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 Abstract: Three earthquakes in southern Kurile region in 1974 and 1975 are 
     studied especially in relation to the difference in excitation of tsunami. The shock 

     on June 10, 1975 was accompanied with an anomalously large tsunami compared 
     with the other two although the difference in magnitude is not so much. The three 

     events are concluded to have the similar thrust type mechanisms, based on long period 
 P, S and Rayleigh  waves. The dip angle of the fault plane of above mentioned earth-
     quake on June 10 is smallest among the three and this is compatible with the plate 
     tectonics because its epicenter is closest to trench. The effective seismic moment of 

     this event is almost the same as the others in the period range around 30  sec, while 
     that in the range around 150 sec is much larger than the others. This implies 

     that the earthquake has a longer rise time and it makes a good explanation for the strong 
     excitation of tsunami in this case. Some other natures of these earthquakes are 

      also discussed. 

1. Introduction 

 Iida (1958) had made a statistical study on the relation between earthquake 

and tsunami magnitudes and he obtained the formula as 

 m  =  2.61  M-18.44  , (1) 

where the earthquake magnitude M is the value determined by JMA and the tsunami 
magnitude m is that in Imamura and  Iida's scale  (Iida, 1958). In some cases, however, 

this formula does not explain the observed data so well. Fig. 1 shows the comparison 
of the formula and observation for ten events in and near Japan. For example, the 

tsunami associated with the Sanriku Earthquake on Jun. 15, 1896 is much larger than 
expected by this formula. 

   A series of earthquakes of Sept. 27, 1974 (Ms =6.7), June 10, 1975 (Ms=7.0) and 

June 13. 1975 (Ms=6.4) took place recently in southern Kurile region. Ms is the 
surface wave magnitude determined by USGS. The last shock was the largest after-
shock of the second one.  These are called the 1974 earthquake, the main shock and 

the aftershock provisionally in this paper for convenience. Parameters of these 
events are tabulated in Table 1. The magnitudes of tsunamis of these shocks are much 

different. The 1974 earthquake generated a small tsunami and the main shock was 
accompanied by a big tsunami, whereas no observable tsunami was excited by the 

 * Now at Marine Science Institute, the University of Texas, Galveston, USA.
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Table 1. The parameters of 

magnitudes.

hypocenters reported by USGS and earthquake and  tsunami

Date  (G.M.T.)

 JUN.  10,  1975 
 JUN.  13, 1975 

SEP. 27, 1974

Origin time

13h 47m  14. 50s 
18 08  11.70 
05 47  29.  44

Lat.

43. 024°N 
 43.489 

 43.  176

Long. Depth

 147.734°E 

 147.709 

 146.651

Mb (GS) Ms  (GS)

 15.  2km 

 18.6 

 43.  0

 5.  8 

 6.  1 

 6.  0

 7.  0 

6. 4 

 6.  7

 M  (JIVIA) m*

 7.  0 

6. 5 

 6.  6

 1.  5 

 —1 .  0

 *m: tsunami magnitude according to Hatori (1975)
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 )etween tsunami and earthquake magnitudes. Solid line corresponds to Eq. 
The  numb..-..red solid circles represent the observational data of Table 9. 
s of three earthquakes. Open and solid circles indicate aftershocks within 
ays after the main shock on  June  10, 1975 and open squares the aftershocks of 
hquake. Dotted curves are tsunami source regions for the main shock and 
hquake. Crosses show epicenters of major earthquakes in this region before

aftershock. As seen in Fig. 1, the main shock was associated with an anormalously 
large tsunami in comparison to its earthquake magnitude. This series, therefore, gives 
an example of the above mentioned discrepancy between the formula (1) and observa-
tion. This study aims at the elucidation of cause of this discrepancy based on the 

differences in source mechanisms and source spectra of the three events.

2. Description of the earthquakes 

   Epicenters of the three events of the 1974 earthquake, the main shock and the 

largest aftershock are shown in Fig. 2 by different symbols explained in the figure. 

Epicenters of other aftershocks are also given in this figure , where open and solid 
circles stand for the aftershocks within one and ten days after the main shock respectively.
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These locations refer to USGS. Dashed curves indicate the tsunami source regions 

for the 1974 earthquake and the main shock according to Hatori (1975). Since the 
largest aftershock was not accompanied with tsunami of observable size, the source 
region cannot be shown. 

   Major earthquakes before the series in this region were those on Jan. 29, 1968, Aug.  

1  I, 1969 and June 17, 1973. Crosses in Fig. 2 respresent the epicenters of major shocks 
in 1968 and 1973. The earthquake in 1969 was associated with many precursory shocks 
and the accuracy of location of epicenter is very poor. Hence the epicenter of this 

shock is excluded from the figure. The aftershock areas of these three major earthquakes 
are shown by thin solid curves based on the report by ISC. 

   Fig. 2 indicates that the aftershock area of the main shock is included in that of 
the 1969 event. The epicenter was located near the trenchward edge of the aftershock 
area. Kelleher et  al. (1973) stated that the epicenter of major earthquake near trench 

is usually situated on the island arc side of aftershock area and the rupture proceeds 
from island to trench, examples being seen in the cases of the 1968 and 1973 earth-

quakes. The present main shock, therefore, has a contrary feature to that in usual 
cases. 

   The epicenter of the 1974 event was located at the boundary of aftershock areas of 
the 1968 and 1973 earthquakes. The number of aftershocks of this event was very 
few. 

   The long period seismograms of the three events at KEV of WWSSN are reproduced 

in Fig. 3. This figure shows that the main shock has several different features from 
other two cases. The initial P wave train is very complex in its form, long in dura-

tion and large in amplitude. The later part of the train with large amplitude cannot 
be attributed to such phases as PP, PcP, PPP and PcS, as is clear in Fig. 3. A dis-

cussion about this point will be made in a later section.

KEV A 59.5° 

 JUN.I0,1975 .          13:-5-Ai
 JUN.13,1975

I Up

 SEP.27I974  ..,,., 

 5:57

 V  PcP PP PPP  PcS 

 

i  I I I I I I I I 
    0 2 4 6  8  min 

Fig. 3 Seismograms in vertical component of the three earthquakes at  KEV.
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            The initial wave train of the main shock begins 

         with a small amplitude phase followed by large 

11\\ amplitude ones, which may correspond to the main          fracture. This sort of small amplitude before large 

         amplitude is found also at the beginning of S phase 

         as seen in SH seismograms in Fig. 4, which shows 

         three examples of them. This indicates the pre-

         cursory foreshock activity immediately before the 

         main fracture. The study of this foreshock will be 

          made as well. 

          3. Source mechanism 
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         angles of S waves are read from the long period
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 fracture and precursory shock of the main shock, 

the aftershock and the 1974 earthquake. The 

polarization angles of S waves are listed in Tables 
 2, 3, and 4, respectively. Their mechanism solu-

 tions from polarization angles are determined by 
 the method of least squares according to Hirasawa 

 (1966). When the  E-W and N-S components do 
 not behave in phase, the determination is abandoned 

 because of possible contamination of S wave with 
 tined are given in Figs. 5(a), 6(a), and 7(a) on the 

area projection. 
 the directions of P wave initial motions as well 

 gs.  (a), 6(a) and 7(a). These figures imply that the 
 waves is compatible with P wave data for every 

 s section, a small precursory event took place about 

in the  event on June 10, 1975. The directions of 
angles of S waves of this precursory shock are shown 

 hanism of  he main  fracture is also shown in Fig. 8. 
 r the  precursory shock is too few to determine its 
 iws that the mechanism of the precursor is similar to 

 is obtained clearly indicates thrust type faulting in 
 r dip angles and dip directions of fault and auxiliary 

 er with  their standard deviations The identification of 
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Table 2. The S wave polarization angles of both the main fracture and the precursory shock of 

the main shock. Azimuth is an azimuth angle measured clockwise from the north. 

Inc. Ang. is an incident angle measured from the downward vertical.

Station    Inc.  Ang,

ADE 

ANP 

ATU 

COL 

COR 
CTA 

GDH 
HKC 

BKS 

KON 

LEM 

NUR 

PMG 

RIV 

TAB 

VAL 

WES

 19.9° 

 31.4 

 18.3 

 28.0 

 24.0 

 23.  5 

 22.  6 

 29.6 

 23.  0 

 21.  4 

 23.8 

 22.6 

 25.9 

20. 3 

21. 3 

 18.6 

 17.5

Azimuth

 187.  6° 

 238.8 

 318.9 

 35.6 

 54.8 

 181.6 

 7.  9 

 244.  2 

 60.  5 

 339.  1 

 226.7 

 333.  2 

 180.7 

 177.1 

 305.7 

 346.  5 

 27.9

Pol.  Ang.

 129.  9° 

 88.7 

 12.  5 
 -119 .2 

 -114
.5 
 146.8 

-  58 .4 

 99.7 
 -105 .  3 

-  16 .0 

 76.7 
-  16 .5 

 129.4 

 137.7 

 17.4 
-  33 .2 
-  87 .8

 Pol.  Ang. (Precursory)

 122.  4°

-  0 .4 
 -129 .5 
 -134 .7

 -  68 .  9

124.6 

 135.2

Table 3. The S wave polarization angles 

of the aftershock. The same no-

tation as in Table 2 is adopted.

Table 4. The S wave polarization angles of 

the 1974 earthquake. The same 

notation as in Table 2 is adopted.

 Station

ANP 

COL 

COP 

COR 

CTA 

GDH 

HKC 

KBS 

KEV 

KIP 

LEM 

NUR 

OGD 

PMG 

RIV 

SNG 
VAL 

WES

 Inc.  Ang.

 31.3° 

 28.1 

 20.  9 

 24.  0 

 23.  4 

 22.8 

 29.8 

 25.  3 
 24.  4 

 26.  4 

 23.8 

 22.8 

 17.6 

 25.9 

 20.  3 

 28.1 

 18.7 

 17.6

Azimuth

 238.0° 

 35.  9 

 335.  5 

 55.  0 

 181.  5 

 8.1 

 243.  5 
 350.  5 

 339.6 

 98.2 

 226.  5 

 333.  0 

 30.6 

 180.7 

 177.1 

 242.8 

 346.5 

 27.8

Pol.  Ang. Station

 94.  7° 
 -123 .5 

-  83 .5 
 --126 .6 

 123.  5 
-  82

.7 
 89.9 

-  96 .3 
-  92

.7 
 -166 .7 
 71.9 

-  78 .8 
 -  84 .7 

 145.1 

 147.4 

 105.5 
 -103 .4 

 -  88 .7

AAE 
ADE 
AFI 
ALQ 
ATU 
BAG 
BKS 
COL 
COP 
DAL 
 ES  K 
GDH 
HNR 
JCT 
KBS 
KEV 
KON 
LEM 
LON 
MSH 
PMG 
TAB

Inc. Ang.

 19.6° 

 24.  9 

 27.  8 

 25.0 

 23.  0 

 37.7 

 28.5 
 35.  4 

 26.1 

 22.7 

 24.8 

 28.3 

 32.1 

 22.7 

 31.7 

 30.7 

 26.9 

 30.1 

 29.  9 

 29.2 

 32.6 

 27.  0

 Azimuth

 288.  5° 

 186.  3 

 135.7 

 53.3 

 317.9 

 227.0 

 59.8 
 35.7 

 334.8 

 48.8 

 342.7 

 7.  5 

 163.1 

 52.  3 

 350.  3 

 339.  2 

 338.4 

 225.1 

51.5 

 296.3 

178.8 

304.8 

 Pol.  Ang.

 4.2° 

 113.5 

 157.1 
 -115 .9 

 -101 .4 

 119.2 
 -116 .9 

 -134 .  2 
 -120 .6 

 -119 .5 
 -121 .4 
 -114 .7 
 141.  2 
 -112 .3 

 -123 .2 
 -124 .3 
 -125 .5 

 93.  5 
 --121 .3 

 -105 .6 

 145.9 
 -109 .6

plane of the main shock is safely said to be smaller than those of the other two earth-

quakes by about ten degrees, taking the standard deviation in the table into considera-
tion. Since the epicenter of the main shock is located farther off the island coast than 

the others, this fact is consistent with the idea of plate tectonics. The compatibility of
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5 Focal mechanism solution of the main fracture in the event on June 10, 1975. Data 
are projected on the lower half of focal sphere in equal area projection. Solid curves 
indicate the solution by least squares method from polarization angles of S waves in every 
figure.  P, T and B mean pressure, tension and null axes respectively. (a) Polarization angles 
of S waves and the solution. (b) Directions of P wave initial motions and the solution from 
S waves. Open and solid circles show rarefaction and compression respectively  and circles 
with crosses indicate the data judged to be near the nodal planes.
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  The solution is that for the main fracture from S wave data. Notations 

are the same as in Fig. 5.

Table 5. Numerical results of focal mechanism solutions from S waves.

Date (G.M.T.)

JUN. 
JUN. 
SEP.

10,1975 

13,1975 

 27,1974

Fault plane

Dip direction

 —80 .8° 
 —  24 .  3 
 —13 .0

 ±38.70 

±21.8 

±  7.3

Dip angle

 12.7°  ±5.8° 

 21.  0  ±2.  8 

 26.  2  ±2.  0  1

Auxiliary plane

Dip direction

 135.6° 

125.9 

124.8

 ±  5.  3° 

 ±7.0 

 ±  3.  7

Dip angle

 79.7°  ±  3.  5° 

 71.  6  ±1.  7 

 69.  9  ±  0.  7
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4. Source spectrum and effective moment 

   Kanamori (1972) defined the effective moment as a seismic moment due to a 
virutal dislocation of step function at every frequency. Let  D  (t) represent the 

source shear dislocation, where D(t) =0 for t<0 and  D(oo)  —Do which is the static 
dislocation. Then the moment function  M  (t) for the equivalent point source of double 

couple is proportional to  D(t). If the amplitude spectral density of moment is 
denoted by I  /11(a))  I  , the effective moment  M  e(w) is expressed as 

 Me(W) =  CJ  I  M(W)  I  • (2) 

It is obvious that when D(t) behaves as a step function of Heaviside type with respect 
to time or the angular frequency  co is zero,  Me(W) coincides with the static seismic 

moment. 
   The effective moment  M  e(co) is represented in terms of body wave spectral 

amplitude  U  ,(w) as 

              4rrpV63 U(co)   M  
e(w)—(3)                        G

, h)  I H„,,c (co) • H„(co)•H i(co) 

where the subscript c stands for P or S wave, p and  V, represent density and wave 
velocity near the focal region respectively, and  REAc is the radiation pattern coefficient. 

 G,  (d,  h) is the geometrical spreading factor depending on both epicentral distance 
 A and focal depth  h. The transfer function  11„ac  (w) for mantle is composed of attenua-

tion factor due to anelasticity.  G,(1I, h) and  H,,  (co) are evaluated using the Jeffreys-

Bullen B earth model and MM8–QC model by Anderson et  al.  (1965).  H„c(co) is the 
crustal transfer function calculated for the standard model for crust by Fukao (1970), 

and  H  i(co) is the impulse response of long period seismograph in WWSSN which is 

estimated by the use of the Hagiwara's representation (Hagiwara, 1958). 
   In the case of surface wave, the representation of effective moment can be obtained 

by the use of the formulation by Ben-Menahem et  al. (1970) as 

                  ttcoGz(w) I Ui(co)-i(w)        M 
„(co)  —, (for Rayleigh wave)                s

R SR(u)) +pRPR(0))+igRQR(6))1 

                                          (4) 
              pcoGe(w) I U0(w)I•(w)      M

e (w)  =(for Love wave)  P
LPL.M+igLi2L(W)I 

where  uz(q and  U0(w) are the spectral amplitudes of observed vertical component for 
Rayleigh waves and transverse component for Love waves, and  G  2(co) and  Go(co) are 
the diminution factors for Rayleigh waves and for Love waves,  ,u being the rigidity 

near focal region. Notations of s, p, and q are the factors calculated from source 

parameters and subscripts of R and L indicate the values for Rayleigh and Love waves 
respectively.  S  (co)  ,  P  (co) and  Q  (co) are the medium transfer functions. Diminution 
factors and transfer functions are quoted from the tables by Ben-Menahem et  al. 

(1970).
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   The numerical values of parameters, 

   p  = 3.40  g/cm3,  Vp  = 8.12  km/sec,  V5 = 4.61  km/sec,  U = 0.72x  1012 dyn/cm2, 

are adopted in the present computation. The spectrum of observed waves at each 
station is obtained by FFT program. Seismograms for P and S waves are digitized 
with a time interval, which is a little different from one seismogram to another 

within the range of 0.67 and 0.84 sec depending on the enlargement factor of original 
seismogram. The window is of 200 and 150 sec for P and S waves of the main shock 
and 50 sec window is adopted for those of other two events. 

   The sampling rates for surface waves are 4.0 and 4.8 sec for the main and after-

shocks in 1975 and the 1974 event respectively. The group velocity window of 3.90 
and 3.50 km/sec for the continental path, and 4.10 and 3.50 km/sec for the oceanic 

path are applied to each trace of Rayleigh waves. For Love waves, the window of 
4.30 and 3.90 km/sec for the continental path, and 4.45 and 4.10 km/sec for the 

oceanic path are adopted. 
   Examples of spectra thus obtained for P waves at COP are shown in Fig. 9. 

The azimuthal distribution of observed spectral amplitude of the fundamental mode 
of Rayleigh waves is seen in Figs. 10, 11 and 12 for the three earthquakes , the period
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Fig. 10. Spectral amplitudes of fundamental mode 

   of Rayleigh waves of the 1974 earthquake at 

   100  scc in period. Solid circles represent ob-

   servations and solid curve shows theoretical 

    result. 

Fig. 11 Spectral amplitudes of fundamental mode 

 of Rayleigh waves of the main shock at 150 

 scc in period. 

Fig. 12 Spectral amplitudes of fundamental mode 

   of Rayleigh waves of the aftershock at 100 sec 

   in period.

              Fig. 12 

in each case being given in the figure. The amplitude in the figure is that deconvolved 

with the diminution factor so as to represent the value at source region. The theoreti-

cally expected pattern is also seen in the figure. For the theoretical calculation the 

focal mechanism from S waves and effective moment at each period, which is mentioned 

later, are used. The focal mechanism of the main shock is here assumed to be pure 

dip slip type, because the dip direction of the fault plane of this earthquake is not so 

accurately determined, as seen in Table 5. The consistency of observed and theoretical 

results shown in the figures indicates that the mechanism obtained from S waves is 

compatible with the observations of not only P waves but also Rayleigh waves for all 

the three events.
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6. The effective moments 

   1974 earthquake

OF  EARTHQUAKES 

of the Table

 -CES IN  KUR 

Fable 8. The 

 a  ftei 

= - - - 

 P-wave 

St.30  (
sec)

 KURILE ISLANDS 

 The effective moments 

 aftershock.

  123 

of the

  P-wave 

St. 30(sec)

ATU 

COP 

ESK 

REV 

MSH

St.

 Rayleigh wave  (R1) 

  50 100

 2.43 

 2.  26 

 2.78 

 3.  04 

 1.95

ADE 
ATU 
DAL 
JCT 
MAL 
MSH 
 NAI  

I  NAT 
SHI

150 
 (sec)

 0.965 

 1.  15 

 1.76 

 0.912 

 0.  612 

 1.07 

 0.827 

2. 63 

 1.72

 0.621 

 2.45 

 1.09 

 2.77 
 1.28 

 1.94 

 1.10 

 2.  01 

 1.48

 3.  33 

 1.71 

 4.  54 

 4.72 
 1.51 

 2.38 

 0.769 

 2.60 
 2.39

Average  2.  49  1.  29  1.64

St.

662

 effective

Rayleigh wave  (R1) 

  50 100 150                (
sec)

 COP, 

 GDH 

 HKC 

 KBS 

 KEV 

 NUR 

 VAL 
 'WES 

Average

1. 34 

 1.16 

 2.  75 

 1.  39 

 1.  56 

 1.89 

 1.85 

1. 05 

 1.62

AAE 
ALQ 
ESK 
 1ST 
MAL 
OXF 
STU 
 WES

 0.846 

 0.992 

 0.  568 

 0.  503 

 0.  953 

 3.51 

1. 00 

 2.86

 0.732 

 2.12 

 0.765 

 0.568 

 0.850 

 2.  37 

     0.759 

 0.660

1. 40  1.  10

(in  units of

 0.952 
 3.  37 

 0.817 

 0.897 

 1.  20 

 3.77 

 0.711 

 1.68

 1.67

 1026  dyn.  cm) 

       Table 7. 

70

The

     (in units of  1026  dyn• cm) 

moments of the main shock.

P-wave

  St. 

 A  A  E 
ADE 
DAL 
ESK 
GEO 
 IST 
MAL 
MUN 
OXF  

! RIV  ' STU 

VAL

 Rayleigh wave  (R1) I  SH-  

I 1             100 150 
1200St.  
I  (sec)

 SH-wave

St. 

ATU 

COP 

GDH 

KBS 

KEV 

 KON 

MSH 

NUR 

VAL 

 WES

30 

1. 32 

 1.84 

 2.  30 

 1.94 

 1.08 

 1.  35 

 1.30 

 2.53 

 2.70 

 1.96

50 

 4.  80 

 5.  79 

 4.  81 

 4.  70 

 6.  99 

 4.  55 

 6.  37 

 6.47 

 5.  63 

 3.15

(sec) 

 8.26 
 8.67 
 4.67 
10. 3 

 7.  59 
 4.89 

 7.28 
 7.85 
 6.60 
 4.85

---  

Love wave(G1 & G2)

70 
(sec)

~I

 5.  97 

 8.  06 

18. 5 

 9.05 
 .4.  03 

 9.56 

 9.68 

 12.  1 

16. 2 
 10.7 

 12.7 

 8.61

~
I

10. 2 

13. 0 

 40.  8 

11. 0 

5. 16 

 11.  6 

 8.  75 

10. 9 

 11.  6 

 11.  5 

 11.7 

 10.1

i  12.  6  ADE 

 5.  14  GDF11 

 72.  1  PAIG 

 14.6 RIV 

 8.  22  ' VAL 

 13.  6 

 11.  5 

 3.76 

 24.0 

4

.59  .46 9. 

19.7

 6.81 

 6.  11 

 4.  18 

 4.  07 

 6.71

Average 1.83 5. 33  7.10 10. 4  13.0  16.6                                                                 5. 58                                                          I  20 

 (in units of  1028  dyn•  cm) 

   Since the amplitude spectra are obtained according to the  abo\  procedur 

effective moment can be calculated by  Eqs. (3) and (4). The  effective  mc 

obtained from observations at various stations and for various  kinds of  wavl 

listed in Tables 6, 7 and 8 for the three earthquakes. The  moments from 

Rayleigh waves are shown en bloc in Fig. 13. In the case of the main shock, the 

precursory shock is included in the calculation but it does not  cause any  es 
change in the result. Table 7 shows that the moments at 70 and  20€ sec from 

waves are in fairly good agreement. Fig. 13 represents that the moments  f 

 three  events  have  almost  the  same  value  at  the  period  of  about  30  sec  but  the 

 at  the  the  period  range  from  50  to  150  sec  for  the  main  shock  increases  rapidly  in 

of that those for the other events are almost constant. The  moment at the  pei 

150 sec for the main shock is about ten times as large as those for  the other  evl

       2  St .200         (
sec) 

 ADE  24.  4 
 AKU 15. 1 

DAV  18.2 (G2) 
ESK  27.6 

 KTG  35.  2 
MAL  31.3 
PTO  7.23 

 RIV  13.  7 
STU  24.8 

 VAL  11.  3 

 .9 

 re  procedure, the 

 ffective  moments 

 ds of  waves are 

 its from P and 

shock, the small 

 tse any  essential  

1 sec from  various 

moments  or the  

,  but  the  moment 

 rapidly  in spite 

 L at the  period of 

 re other  events.
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   The seismic moment corresponds to the asymptotic value of effective moment for 

infinitely long period. They are estimated to be  2.0  x 1026 and  1.4  x 1026  dyn•cm for the 

1974 and aftershock respectively as the averages of effective moments between 30 to 

150 sec. For the main  shock, the asymptotic value cannot be determined from 

Fig. 13, because the effective moment is still increasing even at 200 sec. However,  ac-

cording to the values of effective moment at 200 sec obtained from Rayleigh and 

Love waves, it may be safely said that the seismic moment of this event is larger than 

 2.0x 1027  dyn  •cm probably close to  3.0  x 1027  dyn•  cm.  '

 E 

C 
 ›, 

 V 

 27 

 13 
 2 
ca) 
 0 

 26

 •  o  JUN.I0 

 •in  JUN.I3 

 •  L  SEP.27

/1,

 Open  - R 

 Soli  d  -  P

/
V

 10 100 sec 
 Peri  od 

 Fig. 13 The effective moments of the three earthquakes from P and Rayleigh waves. The 
     solid and open simbols indicate the values from P and Rayleigh waves. The solid curve 

     represents the theoretical value calculated on the assumption of the seismic moment of 3.0 x 
     1027  dyn•  cm and of the  rise time of 50 sec. 

   The rise time  T of equivalent point source can be obtained under the assumption 

that the source time function is expressed as 

                  M(t,  -r) =  M0(1—exp (—t/T)) t  z  0  , (5) 

where  Mo is seismic moment. The rise time of the main shock is estimated to be 50 
sec if we adopt the seismic moment of  3.0  x 1027  dyn•  cm. However, the spectral 
amplitudes of other two events are almost constant in the period range from 30 to 150 

sec as is obvious in  Fig. 13. This implies that their moment functions are almost of
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the step type, as far as the waves in this period range are concerned. It is concluded, 

therefore, that the rise time of the main shock is much longer than those of the other 
two events. 

5. Generation of tsunami 

   Kanamori (1972) stated that an anomalously large tsunami accompanied the earth-

quake with very long rise time. The excitation of tsunami is essentially related to the 
long period components of source spectrum (Yamashita and Sato, 1974), while the 
magnitude is determined from much shorter components. If the rise time is very long, 

therefore, the tsunami magnitude is expected to be much larger than the formula  ( 1)  . 
This type of earthquake is named the "tsunami  evthquake" by Kanamori (1972). 

   This idea is applied to the present case by the use of apparent stress (Aki, 1966 

and Wyss, 1970). The apparent stress  as is defined as 

                                  E„ 
                                      QA 

      m'(6) 

                                          0 where E, is the seismic energy,  M0 the seismic moment and  y the rigidity in focal 
region. E, can be calculated by the Gutenberg and Richter's relation 

 log  Es  =  1.5  M+  11.8  , (7) 

from magnitude M. It is expected that the tsunami earthquake would have smaller 
apparent stress than that of ordinary earthquake. We adopt JMA magnitude and 
seismic moment obtained in the previous section and assume the rigidity  du of  0.72  x 1012 

 dyn/cm2. Table 9 shows the apparent stress thus obtained, as well as those of  major 

earthquakes along the trench, one exception being the Niigata Earthquake in 1964 
occurring near the Japan Sea coast. This table indicates that the Sanriku Earthquake 
in 1896, which was accompanied with anomalously large tsunami, and the present 

main shock give very small apparent stresses compared to other earthquakes. The 
value of  3.0  x 1027  dyn•cm is taken in this calculation as the seismic moment of the 

  Table 9. Earthquake and tsunami magnitudes, seismic moments and apparent stresses of major 
           earthquakes in and near Japan.

No.

 1. 

 2. 

 3. 

 4. 

 5. 
6. 

 7. 
8. 

 9. 
10. 

11.

Date(J.M.T.)

1896  Jun.  15 
1933 Mar. 3 
1963 Oct. 13 
1964 Jun. 16 
1968 Jan. 29 
1968  May.16 
1969  Aug.  12 
1973 Jun. 17 
1974  Sep.  27 
1975 Jun. 10 
1975 Jun. 13

Epicenter

 39.6°N 

 39.1° 

 43°45' 
 38°21' 

43°11' 

 40°44' 

42°42' 

42°58' 

42°45' 

42°46' 

42°54'

 144.2°E 

 144.7° 

 149°58' 
139°11' 

147°00' 

 143°35' 

147°37' 

145°57' 

146°40' 

147°13' 

147°30'

Location

Sanriku 

Sanriku 

Kurile 

Niigata 

Kurile 

Sanriku 

 Kurile 

Off Nemuro 

Kurile 

Kurile 

 Kurile

 M 
(JMA)

 7.  6 

 8.  3 

 8.  1 
 7.5 

 6.9 

 7.9 

 7.8 

 7.4 

 6.6 

 7.  0 

6. 5

 ni*

 3.  0 
 3.  0 

 2.  0 

 2.  0 

 0.  0 

 2.  0 

 2.0 

 1.  5 
 —1.0 

   1. 5

 cra (bar)

 2.3 

 29.8 

 8.6 

 26.9 

 11.  5 

 10.  3 

 8.5 

 18. 0 

 4.8 

 18.  0

 Nlo( x  1027dyn• cm)

50 

43 

75 

3 

28 

22 

 6.7 

 0.20 

3 

 0.14

(Kanamori 1972) 
(Kanamori 1972) 
(Kanamori 1970) 
(Aki 1966) 

(Kanamori 1971) 
(Abe 1973) 
(Shimazaki 1974) 
(This study) 
(This study) 
(This study)

 *m  : tsunami magnitude according to Hatori (1969 , 1971

 

, 1975)
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main shock, but even if we take the smallest possible value of  2.0  x  1027  dyn•cm 
instead, the above conclusion remains the same. Consequently the present main 
shock is concluded to be one of tsunami earthquakes. 

   Yamashita and Sato (1974) indicated that the generation of tsunami is 
considerably influenced by the dip angle of the fault and focal depth, based on the 
calculation for the case of pure dip slip fault. The main shock in the present study 

has a smaller dip angle than the other two events and the difference in excitation of 
tsunami cannot be attributed to the effect of dip angle. The focal depths of the 

main and aftershocks are about 15 km as seen in Table 1, whereas that of the 1974 
event is approximately 45 km. According to Yamashita and Sato's result the 
difference in focal depth affects the generation of tsunami by the factor of not more 

than two. On the other hand, the difference of tsunami in the present case is 
approximately one of the order of magnitude. The difference in focal depth, there-

fore, should not be the main cause of the difference in tsunami generation.

6. Discussions 

   We will discuss about two features of the main shock in this section. One is the 
long rise time of equivalent point source and the other is the long wave train with large 

amplitude after initial P wave motion. 
   The source spectrum was discussed by the use of double couple point source model 

in the previous section and the anomalously long rise time was obtained about the main 
shock. This may be affected by both the effects of source finiteness and rise time 

of dislocation in actual source but it is not obvious which effect is more strong. If the 
rise time T of point source is regarded as the total time interval of rupture of whole 

fault, it is roughly expressed as 

 L 
 T  =  + (8) 

                                           Tl 

where L is fault length, v is rupture velocity, and  r, is the rise time of dislocation. In 

the case of the main shock, T is obtained to be 50 sec in §4 and L is determined to be 
about 50 km from the aftershock area represented in Fig. 2. Then, on the assumption 

that the dislocation function is a step type (T0=0), rupture velocity v is calculated from 
Eq. (8) to be 1  km/sec, which is anomalously small in comparison with the average value 

for earthquakes in this region. To the contrary, if v is assumed to be 3  km/sec, which 
is the common value, the rise time of dislocation is obtained to be about 30 sec. This 

is again anomalously long. Therefore, it is natural to consider that the long rise time 
may be due to both comparatively slow rupture velocity and long rise time of disloca-

tion. 
   As stated previously, the P wave form of the main shock on June 10, 1975 

exhibits a complicated feature. The seismograms at the station of GDH in Fig. 14 
represents an example of long wave train with large amplitude after initial P wave 

motion. The duration time of the train is about 200 sec and the maximum amplitude
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of later wave is larger than that of initial P. The particle motion of initial wave is 

compared with that of a part of later wave train in Fig. 15. The comparison shows 

clearly that the particle motion is similar to each other. Other part of the train also 

shows the similar feature. The later part, therefore, is reasonably considered to consist 

mainly of compressional waves with nearly the same incident angle as initial motion. 

   Seismograms at the stations in almost the same azimuth are represented in Fig. 16 

in order of epicentral distance. This figure shows evidently that peaks and troughs in 

various stations correspond fairly well with a constant time difference from P
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is far from that, and the spectrum from COR record contains much influence of later 

waves, whereas that from KEV consists mainly of initial P wave. These curves are 

 deconvolved with instrumental and crustal responses. As seen in the figure the spectral 

amplitude for COR record is much smaller in the period range longer than 50 sec com-

pared to that for KEV. Big peaks in spectrum from 10 to 20 sec are seen with similar
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 Fig. 18 Comparison of source spectra obtained from P wave trains in vertical component of the 

     main shock at COR and KEV within 200 sec from the onset. These are deconvolved with 
     instrumental and crustal responses.  Ro# is the radiation coefficient of P waves. 

magnitude of amplitude in both cases. This indicates that the later waves have a 

predominant component at the period range from 10 to 20 sec. In the calculation of 
source spectra and moments in the previous section, the peaks at 10 and 20 sec were 
ignored for this reason. 

   The generation of these later waves may be due to the multiple reflection of 
waves near the focal region. One of the reasons of this idea is that the later waves 

have a predominant period and time intervals between P and later arrivals are almost 
constant. It is an impotant problem to study whether the later phases with large 

amplitude are only in this particular case or rather common in other cases of great and 
shallow earthquakes. 

7. Conclusions 

   The main results obtained from this study are breifly summarized as follows: 

   (1) The epicenter of the main shock was located near the trenchward edge of the 
aftershock area. This is a contrary feature to that in usual cases of major earthquakes 

along the trench.



           SOURCE PROCESS OF EARTHQUAKES IN KURILE ISLANDS 131 

    (2) The focal mechanism solution determined from the S wave data satisfies 
sufficiently well the observations of P and Rayleigh waves in every case. 

    (3) The focal mechanism solutions of all of the three earthquakes are thrust type. 

    (4) A small precursory event took place about 10 seconds before the main 
fracture of the main shock. The mechanism solution of the precursor is similar to 
that of the main fracture. 

   (5) The dip angle of the fault plane of the main shock is smaller than those of other 
two earthquakes by about ten degrees. This may be compatible with the fact that its 

epicenter is much closer to the trench than those of other two. 

   (6) The source spectra obtained from body and surface waves indicate that the 
rise time of equivalent point source is much longer for the main shock than those of 

other two earthquakes. The seismic moments for the three earthquakes are calculated 
to be  2.0  x  1026,  3.0  X  1027 and  1.4  x 1026  dyn  •  cm for the 1974, the main and aftershock, 
although their magnitudes are not so much different from one another. 

   (7) The main shock gives very small apparent stress compared with other major 
earthquakes along the Japan and Kurile trench. This fact indicates that the main 
shock can be classified as the tsunami earthquake with very long rise time. This is 

the reason why the main shock excited an anomalously large tsunami compared with 

the other two cases. 
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