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 Abstract: Strain analysis of the data from the extensometers arranged across 
northeastern Honshu, Japan, is performed. 

   The results show that the maximum shear strain migrated in the  N50°W 
direction at a velocity of about 38 km/year. It is also made clear that the propagating 
maximum shear strain shows the dispersion characteristic. 

   Comparison of the characteristics of the strain with other geophysical data is also 
discussed.

1. Introduction 

   Recently some workers (e.g. Mogi, 1968a,  b; Scholz, 1977) pointed out the migra-

tion of great earthquake epicenters. Further, Yamada (1963) found a similar propaga-
tion phenomenon of ground tilt by the use of data from the water-tube tiltmeter. The 
appearance of striking phases of secular crustal movements over a wide area in Japan 

were also reported (Ishii, 1976). 
   However, the characteristics of a slow-moving crustal deformation have not been 

investigated in detail. The purpose of this paper is to clarify the characteristics of 
migrating strain by analyzing the data recorded by the extensometers at the array 

stations. 

2. Strain Observation 

   Crustal strain in the Tohoku District was observed at the stations of Oga (OGA), 
Niebtsu (NIB), Himekami (HMK), Miyako (MYK), and Sanriku (SNR) operated by 

the Akita Geophysical Observatory and the Sanriku Geophysical Observatory,  Tohoku 
University. The locations of the stations and the plane figures of observation vaults 

are illustrated in Fig. 1. Only the data obtained by the extensometers are investigated 
in this paper. Fig. 2 shows examples of the strain components analyzed by the use of 

Chebychev function. The method of the data analysis and the characteristics of the 
strains have already been described in the previous paper (R.G.C.M., 1978). 

   In this work we investigate the characteristics of the maximum shear strain in 
detail. From Fig. 2b it is found that the maximum shear components at MYK and 
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Fig. 1.
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Fig. 2a. Ground strain components,  eNs and  eE  w, computed from the  dat 
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 Fig.  3 Comparison of maximum shear strains at recording stations, the time being shifted 
          from each  other. 

SNR show greater variations than those at the other stations. By filtering out the 
linearly varying components, which corresponds to the first degree terms, we can get 
the secular components of the maximum shear strain. We have the values 8.3 x  10-7/year 
for OGA, 8.4 x 10-7/year for NIB, 6.4  x  10-7/year for HMK,  48.0  x  10-7/year for  MYK  . 

and 10.2 x  10-7/year for SNR. Next, filtering off the first degree term, namely, 
removing the linearly varying components from the maximum shear components, we 

can have Fig. 3 from Fig. 2b. In this figure the arbitrary time shift is given between 
the corresponding maximum shear strains. It is found that a pair of the curves has a 

similar waveform. A striking phase occurred at the end of 1970 at SNR is seen at 
other stations, but this phase does not seem to reach the OGA station. Therefore, the 
evidence supports the idea that the maximum shear strain is propagating across the 

northeastern Japanese arc. It is of interest that the waveform of the maximum shear 

is similar each other though the amplitude is different. 
   Fig. 4 shows the auto-covariance functions of the maximum shear strain. The 

annual variation in maximum shear is found on the curves, particularly on the curve of 
HMK. MYK, HMK and NIB show a similar curve at this  auto-covariance domain. 
In addition SNR and OGA exhibit a similar variation.
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Fig. 4. Comparison of auto-covariances of maximum shear strains.

3. Characteristics of strain wave 

   In Fig. 5, some of the corresponding phases are marked with the same symbols and 

joined by lines. We can calculate the average propagation velocity and direction, 
using the arrival times of the phases from three of the observation stations (SNR, MYK 
and HMK). The calculated velocity and direction are about 38  km  /year and N50°W 

as shown in Fig. 6. The maximum shear strain curves from SNR to OGA are 
rearranged in Fig. 5, assuming the migration direction to be N50°W. This kind of 
curve is called the travel time curve in seismology. Slopes between NIB and OGA 
are smaller than those between SNR and NIB. Therefore, it is inferred that the 

propagation velocity is different from one station to another. Assuming the same 

propagation direction, the velocity propagating from NIB to OGA is about 19 km/year. 
Yamada (1973) obtained an apparent velocity of 20 km/year for the migration of tilt 
between Nokogiriyama and Aburatsubo in the Kanto District . 

   Next, the cross-covariance functions of the maximum shear strains between the 
stations are calculated as shown in Fig. 7. A dispersion relationship is derived by the 

use of the cross-covariance, applying the method employed in the seismic surface waves 

(Dziewonski et  al., 1968). Assuming the curves in Fig. 7 to be the cross-covariances for 
the inter-station phase velocity, we can obtain the phase velocity vs. period curve as in 
Fig. 8a. It is seen that the longer the period, the slower becomes the phase velocity. 
The phase velocities are about 41 km/year for a period of 5.1 years, and 19 km/year 
for a period of 5.8 years. The wavelengths correspond to about 210 km for a period
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5.1 years and 110 km for a period 5.8 years. The group 

differentiating the phase velocity curve is shown in Fig. 8b 

the period, the faster becomes the group velocity. It is

velocity curve computed by  

. It is found that the longer 

to be noted that the group
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                 Fig. 8a, b. Dispersion relation  of maximum shear strain. 

velocity is larger than the phase velocity at the corresponding periods. 

4.  Discussion 

   In the preceding sections, the characteristic behavior of the maximum shear strain 
in the Tohoku District, northern Japan, was revealed, and the migration of the maximum
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shear strain in the direction  N50°W was found. Fig. 9a is a schematic representation in 
vertical projection of the focal depth distribution of the microearthquakes that occurred 

in the region between 39°N and 40°N. Fig. 9b shows the average mechanisms of 

microearthquakes that occurred in the area A, B, C, D and E in Fig. 9a (Hasegawa et 
 al., 1978). NW-SE compression is seen for the areas A, B and C, but not for the areas 

D and E. It is of interest that a pressure axis of the average mechanism solution of 
microearthquakes in the upper plane of the double-planed deep seismic zone is 

nearly identical with the propagation direction of the maximum shear strain. It is also 
interesting to note that the propagation direction of the maximum shear strain almost 
coincides with a direction of the motion of the pacific plate obtained by Morgan (1972).
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   Tanaka et al. (1977) found the migration of tilt in Peru and obtained apparent 
velocities of about  60 to 100  km/year. A velocity of about 80  kmfyear was obtained 

for the migration of seismic activity along the Anatolian fault by Mogi (1968a, b). 

Scholz (1977) pointed out that the 1975 Haicheng earthquake was triggered by a 
deformation front with a propagation velocity of about 110  kmfyear. Therefore, it is 
said that deformation propagates at different velocities depending upon the period or 
wavelength. Studies of migration of crustal deformation were summarized by Kasa-
hara  (1977). Since the wavelength is several hundred kilometers , it is considered that 
the propagation characteristics of the maximum shear strain are related to the sub-
stances and structures of the crust and the upper mantle beneath the earth . According 
to Takagi et al. (1977), earthquakes at the inland of the Tohoku District occur in 
the layer of the crust with P wave velocity 5.9  km/sec, but do not occur in the layer 
of the crust with the velocity 6.6  km/sec. The layer with the velocity 6.6  km/sec is 
likely to be more ductile than the layer with the velocity 5.9 km/sec. Therefore, it is 
reasonable to consider that the layer with the velocity 6.6 km/sec plays an important 
role in a slow move like the migration of the maximum shear strain .
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5. Summary 

   The characteristics of strain migration in the Tohoku District were investigated 
by analyzing data obtained by extensometers at the crustal movement observatories 

arranged across the northeastern Japanese arc. The results of the present study are 

summarized as  follows: 

   (1) Migration of maximum shear strain was found in the northeastern Japanese 
arc. 

   (2) The maximum shear strain propagates in the direction N50°W with the average 
velocity of 19 to 38  km/year. 

   (3) The propagating maximum shear strain has a dispersion property, and the 
dispersion curves have been obtained. 
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