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 Abstract: Path dynamics of the Kuroshio between Satsunan region and  Kii 

Channel is investigated numerically, for the study of the generation of small meanders 

southeast of  Kyushu. A two layer model with inflow and outflow system is assumed. 

The topographies corresponding to the south and eastern coast of Kyushu, the southern 

coast of Shikoku, and their offshore regions are simplified in the modelling so that only 

the main topographic features are represented. A quasi-stationary flow pattern of 

the Kuroshio exists in a state where the lower layer velocity is still a few percent of 

the upper layer one, and there is little possibility of occurrence of the small meander. 

Dynamical factors confining the Kuroshio path along the continental margin are the 

bottom topographic effect of the continental slope and the westward intensification due 

to the latitudinal variation of Coriolis parameter, and under the above conditions 

the former contribution is much more important than the latter. As the dynamical 

cause to overcome both the effects for the generation of the small meander, unstationary 

process including the variation of mass transport is proposed.

1. Introduction 

   Over the last thirty years, observations have disclosed the existence of two typical 

paths of the Kuroshio south of Japan (Stommel and Yoshida, 1971). One of the 

paths includes a quasi-stationary large meander accompanied by a large cold water mass 
to the south of Honshu. Since the Izu ridge presents a conspicuous bottom character-
istic particular to this region of the western boundary of the Pacific Ocean, some 
studies by numerical models including this ridge have been attempted (e.g., Endoh, 

1973, 1978; Sekine, 1979), assuming that the bottom effect of the Izu ridge may play 
an essential role on the path dynamics of the Kuroshio. White and McCreary (1976) 

also considered the ridge for a gate effect in their path-dynamical model. To this date, 
main emphasis of the dynamical investigation with respect to the Kuroshio path has 
been given on the understanding of the stationary meander and the bimodal character. 

However, theoretical aspects of the process of formation and disappearance of the 
stationary meander have not yet been clarified well. 

   On the other hand, it is also well known that prior to the formation of a stationary 
meander, a small meander is generated southeast of Kyushu, and it moves eastward to 

develop to the stationary meander. Fig. 1 displays the changes in the Kuroshio path 
showing this process according to Shoji (1972). Stationary large meanders formed in
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 Fig. 1. Generation and evolution of the small meanders of the  Kuroshio: Some examples 
     (after Shoji,  1972). 

1953, 1959, 1969, and 1975 were all preceded by this sort of small meanders . This 
small meanders may thus be considered as a transient phenomenon before the forma-
tion of the stationary meanders. 

   The observational properties of these small meanders were summarized in Shoji 

 (1972), Nitani (1975), and Solomon  (1978). Moriyasu (1961) examined the relations 
between the wind stress due to the winter monsoon off southern Kyushu and the shift 

of current axis offshore by the coastal upwelling . Fukuoka (1960) studied the deflection 
of current direction due to the oceanic ridge at Tokara straight by use of the lee wave 
theory proposed by Bolin  (1950). 

   As a first step of approach from the point of view that the large stationary meander 
of the Kuroshio evolves from this small meander , dynamical conditions behind the 
occurrence of the small meanders are investigated in the present article numerically ,
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with a close look at the path dynamics of the Kuroshio in this region. Since the 

space scale of the small meanders during their generation is smaller than  one-third of the 

stationary meander, and since the emphasis of this study is laid upon the occurrence of 

these small meanders, the local dynamics associated with the bottom and coastal topo-

graphies only of Kyushu and Shikoku are considered here. 
   As a result, it will be shown that the separation of the current path from the 

continental margin in the form of the small meanders can not take place in the quasi-

stationary state, and it will be inferred that this meander can be generated only in an 

unstationary process such as variation of the mass transport. An extension of the 

present work including the Izu ridge are left for a future study.

2. Dynamical Model 

   The dynamical model employed in the present study is shown schematically in 

Fig. 2. These topographies are reasonably simplified so that the main features are 

well represented. The basin is rectangular and has a continental slope of a constant 

gradient. The northern and western boundaries correspond to the coastal lines of 
Shikoku and Kyushu, respectively. The southern and eastern boundaries are 

artificial, on which the inward and outward flows are given as the boundary condition.
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A two layer model is assumed and the density of the upper and lower layers is p and 

 p+4 and the thickness of the two layers is  h1 and h2, respectively (see Fig.  3). Let 
x, y and z be the eastward, the northward and the vertical coordinates , respectively. 

   Assuming the hydrostatic balance in the vertical direction and the Boussinesq 

approximation, the horizontal equations of motion and of continuity for the upper 
and lower layers are given as follows: 

 au1 aui2 auivi P  

 at   _ —  ax ay Po ax—g  +fvi+Ahru„, (1) 

                           av12  =  —P 
 at ay _  Pogay- iTti+ A V2 V1(2) 

 ah1 ah,u, ah1v1 
 __(3) 

    at ax ay 

and 

 au2  au22  au2y2Pzipan 
                       g++fv2±Ab172142, (4)      atax  aY 

Poax pa ax 

 aV2 aU2V2 aV 22  P  Ap  
 gg  —fu2+Ahv2v2 (5)      at ax aY 

Po ay PoaY 

 ah2 au2h2 av2h2  — (6) 
     atax 

respectively. In these equations, the subscripts 1 and 2 refer to the upper and the 
lower layers, respectively,  1.2 and v are the eastward and the northward depth-mean 

velocity components,  pa is the mean density over the whole depth ,  172 the horizontal 
Laplacian operator, g the acceleration of gravity and  Ah the coeffidient of eddy 

viscosity taken as constant of  2.0  x  107  cm2s-', and  77 are the surface and interface 

deviations from the mean levels defined as 

 h1--H+71, (7) 

 h  2=  D—H-1), (8) 

and where H is the mean thickness of the upper layer taken to be 400 m and D the total 

depth of the model ocean. The bottom and interfacial frictions are neglected. The  zip 
the difference of density between the two layers is taken as 2.0  x  10-3 g  cm-3, and the 
Coriolis  parameter  f=fo+13y has a value given  by  fo=7.3  x  10-5s-1 and  /3=1.95  x  10-13 

 s-lcm-I. 

   To solve the simultaneous partial differential equations, we assume the rigid lid 
approximation for the elimination of the external gravity wave. Then eqs.  (1)-(6) are 
transformed to obtain the vorticity equation for vertically integrated flow, and the 
shear equation for baroclinic mode. This transformation is the conventional method 

used in the mathematical treatment of two layer model adopted, e.g., by Suginohara
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(1973), Holland and Linn (1976), and Miura and Suginohara (1980). The vorticity 
equation and the shear equation in term of symbols may be expressed in the following 

 forms: 

(1) Vorticity  equation:

                LTC  =  NOL+BET-1-TOP+COP  +FRI  , 

where 

 LTC  = 
          at  ' 

 NOL =_j            aiiau,v,h,a 1(  au,2hi          a
xD axay+1ay 1 Dax 

 aj  1   (  au2v2h2  av22112 + a  j 1   (  61422h2 
        ax D ax ay  )1 ay D  ax  

1   4   BET  =  —  /3 
             D ax 

              ()( 1 a0 \i    TOP=—f  {— ax\D a4yl+aay\D axl' 

   COP  =  
         AP

gah2ana ( h2 371 
     poax\ D a'                   y) ayD  ax 

 FRI  =  Ai,172z  , 

and where 

                z ( 1 ao+ a ( 1  
                    axD axlay`D  ay 

and is the transport function defined by 

                                 696  
                               u,h,±u2h2— —                                a
y 

 v,hi+v2h2= ao  a
x 

(2) Shear equation of X  component: 

                 STX =  PGX+FVX+NOX+FRX  , 

where 

                      as.              STX 
                    at 

                      p   PGX  = —Ag  
                      Poax 

               FVX  =  fS,  ,

+ 

+

 auivihi  

 ay 

 au2v2h2 

 ay

 )1

(9)

 ( 10)
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        NOX —                              au12—+ auiv,61422+4)142v2               a
x ay ax ay 

                FRX  AhV2Su  , 

and where 

 Su  =  S„  vi—v2. 

(3) Shear equation of Y  component: 

 STY  —  PGY  +FUY  +NOY  +FRY  , (11) 

 STY  — aS„ 
                      at  ' 

              PGY =Apang ,                       Pouy 

 FUY  fSu  , 

                        auiviav12 au2v2 z)22  NOY  =  — — + + 
             axayaYay 

 FRY  =  AkV2S„  . 

The continuity equation for the above equations is 

 a7)  ah2u2  ah2v2 
        ataxay(12) 

Eventually, we consider the eqs. (9)—(12) for unknowns z,  Su,  St, and  7) instead of 
 u1, v1,  h1, u2, v2 and h2. 

   The viscous boundary condition is imposed at lateral boundaries. The interface 
displacements at the inflow and outflow boundaries are given so as to satisfy the 

geostrophic isostasy, i.e. the inflow and outflow are confined to the upper layer, as 

       — 1(13)                 ay  g* 

where  g*=(Apipo) g is the reduced gravity, and the lateral distributions of inflow and 
outflow velocity have a type of 

 // 
              ui =/tosinLY (14) 

where  u, is the maximum velocity at the center of the flow and L is the width of the 

current. 
   The initial conditions are indicated in Fig. 4. The simultaneous eqs. (9)—(14) 
are solved numerically. Numerical schemes used in this study are similar to those by 
Suginohara (1973). The interval of the neighbouring two grid points is 12 km (south-

north) and 15 km (west-east). A leap frog scheme is used in the finite form for the



A NUMERICAL STUDY ON PATH OF THE KUROSHIO OFF KYUSHU 45

UPPER

           ' 

1',/ 

  4i);//

LAYER  FLOW

 u-) 

 z 
 (.._) 
 O 
 O

 00DAYS

 150

 o'/7 
.4)

 5014-n

Fig.

  Initial  Transport  (  Sv) LOWER 

        (a) 
4. Initial stream function (a) and initial distribution of 
layers  (b).

LAYER

velocity

 cn 
N..„ 

= 
 Li 
 O

   

I 

FLOW  O  o  DAYS 

(b) 
for upper and lower

Table  1. The parameters and model conditions 

   investigate the stationary path of the

for experiments to 

Kuroshio.

Run No.

 Reduced  ' 
 gravity /3 

 (cm's-2)  (cm-is-1)

1 

2 

3 

4

 1.  91 

  0 

 1.  91 

  0

1. 95  X  10-13 

 1.  95  10-13 

 0.  0 

 1.  95  10-"

Continental 

  slope

I 

'
Remarks

existing 
non existing 

existing 

existing

1 

1

Basic Model

local time change term with a time step of 2160 s. For the depression of the com-

putational mode in the time development, we used an Euler backward scheme at 
several intervals among the leap frog scheme (Matsuno, 1966). 

   In addition to the basic model described above, some other models are employed in 
order to see specific contributions of various parameters representing respective physical 

properties. They are shown in Table 1 together with the basic model, Run 1. The 
influence of the bottom topography is extracted in Run 2, the planetary  13 effect in 

Run 3 and the density stratification in Run 4. The initial conditions for these cases are 
the same as those of Run 1.
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3. Results 

   Fig. 5 shows the sequential patterns of the transport function  q!. for the basic model 

(Run 1). The interval between the two isopleths is  2.5  x 106  m2s-1, or 2.5 Sv. The 

   TRANSPORT  30.  DAYS  TRANSPORT  80.  DAYS 

   TRANSPORT  1  60.  DAY TRANSPORT  240.  DAYS 
 Fig. 5. Numerical evolutions of the transport function  p (Run 1). Contour interval is 2.5 Sv. 
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initial flow path given by Fig. 4 moves westward to form a characteristic flow pattern in 
about 30 days, and the pattern shows little change after 80 days. The stability of 

the numerical solution has been examined by the temporal variation of the kinetic 
energy per unit area in the upper and the lower layers as  E  1 and E2, respectively 

(Fig. 6). The lower layer is at rest in the initial state, but a small movement is induced 
in it with the advance of time. The E2 attains to its maximum at about the 120th day, 
then diminishes monotonously to about 1/3 of the maximum value by the 240th day, 

while El approaches to its equilibrium value in about 180 days. It should be noticed
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that the flow pattern in Fig. 5 remains quasi-stationary while E2 experiences a large 

change between the 80th and 240th days. Also, the quasi-stationary flow path takes a 
somewhat aslant course, in contrast to the flow pattern of Fig. 9, which is the solution of 

Run 2 for no continental slope, and in which the flow path takes straight northward 
along the west coast. 

   The lower layer should achieve quiescence finally from the consideration of the 
conservation of potential vorticity (Rooth et al., 1978), since there is neither inflow and 

ouflow at the boundary in the lower layer, nor transfer of stress across the interface.
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 Fig. 8. Regions of important contributions of each term to the total numerical solution. (a) 

     Voriticity equation (9), (b) Shear equations (10) and (11). Symbols in the lower right 
     part of each panel are same as in  (9)—(11). Unit is  10-12 sec-2 in vorticity equation and  10-4 
     cm  s--2 in shear equation. Shaded areas indicate negative contribution. 

In this state, the geastrophic isostacy is attained, and the upper layer flow is 

unaffected by the topographic effect (Suginohara, 1980). The decrease of E2 in Fig. 6 
seems to indicate the gradual approach to this state. However, the achievement of 

the geostrophic isostacy will need considerably large time. 
   The velocity fields of the upper and the lower layers at the 180th day are 

presented in Fig. 7. The scale of magnitude of the arrows for each layer is different, 
and only the dominant velocity vectors are drawn. The characteristic velocity along 

the upper layer flow is 70 cm  s-' whereas that of the lower layer is 3 cm  s-1. The 
main features of the upper layer are in close resemblance with those of the transport 

function. On the other hand, the lower layer currents, which are much weaker than 

those in the upper layer, approximately flow along the isopleth. More exactly, 
the lower layer flow pattern has a tendency to run along the contour line of  f112,2. This 
difference between the upper and the lower layer has also been shown in other two 

layer models including bottom topography (Miura and Suginohara 1980, Suginohara 
1980), and these results may be regarded as the surface mode and the bottom mode 

 prop  osed by Rhines  (1970).



50 YOSHIHIKO SEKINE AND YOSHIAKI TOBA

    Now, the balance of the terms in the equations is examined. The spatial 
distributions of the balances among these terms at the 180th day are illustrated in 

Fig. 8 by use of the symbols indicated in (9), (10) and (11). In the vorticity equation 
for barotropic mode, the main balance exists between the topographic divergence term 

(TOP) and the topographic coupling term (COP). As to the terms in the shear equa-
tion, the geostrophic balance dominates, namely the pressure gradient term and the 

Coriolis term are well balanced as seen in Fig. 8 (b). 

    The topographic terms have 50 times larger magnitude than the planetary  /3 term 

(BET), in spite of the fact that the characteristic velocity of the lower layer is only 
5% of that of the upper layer. As already mentioned, the lower layer velocity should 
tend to zero eventually, and in this state, the topographic effect should vanish. As to 

the critical condition at which the topographic terms become smaller than the  /3 term, 
an order estimation gives a velocity of the lower layer of 0.5% of that of the upper 
layer, or of the order of mm  s-1, as shown in the Appendix. It is expected that as 

long as the lower layer velocity has some value of the order of cm  s-1, the predominance 
of the main balance between the topographic terms lasts, and this state may correspond 

to the above mentioned quasi-stationary flow path. In the actual conditions of the 
Kuroshio, there are always some variations, and also the lower layer velocity of the 

order of cm  s-1 (Worthington and Kawai 1972, Taft 1978). Consequently, it is expected 
that the predominance of the topographic terms also holds in the actual Kuroshio. In 

the case that the direction of the lower layer flow is opposite, the conclusion remains 
the same. From the above reasoning, we regard the numerical solution of from the 

180th to the 240th day as the quasi-stationary flow path representative of the actual 
conditions of the Kuroshio. 

   The numerical solution obtained in this model is in a good resemblance to the 

observed current pattern of this region in spite of the poor approximation of coastal and 
bottom topographies. Especially, it is noticeable that the warm anticyclonic eddy in 

the offshores of Shikoku has been formed in this numerical model, corresponding to the 

observed features. Namely, Hasunuma and Yoshida (1978) proposed a long-term 
mean geopotential anomaly in the North Pacific Ocean as shown in their Fig. 1. They 

pointed out that this anticyclonic eddy in the offshores of Shikoku continued to exist 
stably with its center located about 34°N and 134°E. This eddy may be related 

to the anticyclonic eddy formed in the center part of this numerical model, and it may 

be associated with the anticyclonic circulation of the western boundary current 

generated by the coastal boundary and continental slope corresponding to this region. 
   Next, mention will be given as to the other additional runs for comparison with 

Run 1. The final result of the numerical solution of Run 2 in which the basin is flat is 
shown in Fig. 9 by the transport function. A strong northward current exists along the 

western boundary of the basin corresponding to the east coast of Kyushu. The princi-

pal dynamics of this narrow current is in the westward intensification. The vorticity 
balance in the final stage of this case is dominantly attained between the planetary  [3 
term (BET) and the frictional term (FRI) with the nonlinear term of supplementary
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Fig. 9. Transport function  43 for the case of Run 2.

 50o 
Contour interval

DAYS 
is same as Fig. 5.

importance. The vorticity balance is similar to the case of Munk et al. (1950), which 
had a weak modification by the nonlinear term to the linear vorticity solution by Munk 

(1950). The influence arising from the exclusion of the continental slope is more 

prominent in the northern half domain. The width of the eastward current along the 
northern boundary is considerably wider than that of the basic model. The outflow 
boundary condition concentrates the interior wide current at the east end. While 
the northward strong current along the Kyushu in Run 2 is thus a consequence of the 

planetary  /3 effect, it is inferred that the narrow current observed in the offshore of 
Shikoku in Run  1 may be due to the effect of bottom toporgaphy. 

   The volume transport function for Run 3 where the planetary  13 effect is lacking is 
shown in Fig. 10. In this case, the path along the continental slope is due to the 
topographic effect of the continental slope only. From the comparison of Figs. 9 and 10 

also, our conclusion of the predominance of topographic terms in the quasi-stationary 

flow path in Run  1 is understandable. 
   The final case of Run 4 in which the density stratification is excluded (the 

barotropic model) is shown in Fig. 11. The flow is formed along the isopleths. The 
total flow pattern of this model has a close resemblance to that of the lower layer vleocity 

field of the basic model (see Fig. 7). The results may be explained by the conservation of 

the linearized potential vorticity  fID, which is due to the trapping of the kinetic energy 
along the slope by viscosity through continental shelf waves. The latitudinal change 

in f is not conspicuous: the current flows along the isopleths of the depth. This fact 
has already been revealed also in previous homogeneous models (Holland,  1967  ; Endoh, 

1973; and Sekine, 1979). It should be noted here that the topographic effect is still 
influential as the bottom mode even in a two layer ocean, in their quasi-stationary 
flow as discussed in the basic model.
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Fig.  10, Transport function  p for the case of Run 3.

 60 
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 0 
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DAYS 
the same as in Fig. 5.

 5  0  DRYS 
 Fig. 11. Transport function  cp for the case of Run 4. Contour interval is the same as in Fig. 5. 

4. Discussion on the occurrence of the small meander 

   In this study, the path dynamics of the Kuroshio, between south of Kyushu and 

the offshores of  Kii Channel, has been investigated numerically for the purpose of 

understanding the condition for the generation of the small meanders which are observed 

prior to the formation of a stationary large meander. 
   The main results of the last section are summarized as follows. The Kuroshio in 

the studied region has a stable path of flow along the continental margin in the
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quasi-stationary state of no variation of the volume transport. The dynamical factors 
which force the Kuroshio path along the continental margin are the bottom effect of the 
continental slope and the planetary  p effect. The contribution of the former on the 

path formation is more dominant than that of the latter, unless the velocity of the 
lower layer is much smaller than the order of  0.5% of the upper layer velocity. Since 
the path of flow is so stable under the balance of the topographic terms, the occurrence 

of small meanders as sometimes observed in the southeast of Kyushu seems to be very 
difficult, in the quasi-stationary state of the oceanic conditions. 

   From the above results, we should assume some causes for the occurrence of these 
small meanders. For the generation of them, it is necessary that the effects of the 

topography and the westward intensification are overcome. This may be expected in 

the excess of the inertia of the current due to the increase in the volume transport, 
especially, due to the increase in the upper layer velocity. 

   In fact, the order of magnitude of the accelerational terms can become comparable 

with that of the topographic terms, if a usually observed variations of the volume 

transport is introduced to the quasi-stationary state. Namely, if we assume that the 

relative vorticity z, 2 x  10-5  s-1 corresponding to the current with a maximum velocity 
of 100 cm  s-1 and a half width of 5 x  106 cm, and the current velocity increases by 50% 

in 10 days, the local change term  az  lat becomes of the order of  io—n  s-1. This is much 

larger than the magnitude of the planetary  # term, and is comparable with that of the 
topographic effect terms estimated in Appendix. 

   Further studies from the side of the analysis of actual data, and also by numerical 
experiments including variation of the volume transport, will be reported elsewhere. 
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Appendix 

   A rough estimation for the critical condition at which the topographic effect be-
comes negligible in a two layer model is considered as follows. 

   The linearized vorticity equations for the upper layer and the lower layer can be 

written as 

 at 
  + Au,— h  at(-+,1)=A h172z1  (A-1) 

 az2  f  (61i2 ah,f617   + [17)2—/42 +v2)+-A hV2z2 , (A-2) 
 ath2ax6Yh2 at
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where 

 Dv, au, av, 6112  
 z,  —   , z,  —(A-3)            a

x ayaxay 

In the stationary state in which the lower layer has no motion. or the geostrophic 
isostacy, the main balance of the vorticity equation should be held between the planetary 

 13 effect  (i8v1) and the viscous term  (A  brzi) in the upper layer  (A-1). In the transient 
state, the topographic effect is considered to be essential and its influence is represented 
by the third term of the left hand side of (A-2) and by the terms of the interface change 

including in  (A-1) and  (A-2). In our numerical model, the relative magnitude of the 

planetary  13 effect and the topographic  1 effect is compared as follows. From a_-,2 X 

 io-ig cm  s-' and  Vh  10-11 cm  s-1, it is seen that the topographic effect 

 2 is more dominant than the planetary  13 effect first in the lower layer motion. Then 
                                               6,7  

                                                      ,the topographic effect in the upper layer can be estimated by atand we may  h
i 

estimate this term by the assumption of the lower layer balance of 

 f  an f    ah2   (A-4)u2+h2 at h2ax ay V2) 
and we get 

             f  f  (ah2ah2  V2(A-5)               )                          112  +h
iataxay 

The relative magnitude for the topographic effect and the planetary  9 effect can thus 

be compared from the upper layer equation (A-I) as 

 fly,  N  2X  10-13  vl (A-6) 
and 

                    6,1h  

             hat                            (BT) v2, 7X 10-"-v2 (A-7) 

Accordingly, the topographic effect becomes negligible only when the lower layer 

velocity is much smaller than about 0.5% of the upper layer.
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