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Abstract: A new self-consistent scheme is presented for determination of
effective elastic constants of a composite having randomly oriented and randomly
distributed spheroidal inclusions. In general, such a composite may be regarded as an
isotropic and homogeneous malerial from the macroscopic point of view. Regarding
the macroscopically homogeneous composite as a matrix and introducing additional
inclusions of a sufficiently small volume fraction into the matrix, the effective elastic
constants of the new composite are calculated by the use of a dilute theory. The new
composite is also macroscopically isotropic and homogeneous. Carrying out the above
procedure successively, we, thus, obtain the effective elastic constants of a composite
with an arbitrary amount of volume fraction of inclusions. The numerical calculation
confirms the validity of our method for all volume fractions of inclusions: The computed
constants lie between the upper and the lower bounds of Hashin and Shtrikman, agree
with the exact solution in the so-called Hill's case, and show reasonable asymptotic
behaviour as the volume fraction of inclusions tends to unity.

1. Introduction

The theoretical determination of effective elastic property of composite material
is still an up-to-date problem in the field of material science. Recently, this problem
has become of practical importance also in the field of solid earth science. An example
is found in studies on the physical and chemical feature of the low velocity zone of seismic
waves in the upper mantle. The low velocity zone is explained presumably by the
effective property of material composed of solid and melting phases. Another
example arises from the observation of anomalous changes in seismic wave velocities
prior to the occurrence of a large earthquake. The dilatancy is well-known
phenomenon in the study of rock-fracture mechanics, When the deviatric stress applied
to a rock sample becomes sufficiently large, the volumetric strain increases inelastically
with an increase in the applied stress. This inelastic increase in volumetric strain is
called dilatancy and considered to result from generation of micro-cracks in the
sample. An increase in number of micro-cracks causes a decrease in velocity of elastic
waves. Thus, the quantitative analysis of velocity changes observed in the source region
of a large earthquake should be a powerful means not only to understand the physical
process of earthquake occurrence but also to elucidate other possible premonitory
phenomena.
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In the geophysical problems described above, the composite to be modeled for
actual materials in the earth consists of phases whose elastic properties generally
differ greatly from each other. Although a large number of studies have been made
so far on the theoretical determination of effective elastic constants of composite
materials, the existing theoretical methods do not seem accurate enough in the case
of a large volume fraction of inclusions whose elastic property is of a great contrast
to that of the matrix. The present paper aims to propose a new self-consistent
scheme which will he abridged as NSC. The scheme will be applied to a composite
having randonly oriented spheroidal inclusions whose spatial distribution is also random.
The numerical results by our method will be presented to show its validity for all

volume fractions of inclusions.

2. (Critical Review of Existing Methods

A number of studies have been made on the theoretical determination of effective
elastic constants of composite material. The problem under consideration is reduced
essentially to the boundary value problem of the first kind or to that of the second
kind, that is, the problem to find the stress field under the displacement condition given
at the outer boundary of the composite or the strain field under the stress condi-
tion. The theoretical studies published so far may be classified into two groups. One
intends to develop the so-called bounding method which gives us the upper and the
lower bounds of effective clastic constants without any assumption for the geometry
of its constitutents. The other is devoted to solve the boundary value problems for a
composite containing inclusions of given geometry. The methods in this group result
in the effective constants dependent on the shape of inclusions, and will be called the
shape-dependent methods, hereafter.

(1) Bounding methods (shape-independent methods)

The Voigt and Reuss averages are well-known as classical theories for bounding
methods. In order to derive his average, Voigt (1928) assumed that the strain field
within a composite was approximated by a uniform strain field with the same magni-
tude as that of the applied strain to the composite. On the other hand, Reuss (1929)
considered that the stress field in a composite was expressed approximately by a
uniform stress with the same magnitude as that of the applied stress. Hashin and
Shtrikman (1963) later showed that the Voigt and Reuss averages can be regarded as the
upper and the lower bounds of effective elastic constants of a composite material.
Hashin and Shtrikman (1962, 1963) greatly improved the bounding theory to derive
the so-called HS bounds of effective elastic constants of multi-phase materials from
their own wvariational principle. The difference between their upper and lower
bounds was found to be sufficiently small for the composites consisting of solid phases
whose elastic properties do not differ so much from one another. The IS bounding
method is practically highly useful to determine the effective elastic constants of such
composites as above. The method, however, loses its practical usefulness for the
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composite having void or liquid inclusions, because the lower bounds of rigidity and/or
incompressibility become zero even for a very small volume fraction of inclusions.

There is a special cases where the rigidities of all constituent phases are the same
(Hill's case). Hill (1963) found the exact solution for the effective elastic constants in
this case. The effective rigidity is identical to that of constitutent phases and the
effective incompressibility is uniquely determined independently of the shape of inclus-
ions. The upper and the lower bounds of Hashin and Shtrikman for incompressibility
are confirmed to degenerate to an identical value, which is consistent with the Hill's
exact solution.

(2) Shape-dependent meghods

Generally speaking, the shape-dependent theories are based on the solution of the
boundary value problem of the first or the second kind for a composite material having
inclusions of specified geometry. When the volume fraction of inclusions is so small
that the interactions among inclusions may be negligible (dilute case), the well-known
solution of the problem for a single inclusion is directly applicable to the determination
of effective elastic constants. The shape-dependent methods in dilute case may thus be
considered to have been well established. In non-dilute case in which the volume
fraction of inclusions is not small enough, the solution for a single inclusion cannot be
used without any modification. In conventional shape-dependent theories, there-
fore, the interaction effect among inclusions is taken into account in some approximate
way.

There is another approach to derive a shape-dependent method, which makes use
of the dynamic theory of wave scattering due to an inclusion of specific geometry.
However, the situation about interaction effect is similar to the static treatment. The
single scattering theory, which corresponds to the dilute case, is well established,
while the multiple scattering theory has not yet been available.

(1) Methods for dilute concentration

Eshelby (1957) has presented the solution of strain field in an ellipsoidal inclusion
in an infinite material which is strained uniformly at infinity, where both the two
materials are assumed to be isotropic and homogeneous. He suggested a method for
the determination of effective elastic constants by using his solution. One of the
formulae derived from his method was obtained under the condition of fixed surface
displacement, and the other under the condition of fixed surface traction. The formulac
obtained from the two different boundary conditions are agree with each other to the
first order term of volume fraction. This means that the method is valid for the case
of dilute concentration of inclusions. In the Hill's case, the effective incompressibility
determined by the methods is independent of the inclusion shape, but is not identical
with the exact solution except for an infinitensimally small volume fraction, while the
effective rigidity coincides with those of constitutent phases.

The approach using the theory of scattering waves was adopted by Mal and
Knopoff (1967), Garbin and Knopoff (1973, 1975a, b), Kuster and Tokséz (1974a), efc.
Their results are considered to be valid for a small volume fraction of inclusions, since
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their methods are based on the single scattering calculation. In spite of this fact, it is
interesting to note that the result obtained by the method of Kuster and Tokséz
(1974a) agrees with the exact solution in the Hill's case.

(ii) Methods for non-dilute concentration

Hill (1963) developed a method called the self-consistent scheme (SCS), which is
considered to be applicable to a composite with a large volume fraction of inculsions.
The method pressumes that the average strain and the average stress within one of
inclusions can be evaluated by replacing the surroundings of the inclusion by an
imaginary material whose elastic constants coincide with the effective elastic constants
to be determined. Iill {1965) showed that his method yields the same results from
the dual approach; from the displacement condition and from the stress one.

The result of SCS in the Hill's case is known to agree with the exact solution.
Moreover, the SCS results in general lie between the upper and the lower bounds of
Hashin-Shtrikman for all values of volume fraction. Walpole (1969) obtained analytical
expressions for effective elastic constants in the case of disc-shape inclusions, where
the disc-shape means the oblate spheroid with a sufficiently small aspect ratio. His
results are found to agree with the upper or the lower bounds of Hashin-Strikmann,
according that the elastic constants of inclusions are larger or smaller than those of the
matrix.

Budiansky (1965) has derived the same SCS expressions as Hill's (1963) in the case
of spherical inclusions through a slightly different procedure. Using a method similar
to that of Budiansky (1965), Wu (1966) calculated the effective elastic constants in the
case of disc-shape and needle-shape inclusions, where the needle-shape means the
prolate spheroid with sufficiently large aspect ratio. Watt ef a/. (1976) confirmed that
the results by Wu (1966) arc equivalent to those by Walpole (1969) in the case of disc-
shape inclusions. Generally speaking, the numerical computation of successive
approximation is required for SCS to find the effective elastic constants. O'Connell
and Budiansky (1974) have presented analytical formulae for approximate solutions
of th SCS equations in the case of void or liquid dise-shape inclusions.

Hill {1965) pointed out that the SCS equations in the case of void spherical inclus-
ions have a positive root of effective elastic constant only when the volume fraction is
less than 1/2, and stated that the results for large volume fractions are unreliable in
such an extreme case as void inclusions. Bruner (1976) also has claimed that the SCS
results in the case of void inclusions are physically unreasonable. Comparing the
results of SCS with those obtained by scattering calculation to the second order,
Chatterjee et al. (1978) concluded that the SCS results are not to be trusted beyond
the first order in volume fraction of inclusions.

The numerical computation of higher order scattering is almost impossible at
present, and has been attacked only in some special cases. Tor instance, Chatterjee
et al. (1978) computed the scattering waves to the second order in the cases of void
and rigid spherical inclusions. Computing SH-waves to the sixth order scattering,
Varadan ef al. (1978) determined only one of five effective moduli of a composite in the
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case where the inclusions of elliiptic cylinder were oriented in the same direction.
Any approximation method proposed for effective elastic constants of a composite
in non-dilute cases should be tested by the following criteria: The effective moduli
determined by the method should (a) lie between the upper and the lower bounds of
Hashin-Shtrikman for all volume fractions of inclusions, (b) show the correct
asymptotic behaviour at sufficiently small volume fractions, (c) exhibit the physically
reasonable asymptotic behaviour as the volume fraction tends to unity, (d) reduce to
the exact solution of Hill (1963) in the Hill's case, and (e) satisfy the dual approach
requirement, that is, the same result should be obtained under the fixed displacement
condition and from the fixed stress condition on the outer boundary of a composite,
Among these criteria, (a), (b), and (d) have been proposed by Watt ef al. (1976).

3. A New Self-Consistent Scheme

The purpose of this section is to present a new method for calculation of effective
elastic constants of a composite material which is macroscopically homogeneous, For
simplicity, we treat here a two-phase composite having a single tvpe of inclusions
whose shapes and elastic properties are the same, though our method is easily
generalized to the case of multi-phase composite. Further, the random orientations of
spheroidal inclusions are assumed to make use of existing theory. That is to say, the
composite concerned is macroscopically isotropic.

Consider a composite of unit volume which contains a finite volume fraction, v, of
inclusions. Let us assume that effective elastic constants €, can be defined for this
composite and estimated by some means. In most cases, these effective constants are
physically meaningful and practically useful, when the composite can be regarded as a
macroscopically homogeneous material. For instance, let us consider the problem of
clastic wave propagation. In this case, the wave length should be long enough compared
with the size of inclusion, and, further, the spatial distribution of inclusions should be
uniform in the composite. In logical consequence of this consideration, we may
regard the microscopically heterogencous composite as a macroscopiclly homogeneous
matrix with elastic constants Cy. Let us introduce an additional amount, dvgy,, of
inclusions into the macroscopically homogeneous matrix. If duvgy, is sufficiently
small compared with the volume of the matrix, the dilute theory is applicable to deter-
mine with a sufficient accuracy the effective elastic constants of the composite with
volume fraction dv,., of inclusions.

Starting from a truly homogeneous matrix without any inclusion, we may repeatedly
introduce an infinitesimally small volume fraction of inclusions into the macroscopically
homogeneous matrix to give a composite with a finite value of volume fraction. At
each successive iteration we may use the dilute method, and finally find the effective
elastic constants of the composite having an arbitrary amount of inclusions. This is
the basic concept of our method, which will be called new self-consistent scheme
(NSC).

As cxplained above, a composite having a volume fraction v, of inclusions is
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regarded as a macroscopically homogeneous matrix with elastic constants C;. The
relation between average stresses p and average strains e in the matrix is given by

p=Ce, (1)
and the strain energy Ej is expressed by
2E; = (e-Cre) = (p-Cy'p) . (2)

To introduce an additional small amount duy,; of inclusions into the matrix, we have
to replace the volume dvyy, of the matrix by the additional inclusions. In doing this,
the given displacements or the given tractions at the outer surface of the matrix should
be kept constant. The stress free strains e, defined by Eshelby (1957), due to
insertion of the inclusions is expressed by

eTy =The, (3)
where T, is a constant determined for given elastic properties of the matrix and
inclusions of a specified shape. Following the theory of dilute concentration, the
strain energy, I, in the composite after the introduction of additional inclusions
is obtained as

2Ek+1 = (e-Cke) = dUk.;.l(E-CgT;;e) 3 (4&‘-)
for the fixed surface displacements, and
2411 = (p-Cy7'p) + dvpy (P T4C ' p) (40)
for the fixed surface tractions. Writing Ejy, in terms of the effective elastic constants,
Cpiy1, of the new composite, we have
(e:Chir€) = (e-Che) —duyyy(e-CiTe) , (5a)
or
(p-Cri1p) = (p-Ci7'p) + do, Y (p-T)C, ' p) (5b)
from (4a) or from (4b).
Since the orientations of the newly introduced inclusions are also random, we
obtain the following expressions from (5a) for the effective incompressibility K., and
for the effective rigidity p;., of the new composite as

K
% = l—dvyy A(Ky, py, KO, p®), M),
x (6a)
B vy, BRy i, KO, p®, a@).
Hi
From (5b)
K
b — 1 dvg, Ay, gy, KO, 5@, )
E+1 (Bb)
B duyyy BUG, pyy KO, g, 0@
Hxta

Here 4 and B are coefficients determined by Kj, g of the matrix and K™, p®, and
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) of inclusions. The aspect ratio o is defined by a=cfa, where a denotes the half
length of axes of circular cross-section and ¢ does that of the other axis of spheroid.

It should be noted that the total volume fraction after introduction of inclusions
is not equal to v,+dvsy, Pre-existing inclusions are randomly distributed in the
matrix and the introduction of the additional inclusions into the matrix is done also
randomly. Some of pre-existing inclusions are statistically expected to be overlapped
by the additional inclusions. The overlapped part of the pre-existing inclusions must
be replaced by the new inclusions or, in other expression, the overlapped part of the
pre-existing inclusions must be removed from the composite matrix upon the introduc-
tion of new inclusions. In this sense the overlapped part will be provisionally
called the removed part in this paper. It is noted that the whole of a pre-existing
inclusion is not necessarily overlapped by a new one. It is more probable that only a
part of a pre-existing inclusion is overlapped and removed from the composite
matrix. The removed part does not cause the real increase of volume fraction and
should be subtracted from w,-tdv,.;. The volume fraction of removed part is
expected to be wydvyy,. Therefore the real volume fraction after the introduction of new
inclusions should be expressed as

Vit = U AV (1—13) . (7)
On the other hand, the quantity v,-dvg, will be called the nominal volume fraction,
Vity, hereafter.  As stated before the effective elastic constants of a composite with
a given volume fraction of inclusions can be calculated by the successive use of (6a) or
(6b) and (7) from k=0, where »,=0.

Let us consider the limiting value of volume fraction as dvy, tends to zero. If we
introduce the same amount, dv, of inclusions at every iteration, the real volume frac-
tion =z, and the nominal volume fraction 77, at the n-th iteration are written by

Vi )"

v,,:l—(l—
7

(8a)
V,=ndv.

The volume fraction of removed part, v,,, which is the total volume fraction of pre-exist-
ing inclusions replaced with the newly introduced inclusions at every iteration, is
expressed by

Upw = V1, (8b)
Consider the case where the real volume fraction v is attained by successive introduction
of inclusions of an infinitesimally small volume fraction. The nominal volume fraction
V' is obtained from (8a) as

V=limV,=—In(l—0).
i ©

The volume fraction of removed part ¢, is written from (8b) as

o, Edlin;vm =—In(l—v)—w. (10)

v
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It is shown from (9) and (10) that ¥ and v, are finite values, except for the special case
of v=1.

We cannot express analytically the limiting values of effective elastic constants
calculated by the successive use of (6a) or (6b). Their convergency, however, is
apparent for a finite value of V7, as far as the coefficients 4 and B in (6a) or in (6b) have
finite values.

Further if dv is taken to be small enough, practically equal effective elastic constants
are calculated either form (6a) or from (6h) at cach iteration. We can have the
result as accurate as we desire by taking a smaller value of dv.  We, therefore, obtain
the same result by the successive use of either expression. Our method of NSC i
thus considered to satisfy the dual approach requirement stated in Section 2.

4. Numerical Results for Two-Phase Composites

The effective elastic constants are numerically calculated by the new sell-
consistent method (NSC) for various two-phase materials. In order to examine the
validity of the method, the results are compared with those by other methods such as
SCS by Il (1965), Wu (1966), Walpole (1969) and O'Connell and Budiansky (1974),
KT by Kuster and Toksoz (1974a), DSP by the expressions in the case of dilute
concentration based on the displacement condition, and STR by the expressions for
the dilute case based on the stress condition, as well as the upper (IIS*) and the lower
(HS™) bounds of Hashin and Shtrikman (1963).

(1) Hill’s case

The effective elastic constants obtained by various methods in Hill's case are
illustrated in Fig. 1. As is well known, the upper bound, HS*, for the effective in-
compressibility coincides with the lower bound, HS™, and is equal to the Hill’s exact
solution (Hill, 1963). Although the effective incompressibilities by DSP and STR are
independent of inclusion shape, they differ significantly from the exact solution. It is
found, however, that the present method (NSC) based on DSP or STR expressions for
dilute concentration gives the same result as the exact solution. The same results can
be obtained also by SCS and KT independently of inclusion shape. The effective
rigidity obtained by every method is identical with that of the matrix and inclusions.

(2) Spherical inclusions

The results in the cases of void and liquid spherical inclusions are shown in Figs. 2
and 3, respectively. The lower bounds HS™ for incompressibilitv and for rigidity are
equal to zero in the case of void inclusions for all values of volume fraction, and those
for rigidity are also equal to zero in the case of liquid inclusions. These are omitted
from the figures. The NSC results lie between the upper and the lower bounds of HS
for any value of volume [raction. The effective elastic constants by NSC are found to
tend to those of inclusions as the volume [raction approaches to unity. The results of
SCS are fairly close to those of DSP in both the cases of void and liquid inclusions. In
the results of SCS the effective incompressibility and rigidity vanish at the volume
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fraction of 0.5 in the case of void inclusions, and the effective rigidity does at a volume
fraction near 0.6 in the case of liquid inclusions. The resuls of KT coincide with those
of HS* in both the cases.

The upper bound HS* for incompressibility is known to correspond to the effective
incompressibility of a spherical material having a concentric spherical inclusions,
Therefore, it is reasonable to expect that the NSC results should be less than HS*, since
a uniform distribution of small inclusions is presumed for NSC. The figures show

o
HILL'S CASE

K/Ko

I v0=025 ~ 1
K'/Ko =0406 N
u'/po =1.0 N

0 05
VOLUME FRACTION
Fig. 1. Effective incompressibility K calculated by various methods in Hill's case (=
#o)- K, p, and v denote incompressibility, rigidity, and Poisson’s ratio, respectively. The
quantities with subsrcript 0 and superscript 1 indicate those of matrix and of inclusion,
respectively.
NSC; the new self-consistent method in our study,
HS*: the upper and the lower bounds of Hashin and Shtrikman,
DSP; the dilute method from the displacement condition,
STR; the dilute method from the stress condition,
KT; the method of Kuster and Toksoz,
SCS; the method of self-consistent scheme.
HS*, NSC, KT, and SCS are all equal to the exact solution of Hill,
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Fig. 2. Xffective incompressibility K and effective rigidity g in th case of void spherical inclus-
The notations are the same as those in Fig. 1.
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Fig. 3. K[K, and [if, in the case of liquid spherical inclusions.
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Fig. 4. K|K, and p/u, in the case of disc-shape inclusions. Calculations are done by putting
a=10-3% except for SCS. SCS are calculated for inclusions with infinitesimally small aspect
ratio and are practically equal to NSC and to HS™.

further that the STR results are the worst, because they are larger than those of HS*
for any value of volume fraction.

(8) Disc-shape inclusions

An oblate spheroidal inclusion with a sufficiently small aspsct ratio is here called
a disc-shape one for the sake of convenience. An example is shown in Fig. 4 for the
case where inclusions have finite and small values of elastic constants. Calculations of
NSC, KT, STR and DSP are performed in the case of a=10-%. Tor SCS, the expressions
presented by Walpole (1969) are used, which are established to be valid when the
aspect ratio of inclusions is sufficiently small compared with the ratios of elastic con-
stants of inclusions to those of the matrix, provided that the elastic constants of
inclusions are less than those of matrix. The results of NSC are found to approach
those of HS™ as the aspect ratio decreases, and they are, as shown in the figure, nearly
equal to those of HS™ when a=10-*. Walpole (1969) has proved analytically that the
results of SCS are identical with those of HS™ in this case. Although KT is known to
be walid only when the concentration of inclusions is dilute, it gives a better ap-
proximation to the results of NSC than the DSP. The results of STR are accidentally
close to those of NSC.
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Fig. 5 illustrates the results of NSC in the case of void inclusions for some
values of aspect ratio, where the crack density v, defined by w,—=v/a is used instead of
the volume fraction ». It is shown in the figure that the effective incompresibility and
the effective rigidity, respectively, tend to certain values for a given crack density, as
the aspect ratio decreases. This means that it is convenient to use crack density v,
instead of v as a parameter expressing the concentration of inclusions in the case where
the aspect ratio of void inclusions is sufficiently small. The results in this case are
plotted against crack density in Fig. 6. The SCS results are computed by the use of
the expressions presented by O'Connell and Budiansky (1974). The KT is found to
give the values closest to those of NSC. It is noted that the SCS evaluates effective
rigidity smaller than any other methods.

(4) Needle-shape inclusions

The effective elastic constants of NSC are easily confirmed to have some limiting
values as the aspect ratio increases to infinity when the volume fraction of inclusions
is kept constant. The shape of inclusion in this case is called needle shape. The
results in the cases of void and liquid inclusions are shown in Figs. 7 and 8. The
NSC results lie between the upper and the lower bounds of HS for all values of volume

1.0 T
K p
K =}_|l =0 ‘\._\
=025 g
\"
"~ -“~ “\‘
0st ! o T
b —_g
i — 102
ey 107
% 10 0 10 2.0

CRACK DENSITY

Fig. 5. K/K, and tfpeq of NSC versus crack density vg(vy=v/a) in the case of void inclusions.
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Fig. 6. K/K, and ji/u, versus crack density in the case of void disc-shape inclusions. SCS are
calculated from the formulae given by O'Connell and Budiansky (1974).
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Fig. 7. K[K, an ji/u, in the case of void needle-shape inclusions.
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Fig. 8. KJ[K, an ju, in the case of liquid meedle-shape inclusions.

fraction and tend to the elastic constants of inclusions as the volume fraction ap-
proaches to unity. The SCS results caleulated by the expressions presented by Watt
et al. (1976) are very close to those of DSP.

5. Generalization to Multi-Phase Composites

Consider a composite material of unit volume which contains N kinds of inclusions.
They are different in elastic properties and/or in shape of inclusions. The inclusions
of each kind are oriented at random and distributed homogeneously. This composite
material can also be regarded as an isotropic and homogeneous material in a
macroscopic sense, its incompressibility and rigidity being denoted by K; and
respectively, Let us introduce simultaneously small amounts dvg.,®) of all the
kinds of inclusions into the composite matrix having effective constants of K, and gy,
where dvg, ;) means the volume fraction of the ¢-th kind inclusions at the (k-+1)-th
iteration. As far as the sum of dv., ) with respect to (¢) is small enough, the effective
elastic constants of the composite that contains the newly introduced inclusions can
be evaluated by the use of the expressions valid for the dilute concentration of inclus-
ions similarly to the case of two-phase materials as
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Ky X : - ; .
—— =1 — X dvy, OV A(Ky, poy, KO, u ), o)y |
I{k =] (11a)
N . . . )
P — 1 — X doga© By, i, KO, 49, ),
M i=1
or
Ky N " ; . ;
e = 1 DA O ARy, g, KO, 4, a0),
Ky i=1 (110)
M il : - e . .
——— =14 3 dv ") B(K,, u, K, utH, a6y,
He+y i=]
N ;
dvgyy = X dug ), (12)
i=1

where the definition of quantities is the same as that in previous sections taking that
the quantities with superscript (i) denote those of the inclusions of the i-th kind. The
total volume, w4, of all inclusions is expressed by (7). Tor the real volume fractions
of inclusions of the ¢-th kind, we have

Tptr ) = 0 —0, O duogyy g, O (13)
according to the same consideration as explained in the two-phase case. We can
evaluate the effective elastic constants of the composite containing N-kinds of inclus-
ions by the successive use of (11a), or (11b), and (12) for arbitrary values of v, ).

In the above procedure all kinds of inclusions were introduced into the matrix
simultaneously, It is, of course, possible to introduce one kind of inclusions after
another successively. The above expressions are valid also in  this case. The
manner of introduction has an effect on the removed volume fraction of inclusions of a
kind and, consequently, on the estimated effective elastic constants. To examine this
in detail, we consider the case of duyy=dv=const. at all iterative steps. For given
values of dv;!¥) at the k-th step of iteration, we further define

7 = du, () fdy

(14)

Tk(‘.] = ] s

Iz

Let us consider first the case of simultaneous introduction. In this case r,)=r=
const. at all steps.  The real volume fraction v,09) of inclusions of the 7-th kind at the
n-th interation is given by v, =¢'y,, where v, is the total volume fractions of all
the inclusions as obtained by (8). The nominal volume fraction V(%) of the 4-th kind
inclusions is evidently written as V=7V, where V,=ndv. Therefore, the
difference between nominal volume fraction and real one is equal to the volume fraction
7,") of removed part of the 4-th kind inclusions. Similarly to (9) and (10) in the case
of two-phase composite, we have
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V@ =Lm V,® = —7® In(1—v),
du—0
| - (15)
v, ¢) =lim 9,,() =) {—In (1—v)—9} ,
dy—=0

where o is given.

Next, we consider the case of one-by-one introduction. In this case, we succes-
sively introduce inclusions of a kind chosen arbitrarily from many kinds of inclusions.
After introduction of the first kind is completed, another kind is successively in-
serted in the matrix. The same procedure is repeated N times, where N is the number
of kinds of inclusions. Tollowing the previous {ormulation, we have

M =1, =1 =0 for 0<k=n, ,

@ =1, rt=—=0 for n,<hk=<n,,
(186)
M =1, 0~ =0 [or ny_<k=Zny.
where 7; is the number of iterations necessary to complete introduction ol inclusions
to the ¢-th kind. Tor the sake of simplicity, consider the case of three-phase material,
that is, N=2. Putting #,=m and ny,=n>m, (8) gives
UV = 1—(1—dw)™,
P =0,
because the composite is a two-phase material up to the m-th step of iteration. At the
n-th iteration, we have

v = v, D(1—dv)*" — (1—dv)*™ — (1—dv)"
(17)
0,2 — 1—(1—dv)*™ .

These are the real volume fraction of the first and second kind inclusions. The real
total volume fraction of all inclusions, v,, is written by

vy = 1—(1—do)* . (18)

This relation (18) should always be satisfied irrespective of the manner of inclusion
introduction. The nominal volume fractions of the first and the second kinds are

VD — miy, }

V™ — (n—m)dv .

(19)

Assuming that prescribed values of »M and »® are given to »,® and »,®,

respectively, we have

p(1)
VAU — lim P, — — 111(1 - 1—) ,

du—0 —y
‘ (20)
. ey
v, = lim 2,V = lim (7,0 —oD) = — In(] — 72) — gt
du—( dy—0 1—ut®
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and
Vi = lim V@ = — In (1—2'¥),
do—+0
. . (21)
2,9 =1lim v, = lim (V& —p(2) — _ In (1—0t3) _p2)
dy—>() dp—>0

Even in the case of 9 =v®), (20) and (21) indicate that the nominal volume frac-
tion of the first kind inclusions is larger than that of the second kind. The same is
true also for the volume fraction of removed part of inclusions. Returning to the
case of simultaneous introduction, we put N=2, v/2=20=p®), and »®—¢®—1/2 in
(15). In this case we have the same nominal volume fraction for the first and second
kinds, and its value lies between VM and V@ in the case of one-by-one introduction.
This snggests that different values of effective elastic constants are possibly estimated
by different ways of inclusion introduction even for the same real volume fractions of
constitutent phases.

In order to show this numerically, we take an extreme case of three-phase
composite, in which the first kind of inclusions is very soft and the second very hard
compared with the matrix, as listed in Table 1 (a). The numerical results of effective
elastic constants are given in Table 1(b). Cases I and II are both the one-by-one
introduction. In case I, the soft material is first introduced into the matrix and the
hard one is done next. Case II is the reversed case. The calculated values of elastic
constants are smaller in case I than those in case II. Case I1I is the simultaneous
introduction and its results fall between cases [ and [I. The phase that was introduced

Table 1 Calculated Results for Three-Phase Composite

(a) Parameters Used for Calculation

! K 1 ‘ @ u
Matrix 1.0 0.6 = 0.8
Phase 1 0.1 0.08 [ 0.5 0.1
Phase 2 10.0 6.0 | 0.5 0.1

K; Incompressibility, u; Rigidity.
a; Aspect ratio. v, Volume fraction.

(b) Results of E[K, and ji[u,

Case ‘ E(K, i
1 ‘ 0.953 0.993
11 0.977 1.018
111 0. 865 1.005

K, ji; Effective incompressibility and rigidity of composite.
Ky, Jto; Incompressibility and rigidity of matrix.
I; The case in which Phase 1 is introduced first and
Phase 2 next.
IT; Reversed case of 1.
LIT; The case in which Phases 1 and 2 are simultaneously
introduced.
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Table 2 Calculated Results in the Hill's Case of Three-
Phase Composite

(a) Parameters Used for Calculations

I T

Matrix 1.0 0.09375 0.8
Phase 1 0.1 0.09376 0.1
2 | 10.0 0.09375 0.1

K, pu, v; The same as those in Table 1 (a).

(b) Results of K[K,

Case | ElK
Exact Sol. | 0,7331
1 0.7336
T3 0.7335
111 0.7335

K, K,, 1, II, III; The same as those in Table 1 (b).

first has a stronger effect on the calculated overall property of the composite. This is
due to the difference in nominal volume fraction of the two phases.

A large nominal volume fraction implies a relatively large number of mutually
connected inclusions of the same kind. Some of inclusions of the kind introduced
first are subjected to partial replacement by inclusions of the second kind and change
their shapes into different ones. On the other hand, the change in shape due to the
other phase does not oceur for inclusions introduced second. Therefore, the minute
structure of a composite depends necessarily on the detailed process in producing it in
the case of multi-phase material, but not in the case of two-phase material. If we may
assume, however, that the distribution of inclusions of all kinds are completely random
in a composite, the use of simultaneous introduction is recommended.

To examine the above interpretation we present numerical results for a threc-phase
material in Hill's case, for which we have exact solutions of effective elastic
constants independently of inclusion shape. Table 2 exhibits the computed effective
incompressihility as well as constants of the three phases in this particular example,
where the cases of I, II and III are the same as in Table 1(a). The difference in
value of the three cases are smaller than computational errors. The results are
independent of the manner of inclusion introduction, as was expected previously.
The difference in effective incompressibility between the exact solution and three
cases are slightly bigger than the differences among the three cases. However, the
differences are found to be within numerical errors arising from our computation in the
single precision mode.

6. Comparison of the Present Results with Experimental Data

The velocities and the attenuation of ultra-sonic waves were measured by Kuster
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and Toksoz (1974b) in suspensions of solid spherical particles in liquid matrices. We
compare the velocities calculated by NSC and SCS with their experimental data. This
case of liquid matrix with solid inclusions is an exceptional case, where the effective
rigidity determined by the dilute method of DSP, STR, or KT is always zero in-
dependently of the rigidity of inclusions. If we use the results by DSP or by STR as
the basis of calculation, therefore, NSC gives also vanishing effective rigidity
irrespectively of the volume fraction. Giving a sufficiently small value to the rigidity of
the matrix, however, we can calculate the asymptotic behaviour as the volume fraction
aproaches to unity. Tz, 9 illustrates such an asymptotic behaviour of effective
rigidity determined by NSC, the results of effective incompressibility being shown as well
The effective incompressibility by NSC, of course, approaches to that obtained by

putting zero for the rigidity of matrix, as the rigidity tends to zero.
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Fig. 9. K|K, and jifu, of NSC in the case of solid spherical inclusions
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Fig. 10. Comparison of the theoretical

10

velocities of P-waves with the experimental ones

(solid circles) by Kuster and Toksdz (1974b) in the case of solid spherical inclusions in a

liquid matrix.
(a); The case of water and polystyrene,
(b); The case of ATB (acetylene tetrabromide-benzine mixture) and glass.

(€); The case of oil and polystyrene.
17}., and V', being P-wave velocities of composite and matrix.
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Table 3 Parameters Used for Calculations in the Cases of
(a), (b), and (c) of F]g 10

’ Case (a) Case (b] Case (c)

Density Ratio of
Inelusion to Matrix

V4 Ratio of
Inclusion to Matrix

) W o S
|
1.05 | 119

The SCS expressions by Watt ef al. (1976) and KT can be used in the present case
of spherical solid inclusions in a liquid matrix, where the rigidity of matrix is taken
to be zero. Tt is remarked here that the KT results agree exactly with the lower
bounds of HS. We calculate the effective velocities of compressional waves by NSC,
SCS and KT, using the material constants presented by Kuster and Toksoz (1974b) as
shown in Table 3. The results are illustrated in Figs. 10(a), (b) and (c) in comparison
with the experimental results, where the velocities are normalized by those of matrices.
The SCS results differ significantly from the experimental ones at volume fractions
larger than 0.4. On the other hands, the NSC results, which are numerically almost
equal to the KT results, agree well with the experimental data. The experimental
results, however, are a little less than the NSC ones by 1 to 2%, at larger volume frac-
tions. This may be explained, at least in part, by the inelastic behaviour of the material,
because the velocities of body waves are expected to decrease by 0.59%; if the
specific quality factor () for inclastic attenunation is assumed to be 100 in the linear
viscoelastic model of attenuation used by, for example, Kanamori and Anderson
(1977).

7. Summary and Discussions

We presented in this study a new self-consistent scheme for determination of
effective elastic constants of composite materials. In this scheme, the effective elastic
constants even for materials with considerably high concentration of inclusions can be
estimated by the successive use of the formulae for dilute concentration of inclusions.
Any dilute theory can be used in this successive approximation. This scheme can be
called self-consistent in the senses that the interaction energy of inclusions is evaluated
in terms of the effective elastic constants and the average strain or the average stress
over the composite, and also that the results by this method are independent of the
adoption of the displacement or the stress condition given on the surface of the composite.
The overall elastic moduli evaluated by the method were found to lie between the
Hashin and Shtrikman bounds for all volume fractions, although the results of only
several cases were presented in the figures. In particular, our method proved to be
valid even in extreme cases of void and liquid inclusions with disc, sphere or needle shape.
These are considered to be the cases where the effect of inclusions is prominent on the
effective elastic property. It is concluded, therefore, that our method always
satisfies the requirement of Hashin-Shtrikman bounds for any volume fraction of
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inclusions irrespective of inclusion shape and elastic properties of matrix and inclusions.
The effective elastic constants obtained by our method were found to tend asymptoti-
cally to the elastic constants of the inclusion material, as the volume fraction of
imclusions approaches to unity. It was also shown that our results agree with the
exact solution by Hill (1963) in the case where all the phases have the same rigidity.
Thus, the results by our method completely satisfy all the requirements given in Section
&

The effective elastic constants of a composite depend, in general, on the spatial dis-
tribution of inclusions in it. An interesting example is shown in Fig. 11 for a two-
phase composit having spherical inclusions. It is well known that the upper (lower)
bound of Hashin and Shtrikman for effective incompressibility corresponds to that of
spherical material having a concentric spherical inclusion, when the elastic constants of
inclusion are smaller (larger) than those of matrix. Since our NSC method is based on
the assumption of a random distribution of small inclusions, it is reasonable that our
results in the case of spherical inclusions do not coincide with HSHHS™).

SCS method for spherical inclusions gives an unreasonable result that the same
effective elastic constants are estimated even when the hard material of matrix and
soft one of inclusions are exchanged. They depend only on the volume fraction of a
particular phase. Consider that the soft phase 15 now taken to be the matrix material.
It is peculiar that the SCS gives the same estimates as in the previous casc of soft
inclusions under the assumption of spherical inclusions, because the shape of the soft
matrix must be quite different from sphere. In other words, SCS assumes the shape
of inclusions in one sense but is independent of the shape in another sense. As shown
in Iig. 11, NSC predicts larger effective constants in the case of soft spherical inclusions
compared with those in the case of hard ones. It may be concluded to be very natural.

Let us further examine the SCS results in the special case of a two-phase composite
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Fig. 11. Comparison of the results calculated by HS®, NSC, and SCS in the case of spherical
inclusions. The upper curves of NSC indicate K and yp in the case of inclusions of soft
material (B) in the matrix of hard material (A), and the lower curves do in the case of
inclusions of A in the matrix of B, The SCS results in the two cases are identical with each
other.
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having spherical void inclusions. As shown in Tig. 2, the SCS5 predicts that both
the effective incompressibility and the effective rigidity vanish at volume fraction not
less than 0.5. When spherical inclusions of an equal size are located at all grid points
with spacing equal to the diameter of the spherical inclusion, the volume fraction of
inclusions is about 0.524. TIn the closest packed case of spherical inclusions the volume
fraction is about 0.74. Even in this cases the frame of solid matrix is still left, and
some finite values for the effective elastic constants must be obtained, whereas SCS gives
null values. This indicates that a particular arrengement of inclusions is required for
the effective elastic constants to vanish at a volume fraction not less than 0.5. It was
shown in Section 4 that the effective elastic constants by NSC continuously tend to the
elastic constants of inclusions as the volume fraction of inclusions increases to unity.

The effective elastic constants by NSC were found to agree well with the
experimental results by Kuster and Toksdz (1974b) in the case where solid spherical
inclusions were suspended in a liquid matrix, as stated in Section 6. This is an
envidence for the practical applicability of our method even to a high concentration
of inclusions, while the SCS results disagree with the experiment at volume fractions
greater than 0.4,

In the case of multi-phase composite, the results of our method depend on the
manner of inclusion introduction, as described in Section 5. Let us consider the
case of two different kinds of inculsions for a simple explanation. One of iterative
processes in our method is that a kind (A) of inclusions is introduced first and another
kind (B) of inclusions is introduced after the completion of insertion of A. This is
called one-by-one introduction in this paper. The reverse process to introduce B first
and later A is also possible. The disadvantage of our method is that the estimated
effective elastic constants are different from each other even though the same volume
fractions are assigned to respective kinds of inclusions. This disadvantage, however,
can be avodied by adoption of simultaneous introduction process, which is to
introduce small amounts of inclusions of both kinds simultaneously in each step of
iteration. This simultaneous introduction assures us of unique determination of
effective elastic property for a multi-phase composite.

Finally it is noted that the method by Kuster and Toksoz (1974a) for dilute con-
centration generally gives better estimates of the effective elastic constants than other
dilute methods. Therefore, the use of the KT formulae is recommended at the basis of
our method because it usually gives a faster convergency in the iteration process.
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