

 vr,.,(i) of removed part of the i-th kind inclusions. Similarly to (9) and (10) in the case 
of two-phase composite, we have
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 V  (1)  firn  V  „(i)  —r(i)  In  (1—v)  , 
 dv-^0 

 v,,(")  urn  v  r„(i)  r  {— in  (1--v)—v} 
 dv-O 

where v is given. 

    Next, we consider the case of one-by-one introduction. In this  ea: 
sively introduce inclusions of a kind chosen arbitrarily from many kinds 
After introduction of the first kind is completed, another kind is  st 

serted in the matrix. The same procedure is repeated N times, where N 
of kinds of inclusions. Following the previous formulation, we have 

 rk(1)  = 1 , = 0 for  0<k�n1  , 

 rk(2) ,  r  k(i  2) = 0 for  n1<k�n2, 

 rk(N)  —  1 ,  1'1,0  N  — 0 for  nN_,<k�nN  . 

where  ni is the number of iterations necessary to complete introduction 
to the  i-th kind. For the sake of simplicity, consider the case of  three-r 
that is,  N,=2. Putting  n,  =rn and n2=n>m , (8) gives 

 v,„,  (1)  =  1—  (  1—  civ)m  , 

                               v„,(2)  0  , 

because the composite is a two-phase material up to the  rn-th step of iten 
n-th iteration, we have 

 vn") =  vm,(1)(1—dv)n-m =  (1  —  civ)n-m  —  (1—  dv)'a  , 

 V,,(2) =  1—  (1  —  dv)n-nl  . 

These are the real volume fraction of the first and second kind  inclusic 

total volume fraction of all inclusions,  vn, is written by 

 V  t, =  1—  (1—  dv)" 

This relation (18) should always be satisfied irrespective of the  mann€ 
introduction. The nominal volume fractions of the first and the seconc 

 V,,(0 =  mdv  , 

 V  n(2)  —  (n—m)dv 

   Assuming that prescribed values of  v(1) and  v(1) are given to 
respectively, we have 

 v")  V")  Inn V n") = —  In (1 —  
     dv 1—V(2) 

 V(1)   )         v,(1) = lim v,.„(1)lirn(V„(1) —OD--) = —  In (1—  v") 
 dv-^0 1—v(2)

(15)

  In this case, we succes-

i many kinds of inclusions. 

 kind is successively in-

nes, where N is the number 

we have

introduction of inclusions 

se of three-phase material,

 ( 16)

 

i  nclusions

1 up to the m-th step of iteration. At the 

 (1—civ)'-m  (1—dv)'a , 
                    (17) 

rst and second kind inclusions. The real 

ritten by 

 —dv)"  . (18) 

d irrespective of the manner of inclusion 
of the first and the second kinds are 

)dv(19) 

 0 and  v(') are given to  v„(1) and  v„(2),

(20)
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and 

 V(2^ inn  Vt,(2)  —  ln  (1—v(2))  , 
 dv-.0 

                                             (21)  v
r(2^ vrn(2)lim (T7n12)._v(2))— In (1—v(2)) —v(2)  . 

                            dv-^0 

   Even in the case of  v(1)=02), (20) and (21) indicate that the nominal volume frac-
tion of the first kind inclusions is larger than that of the second kind . The same is 
true also for the volume fraction of removed part of inclusions. Returning to the 
case of simultaneous introduction, we put N=2,  v/2=v(1)=v(2) , and  r(1),--r(2)=1/2  in 
(15). In this case we have the same nominal volume fraction for the first and second 
kinds, and its value lies between  V(1) and  V(2) in the case of one-by-one introduction. 
This suggests that different values of effective elastic constants are possibly estimated 

by different ways of inclusion introduction even for the same real volume fractions of 
constitutent phases. 

    In order to show this numerically, we take an extreme case of three-phase 
composite, in which the first kind of inclusions is very soft and the second very hard 

compared with the matrix, as listed in Table 1  (a).  The numerical results of effective 
elastic constants are given in Table  1(b). Cases I and II are both the one-by-one 
introduction. In case I, the soft material is first introduced into the matrix and the 

hard one is done next. Case II is the reversed case. The calculated values of elastic 

constants are smaller in case I than those in case II. Case III is the simultaneous 
introduction and its results fall between cases I and II. The phase that was introduced 

                   Table  1 Calculated Results for Three-Phase Composite 

                (a) Parameters Used for Calculation

Matrix 

Phase 1 

Phase 2

 1.  0 

 0.  1 

 10.  0

 It  a

 0.  6 

 0.  06 

 6.  0

 0.  5 

0. 5

V

 0.  8 

 0.  1 

 0.  1

 K; Incompressibility.  ,a; Rigidity. 
 oc; Aspect ratio.  v; Volume fraction. 

(b) Results of  KIK, and  Ku,

Case

 I 
 II 

ITT

 KIK,

 0.953 

0.977 

 0.965

 0.993 

 1.018 

 1.005

  K, 

 Ko,  Po; 

   I; 

   II; 

  III;

Effective incompressibility and rigidity of composite. 

Incompressibility and rigidity of matrix. 

The case in which Phase 1 is introduced first and 

Phase 2 next. 

Reversed case of  I. 

The case in which Phases 1 and 2 are simultaneously 

introduced.
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Table 2 Calculated Results in the Hill's Case of Three-
   Phase Composite 

    (a) Parameters Used for Calculations

Matrix 

Phase 1 

    2

K

 1.  0 

 0.  1 
 10.  0

 du

 0.09375 

 0.09375 

 0.09375

 0.  8 

 0.  1 

0. 1

                K, v; The same as those in Table I (a). 

                    (b) Results of  KIK() 

                Case  KIK 

                              Exact Sol.  0.733I 

 I  0.  7336 
 II  0.7335 

 III  0.7335 

 R,  Ko, I,  II,  III  ; The same as those in Table 1  (b). 

first has a stronger effect on the calculated overall property of the composite. This is 
due to the difference in nominal volume fraction of the two phases. 

     A large nominal volume fraction implies a relatively large number of mutually 
connected inclusions of the same kind. Some of inclusions of the kind introduced 

first are  subjected to partial replacement by inclusions of the second kind and change 
their shapes into different ones. On the other hand, the change in shape due to the 
other phase does not occur for inclusions introduced second. Therefore, the minute 
structure of a composite depends necessarily on the detailed process in producing it in 
the case of  multi-phase material, but not in the case of two-phase material . If we may 
assume, however, that the distribution of inclusions of all kinds are completely random 

in a composite, the use of simultaneous introduction is recommended. 

    To examine the above interpretation we present numerical results for a three-phase 
material in Hill's case, for which we have exact solutions of effective elastic 
constants independently of inclusion shape. Table 2 exhibits the computed effective 
incompressibility as well as constants of the three phases in this particular example , 
where the cases of I, II and III are the same as in Table 1(a). The difference in 
value of the three cases are smaller than computational errors. The results are 
independent of the manner of inclusion introduction, as was expected previously. 

The difference in effective incompressibility between the exact solution and three 
cases are slightly bigger than the differences among the three cases. However, the 

differences are found to be within numerical errors arising from our computation in the 
single precision mode. 

6. Comparison of the Present Results with Experimental Data 

   The velocities and the attenuation of ultra-sonic waves were measured by Kuster
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and  ToksOz (1974b) in suspensions of solid spherical particles in liquid matrices. We 
compare the velocities calculated by NSC and SCS with their experimental data. This 
case of liquid matrix with solid inclusions is an exceptional case, where the effective 

rigidity determined by the dilute method of DSP, STR, or KT is always zero in-
dependently of the rigidity of inclusions. If we use the results by DSP or by STR as 

the basis of calculation, therefore, NSC gives also vanishing effective rigidity 
irrespectively of the volume fraction. Giving a sufficiently small value to the rigidity of 
the matrix, however, we can calculate the asymptotic behaviour as the volume fraction 

aproaches to unity.  Fig. 9 illustrates such an asymptotic behaviour of effective 
rigidity determined by NSC, the results of effective incompressibility being shown as well. 
The effective incompressibility by NSC, of course, approaches to that obtained by 

putting zero for the rigidity of matrix, as the rigidity tends to zero.
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 1.3  '  

1  2 
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10. Comparison of the theoretical velocities of P-waves with the experimental 

(solid circles) by Kuster and  Toksiiz (1974b) in the case of solid spherical inclusions 
liquid matrix. 

 (a); The case of water and polystyrene. 
 (b); The case of ATB (acetylene tetrabromide-benzine mixture) and glass. 

 (c); The case of oil and polystyrene. 
 V  p and  Vp, being P-wave velocities of composite and matrix.

 10 

ones 

in a
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Table 3 Parameters Used for Calculations in the Cases of 
   (a), (b), and (c) of Fig. 10

Density Ratio of 

   Inclusion to Matrix

 V Ratio of 

   Inclusion  to Matrix

Case (a)

 1.05

 1.60

Case (b)

 1.02

 6.  62

Case (c)

 1.19

 1.60

   The SCS expressions by Watt  et  al. (1976) and KT can be used in the present case 
of spherical solid inclusions in a liquid matrix, where the rigidity of matrix is taken 

to be zero. It is remarked here that the KT results agree exactly with the lower 
bounds of HS. We calculate the effective velocities of compressional waves by NSC, 
SCS and KT, using the material constants presented by Kuster and  ToksOz (1974b) as 

shown in Table 3. The results are illustrated in Figs. 10(a), (b) and (c) in comparison 
with the experimental results, where the velocities are normalized by those of matrices. 
The SCS results  differ significantly from the experimental ones at volume fractions 
larger than 0.4. On the other hands, the NSC results, which are numerically almost 

equal to the KT results, agree well with the experimental data. The experimental 
results, however, are a little less than the NSC ones by 1 to 2% at larger volume frac-

tions. This may be explained, at least in part, by the inelastic behaviour of the material, 
because the velocities of body waves are expected to decrease by 0.5% if the 
specific quality  factor Q for inelastic attenuation is assumed to be 100 in the linear 
viscoelastic model of attenuation used by, for example, Kanamori and Anderson 

 (1977). 

7. Summary and Discussions 

   We presented in this study a new self-consistent scheme for determination of 
effective elastic constants of composite materials. In this scheme, the effective elastic 

constants even for materials with considerably high concentration of inclusions can be 

estimated by the successive use of the formulae for dilute concentration of inclusions. 
Any dilute theory can be used in this successive approximation. This scheme can be 
called self-consistent in the senses that the interaction energy of inclusions is evaluated 

in terms of the effective elastic constants and the average strain or the average stress 
over the composite, and also that the results by this method are independent of the 
adoption of the displacement or the stress condition given on the surface of the composite. 

The overall elastic moduli evaluated by the method were found to lie between the 
Hashin and Shtrikman bounds for all volume fractions, although the results of only 
several cases were presented in the figures. In particular, our method proved to be 

valid even in extreme cases of void and liquid inclusions with disc, sphere or needle shape. 
These are considered to be the cases where the effect of inclusions is prominent on the 

effective elastic property. It is concluded, therefore, that our method always 
satisfies the requirement of Hashin-Shtrikman bounds for any volume fraction of
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inclusions irrespective of inclusion shape and elastic properties of matrix and inclusions. 

The effective elastic constants obtained by our method were found to tend asymptoti-
cally to the elastic constants of the inclusion material, as the volume fraction of 
inclusions approaches to unity. It was also shown that our results agree with the 

exact solution by Hill (1963) in the case where all the phases have the same rigidity. 
Thus, the results by our method completely satisfy all the requirements given in Section 

2. 

   The effective elastic constants of a composite depend, in general, on the spatial dis-
tribution of inclusions in it. An interesting example is shown in Fig. 11 for a two-

phase composit having spherical inclusions. It is well known that the upper (lower) 
bound of Hashin and Shtrikman for effective incompressibility corresponds to that of 
spherical material having a concentric spherical inclusion, when the elastic constants of 

inclusion are smaller (larger) than those of matrix. Since our NSC method is based on 
the assumption of a random distribution of small inclusions, it is reasonable that our 
results in the case of spherical inclusions do not coincide with  HS+(HS-). 

   SCS method for spherical inclusions gives an unreasonable result that the same 

effective elastic constants are estimated even when the hard material of matrix and 
soft one of inclusions are exchanged. They depend  only on the volume fraction of a 

particular phase. Consider that the soft phase is now taken to be the matrix material. 
It is peculiar that the SCS gives the same estimates as in the previous case of soft 

inclusions under the assumption of spherical inclusions, because the shape of the soft 
matrix must be quite different from sphere. In other words, SCS assumes the shape 
of inclusions in one sense but is independent of the shape in another sense. As shown 
in Fig. 11, NSC predicts larger effective constants in the case of soft spherical inclusions 

compared with those in the case of hard ones. It may be concluded to be very natural. 
   Let us further examine the SCS results in the special case  o  f a two-phase composite

Fig.

 10

 a  a
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1 

—
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 0  0.5 0  0.5  1.0 
                            VOLUME FRACTION OF B 

11. Comparison of the results calculated by  HS}, NSC, and SCS in the case of spherical 
inclusions. The upper curves of NSC indicate K and  it in the case of inclusions of soft 
material (B) in the matrix of hard material (A), and the lower curves do in the case of 
inclusions of A in the matrix of B. The SCS results in the two cases are identical with each 

 other.
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having spherical void inclusions. As shown in Fig. 2, the SCS predicts that both 

the effective incompressibility and the effective rigidity vanish at volume fraction not 
less than 0.5. When spherical inclusions of an equal size are located at all grid points 
with spacing equal to the diameter of the spherical inclusion, the volume fraction of 
inclusions is about 0.524. In the closest packed case of spherical inclusions the volume 

fraction is about 0.74. Even in this cases the frame of solid matrix is still left, and 
some finite values for the effective elastic constants must be obtained, whereas SCS gives 

null values. This indicates that a particular arrengement of inclusions is required for 
the effective elastic constants to vanish at a volume fraction not less than 0.5. It was 

shown in Section 4 that the effective elastic constants by NSC continuously tend to the 
elastic constants of inclusions as the volume fraction of inclusions increases to unity. 

   The effective elastic constants by NSC were found to agree well with the 

experimental results by Kuster and  ToksOz (1974b) in the case where solid spherical 
inclusions were suspended in a liquid matrix, as stated in Section 6. This is an 

envidence for the practical applicability of our method even to a high concentration 
of inclusions, while the SCS results disagree with the experiment at volume fractions 

greater than 0.4. 
   In the case of multi-phase composite, the results of our method depend on the 

manner of inclusion introduction, as described in Section 5. Let us consider the 
case of two different kinds of inculsions for a simple explanation. One of iterative 

processes in our method is that a kind (A) of inclusions is introduced first and another 
kind (B) of inclusions is introduced after the completion of insertion of A. This is 
called one-by-one introduction in this paper. The reverse process to introduce B first 

and later A is also possible. The disadvantage of our method is that the estimated 
effective elastic constants are different from each other even though the same volume 
fractions are assigned to respective kinds of inclusions. This disadvantage, however, 

can be avodied by adoption of simultaneous introduction process, which is to 
introduce small amounts of inclusions of both kinds simultaneously in each step of 
iteration. This simultaneous introduction assures us of unique determination of 

effective elastic property for a multi-phase composite. 
 Finally it is noted that the method by Kuster and  Toksiiz (1974a) for dilute con-

centration generally gives better estimates of the effective elastic constants than other 
dilute methods. Therefore, the use of the KT formulae is recommended at the basis of 

our method because it usually gives a faster convergency in the iteration process. 
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