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   Abstract: Accuracy of the peak truncation approximation for radiative transfer 

of a phase function with a sharp forward scattering peak is investigated for widely 

differing values of such parameters as incident angle, optical thickness and absorption. 

Two types of phase functions are  considered: one is for water clouds and the other 

is for  hydrosols, where the latter phase function doesn't exhibit a distinct diffraction 

peak. Errors introduced by the approximation in the emerging fluxes  from the 
cloud layer are smaller than those for the hydrosol layer, because considerable portion 
of the truncated part of the cloud phase function locates around a smaller scattering 

angle than that for the hydrosol phase function. Behavior of error profiles for the 

reflected and transmitted fluxes with respect to the parameters is complicated but 

systematic. A physical interpretation for the profiles is proposed according to a simple 

scattering  model. Generally errors due to the approximation are small enough and 

unimportant for most applications. This assures usefulness of the approximation for 

the multiple scattering problem with a phase function having a sharp forward peak.

 1. Introduction 

   Scattering of light by particles larger than the wavelength of interest is characteriz-
ed by a signfiicantly anisotropic phase function with a very sharp diffraction peak at the 
forward direction, of which presence greatly increases the computational difficulty in 

the multiple scattering problem. It has been shown that the multiple scattering 

problem with a phase function having a sharp diffraction peak can be greatly simplified 
by truncating the peak and copensating for this by changing the volume scattering 
coefficient, and that the error introduced by this approximation may be unimportant 

for most applications. (Hansen, 1969; Potter, 1970). 
   Hansen studied the reflection from the conservative atmosphere (single scattering 

albedo  w0  1) and showed that the peak-truncated cloud phase function yields results 

practically identical to those obtained with the complete cloud phase function, not only 
for albedos but also for the angular distribution of the reflected intensities. And he 
showed that the approximation introduces small error in reflectivity of less than 1% 

for most angles of incidence and emergence, except for direct backscattering, for near-

grazing emergent angle and for total scattering angles near 0°, where errors are notice-
able, say, several per cent. 

   Potter (1970) applied the truncated peak approximation to the problem of diffuse 

transmission and reflection from the conservative (w0=1) and absorptive  (w0=0.91) 
atmospheres. He showed that the accuracy of the approximation for the transmitted 
and reflected fluxes is within 1% for widely differing values of the incident angle and
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optical depth, except for the incident angles  00>84° . 
   We have used the truncation approximation in the studies of the transfer of solar 

radiation in water clouds (Tanaka et al., 1976) and in oceans (Tanaka and Nakajima, 
 1977). The single scattering albedo  w0 for water clouds becomes very small in the 

gaseous absorption bands in the near infrared region. It is also the case for oceans 
where  w0 takes the value ranging from 0.9 to 0 .1 in the wavelength region  A=0.45-0.55 

 um. It is important to examine the applicability of truncation approximation to such 
strong absorbing cases or to cases of very low single scattering albedo . In  addition, 
the phase function for hydrosols doesn't exhibit a distinct diffraction peak , though it 
is very steep in the forward direction. Errors which would be introduced by truncating 
the forward scattering peak of the hydrosol-type phase function has not been investigat-

ed yet. 
   In this study we estimate errors introduced by the approximation in the transmitt-

ed and reflected fluxes from the scattering layer having the cloud-type phase function 
and hydrosol-type one for widely varying values of the single scattering albedo and the 

optical thickness. And we try to physically interpret the behavior of error by con-
sidering a simple scattering model. 

2. Truncation of phase function 

   The truncated peak approximation is to consider the photons scattered into the 
narrow forward peak as not being scattered at all. This removes the peak from the 

phase function and compensates for the total scattering coefficient. The com-

pensation is to reduce the scattering coefficient by an amount proportional to the 
fraction truncated from the complete phase function. Then the single scattering albedo 

 wo and the optical thickness  r are reduced, respectively , to W01 and  Ti for the truncated 
phase function as 

 (1  —Si)tv,  w
og —(1)  1  —S  gw, 

 7i  =  (1  —SiWo)T (2) 

where  Si is a truncation ratio defined by Eq. (4). 

   Two phase functions are adopted; one is for water clouds and the other is for 
hydrosols. The former has a distinct forward diffraction peak , but the later doesn't 
exhibit the peak although it is very dominant in the forward scattering . 

   The cloud phase function used here is shown in Fig. 1 by solid line. It has calculated 

from Mie theory for the altostratus cloud model at wavelength 1  ium with the complex 
refractive index  1.326-2.82.10-8 i (Tanaka et al., 1976). The truncated phase func-

tion is assumed to be 

                        a exp (be),for0/ , 
 P1(cos e)  =(3) 

 P(cos  0)  , for  0  >  0/  , 

where P(cos  0) and  Pi (cos  e) are original and truncated phase functions, respectively ,
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 Fig. 1. Phase functions for scattering by water clouds. Curve 1, untruncated complete phase 

 function; curve 2, peak-truncated phase function with Eq. (3) at the scattering angle  @,-6° 
   with the ratio  St=0.3366; cruve 3, same as cruve 2 but for  0,=-15° and  Si=0.4313. The 

     transformed picture of  sin2  9 P (cos 0) versus  1/2  ln[(1  +cos  0)/(1—cos 0)] is inserted in the 
     upper part of the figure. 

 Fig. 2. Same as Fig. 1 but for scattering by hydrosols. Curve 4, untruncated complete phase 
     function; curve 5, peak-truncated phase function with Eq. (5) at  01=10° with  (1=0.014704, 

     b=1.007712,  g=0.0094352 and  St=0.2466; curve 6, same as curve 5, but for  0,=-15°, 
 a=0.018572,  b=  1.007458,  g=.0.020174 and  S1=-0.4145. 

and  8 is the scattering angle. The constants a and b are determined so as to connect 
smoothly both profiles at  0=0,, by taking the slope of the logarithm of the truncated 

phase function as being constant for the scattering angles less than  8, with the slope 
equal to that of the untruncated phase function at the scattering angle  e,. Then, of 

course, the truncated phase function must be  normalzied properly. In Fig. 1, the 

cloud phase functions truncated at  01=6° and 15° are shown by broken lines. 
   In order to see more clearly the scattering ability of the phase function, there is 

inserted in Fig. 1 the figure of transformed phase function sin2  0.P(cos 0) as a func-

tion of 1/2 In  [  (l+cos 0)/(1—cos  ]. By the definition, the area enclosed by the 

profile and the scattering angles  e, and  82 gives the scattering ability in the scattering 
angle between  e, and  82, i.e., cos 0                       IcosP(cos  0)d(cos(9). From this figure it can be 
seen that the cloud phase function has three maxima of the scattering ability such as 

one caused by diffraction around  8=2°, one caused by refraction and reflection around 

 0=30°, and one corresponding to the rainbow near  8=140°. The truncation ap-

proximation at  0,--6° and 15° removes the diffraction peak and the ratios S, of the
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truncated fraction to the total scattering ability amount of 33.66% and 43.13%, 
respectively, where the truncation ratio  S, is defined by 

 St  =  (P—P,)cifipin (4) 

Since most of the truncated part locates around  e  =2°, the error introduced by the 

truncation in the reflected and transmitted fluxes for the cloud layer will be small, 
although the truncation ratio is large. 

   Another phase function for hydrosols is shown in Fig. 2 by the solid line. The phase 
function was computed for the hydrosol model with the complex refractive index  1.07-

0.01 i at wavelength 0.5  ,um (Tanaka and Nakajima, 1977). The forward peak of the 

phase function is truncated by the profile;

 Pt  (cos  0)  = 

The constants a, b and g can be 

 et, if  P,(1)/Pe(cos  ei) is  proper': 
and 15° are given in Fig. 2 by br 
for the hydrosol phase function 

phase function will turn out to 
transformed figure of the phase ft 
unlike the cloud phase function, 

one large peak and, therefore,  1 

diffraction peak. The truncation 
the fraction  S,  =24.66 and 41. 

Although the truncation ratio 
effects of the truncation would 

truncated parts locates around t 
   Fig. 3 shows the coefficient 

normalized phase function, that

 et, if  P,(1)/Pe(cos  ei) is  properly given. The truncated phase  functi 
and 15° are given in Fig. 2 by  broken lines. This truncation procedure 
for the hydrosol phase function because the truncation by Eq. (3) 

phase function will turn out to be too steep in the forward  scatterii 
transformed figure of the phase  functions inserted in the upper part of  F 
unlike the cloud phase function, the diffraction and refraction peaks  a 

one large peak and, therefore,  the truncation procedure does not  rei 

diffraction peak. The truncation procedure by Eq. (5) with 0,=10°  an 
the fraction  S,  =24.66 and  41.45% of the total scattering  abilit 

Although the truncation ratio  S is smaller than that of the cloud 
effects of the truncation would be larger because the considerable 

truncated parts locates around  the greater scattering angles 5-10°. 
   Fig. 3 shows the  coefficient ai in the Legendre polynomial  exr 

normalized phase function, that 

 P(cos e) E aiPi(cos 0) , 
                                             t=o 

where  P, (cos  6) is the Legendre polynomial of order / and M is the  ma 

 the  expansion.  From  the  figure,  we  know  how  the  truncation 
 the  number  number  of  expansion  terms  of  the  phase  functions  and  simplifies 

tegration of the radiative transfer equation involving the phase function. 
an integral of a function  involving a phase function over the interval  ( 
approximated by a finite  summation with (M ± 1)/2th order Gaussian  qua 

ing that other  integrands vary  slowly (Chandrasekhar, 1960). In Fig. 
corresponds to the untruncated phase function of the cloud, which  n

       a 
  , for 0 ei  (b—cos  0)2+g2 

P(cos, for 0�-el . (5) 

determined to connect smoothly both profiles at  0  = 

 7 given. The truncated phase  functions at 0,----10° 
 oken lines. This truncation procedure seems suitable 

because the truncation by Eq. (3) applied to this 

be too steep in the forward  scattering angles. The 
 inctions inserted in the upper part of  ig. 2 shows that 

the diffraction and refraction peaks  ire combined in 

 :he truncation procedure does not  removes only the 

procedure by Eq. (5) with 4,--10°  and 15° truncates 
 45% of the total scattering  ability, respectively. 

 is smaller than that of the cloud phase function, 

be larger because the considerable portion of the 

 he greater scattering angles 5-10°. 
 s ai in the Legendre polynomial  expansions of the 

 :os e) E alPi(cos 0) , (6) 
        t=o 

polynomial of order / and M is the  maximum order of 
 we  know  how  the  truncation  approximation reduces 

 of  the  phase  functions  and  simplifies the angular  in-
equation involving the phase function. For example, 

 ig a phase function over the interval  -1,  +1) will be 
 on with (M ± 1)/2th order Gaussian  quadrature,  assum-

.owly (Chandrasekhar, 1960). In Fig. 3, the profile  1 

phase function of the cloud, which  needs about 160
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  Fig. 3. Coefficients  al in the Legendre polynomial expansions of the phase functions shown in 
     Figs. 1 and 2. 

terms of the expansion, so that more than 80 angular division points are necessary to 
integrate the phase function with sufficient accuracy. Profiles 2 and 3 correspond to 

the cloud phase functions truncated by Eq. (3) with  e4=-6° and 15°, respectively. 
Convergence of the profiles is well established at much lower order of the expansion. 

Especially, for the profile 3 only about 30 angular division points seem to be sufficient 
for the integration. The profile 4 shows the expansion coefficients of the  complete. 

hydrosol phase function. Unlike that of cloud, a flat tail extending beyond the limit 
of the figure, so that even 100 angular division points  will not be sufficient to evaluate 

the integral exactly. The profiles 5 and 6 give the expansion coefficients of the phase 
function truncated at  ei=m° and 15°, respectively, by using Eq. (5). Now these 

expansion do not have the extending tail. Especially for profile 6, about 30 angular 
division points will be sufficient. 

   It is worth noting that the coefficient  a, divided by three gives the asymmetry 
factor of phase function, that is, 

      (cos  0) = 2—3                     1P(cos  0) cos ed(cos  0) =1. (7) 
 -1 

The asymmetry factors for the phase functions denoted by profiles 1, 2, 3, 4, 5 and 6 

in Fig. 3 are 0.84534, 0.76752, 0.72898; 0.95425, 0.93939 and 0.92312, respectively. 
The truncation approximation naturally reduces the asymmetry of the phase function. 

3. Computational scheme 

   Calculation of the radiative transfer in a homogeneous plane parallel layer has 
been carried out by using the matrix method (Plass et al.,  1973). Transmitted and 

reflected fluxes from the layers with different optical thicknesses and single scattering 
albedos were computed for various incidence of a parallel beam of radiation. 

   Commonly used method of renormalization of the phase matrix (Wisombe, 1976)
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for flux conservation in the doubling method will turn out to be unsuitable for a large 

set of the angular division points. So we propose a new method of renormalization 

using an iterative procedure. Computed values of the phase matrix  Pij+k  .1211.P(±,uitt1 
 1—yi2V1—p12  cos  q))47 

are used as initial values of iteration. Here = cos 0, 0 and  , are the zenith and 
azimuth angles, respectively, and i and j are from 1 to N; N is the total number of 
the discrete division points for angular integration over the interval [0,  1]. The 
superscirbed signs + and — represent the upward  (+114 and downward  (—juj) directions, 
respectively. Then, iterative calculations are repeated, until some convergence criterion 

is achieved, as follows, 

 pii+±  , 

 N 
 Si(n)  E (8) 

 J=1 

 p.os-0.)+±  1  1                                   1   \ 
 2  Sim  S,  (n)  p.•(n)-f-

where  C/s  are  the  weight  coefficients  of  quadrature  and  the  superscript (n) indicates the 
iteration steps. It is easily proved that, by this procedure, the phase matrix 

converges to a limit value conserving the symmetric property of the phase matrix P 

   Because the number of the angular division points N must be very large in 

calculations with the  untruncated complete phase function, we must check convergence 

of the computed flux values with respect to N. In the calculation, the interval  ye[0, 
1] were divided into five subintervals with equal spacing of  4u=0.2. Then the shifted 
Gaussian quadrature of an odd order was applied to each subinterval so as to evaluate 

the fluxes at common incident angular points  po=0.1, 0.3, 0.5, 0.7, and 0.9, which are 

values of the center of five subintervals. With this quadrature scheme, we have 
calculated a series of  flxues for five values of N as 35, 45, 65, 75, and 85. 

   Fig. 4 shows the relative difference in percent between fluxes calculated with 
different values of N and with N=85, as a function of N, i.e., 

 EFN't1 =  Ft4(r  ,N)IFt  1,(T  ,N  =  85)-1  , (9) 

where  r is the optical thickness of the layer and the upward and downward arrows 

indicate the reflected and transmitted fluxes, respectively. By difinition,  eFf4.=0 for 

 N=85. Value of the optical thickness T, hereafter, refers to the layer with the 
 untruncated complete phase function. This figure displays the integration accuracy 

for the transmitted fluxes (by solid lines) and reflected ones (broken lines) from the 
conservative layer having the complete hydrosol phase function shown in Fig. 2 and 
with the optical thickness  T  =32, for several incident angles  po. The integration 

error for both transmitted and reflected fluxes increases as the incident direction 
approaches the zenith. The transmitted fluxes computed with smaller N are larger,
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  Fig. 4. Relative differences between the fluxes calculated with different number of angular 
     division points N and with  N-----  85, as a function of N. The solid and broken lines indicate 
     results, respectively, for the transmitted and reflected fluxes from the conservative layer of 

     the optical thickness  T=32 having the complete hydrosol phase function for several values 
 of cosine of the incident angle  u0. 

on the other hand, the reflected ones are smaller. With an increase of N, as expected, 

the magnitude of the relative difference  all, monotonously decreases; the flux 
approaches an asymptotic value or a true value for  N—co. We have estimated the 

true values of the emerging fluxes from the layers with the complete phase functions 
for cloud and hydrosols by an extrapolation method; the detailed procedure is not 

shown here for simplicity. Error involved in the estimated true flux values is probably 
less than 0.5%. Fluxes computed with  N=85 differs 5%, at the most, from the 

estimated true ones  Ftl,(7,  N=00). The difference is larger for larger  pc, and smaller w0. 
Fig. 5 shows the relative difference of the emerging fluxes computed with  N  =45 from the 

estimated true fluxes as a function of the optical thickness of the layer. This figure is 
for the transmitted (solid lines) and reflected (broken lines) fluxes from the conservative 

 (w0=1, upper curves) and absorbing (w0=0.5, lower curves) layers having the complete 
hydrosol phase function for different incident angles of  1u0=0.1, 0.7 and 0.9. The 
integration error for transmission increases as the optical thickness increases, and as 

the absorptivity of the layer increases. Error for reflection from the conservative 
layer decreases with increase of the optical thickness but for the absrobing layer it 

becomes independent of the optical thickness. Both for transmission and reflection, 
the integration error is larger for larger  /h. This feature is already shown in Fig. 4 and 

may be attributed to the  fact that when the incident angle  IA' approaches to the zenith 
or  µ'—  1, numerical quadrature of the angular integration in the matrix method 

becomes more difficult because the phase  function P  +1/  1—y2  1/1—,u'2 cos p) becomes
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more rapidly varing function with  u. 
   Behavior of the integration error for cloud layers are similar to that for hydrosol 

layers. For the truncated phase function, the quadrature with the angular division 

points N=85 is accurate enough. 

4. Results and Discussions 

   With the computational scheme mentioned above, we have estimated the relative 

error introduced in the fluxes by the truncation approximation, 

 all  ----  Fit41Fotl—  1 , (10) 

where  F, and  F, are the emerging fluxes computed with the complete and truncated 

phase functions, respectively. The upward and downward arrows indicate, respectively, 
the reflected and transmitted fluxes from the layer. 

   Fig. 6 shows the relative error  eFU for the layers with the hydrosol phase function 
truncated at  8,=15°, as a function of the optical thickness  T, for several values of the 
incident direction  ,u0 and the single scattering albedo w0. Errors for transmission are 

pictured by solid lines and those for reflection by borken lines. Corresponding figure 
for the layers with the truncated cloud phase function at  61=15° is shown in Fig. 7. 

Values of the single scattering albedo were set to be 1.0, 0.5 and 0.1 for the hydrosol 
layers and 1.0 and 0.5 for the cloud layers. Since errors for reflection with  w0=0.1 are 
almost independent of  T, we have omitted them in Fig. 6. 

   From these figures, first of all, we can see that almost all errors due to the
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Fig. 6. Relative errors introduced by the peak truncation approximation in the transmitted 

   (solid lines) and reflected (broken lines) fluxes from the  hydrosol layers as a function of the 
   optical thickness for the complete hydrosol phase function. The truncated phase function 

   is that for hydrosols with  0/  -= 15° (curve  6  in Fig.  2). Results are shown for the conservative 
 (wo=1) and absorptive  (wo=0.5 and  wo--  0.1 (only for transmission) ) layers, and for 

   several values of  /to. The ordinate is on a logarithmic scale. 
Fig. 7. Same as Fig. 6, but for the truncated cloud phase function at  15° (curve 3 in Fig. 

    1). For simplicity, curves for  yo  =0.9, 0.3 and 0.1 are only shown for the cloud layers 
   of  wo=  1 and 0.5. See  legend to Fig. 6.
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truncation approximation for both reflection and transmission are smaller than 5% 

for the hydrosol layers and than 1.5% for the cloud layers. Same analysis reveals that 
errors  EMI for the hydrosol phase function truncated at  0,-10° are much smaller and 

less than 1.5% and that those for the cloud phase function truncated at  ei=6° are less 
than 0.5%. Truncation approximation introduces less errors for the  cloud-type phase 
function than for the hydrosol-type phase  function: radiative transfer in the cloud layer 

is less affected by the truncation of the forward peak of phase function than in the 
hydrosol layer. 

   Secondly, it is interesting to know that error profiles change very complicatedly 
but systematically with  r,  tio and  wo. Such a behavior is not a random one, which we 

frequently encounter in the analysis of calculation error, but it is caused by a physical 
effect of the truncation of the phase function, so that an interpretation of the behavior 

of error profile by an elementary concepts of the radiative transfer will help us to
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understand the mechanism of radiative transfer in the cloud and hydrosol layers. 

Hence, hereafter, we will investigate the behavior of the error profile in detail. 

   Following the parameter key of  yo, we know that for both reflection and 
transmission the profile systematically shifts toward larger  r as the direction of 

incidence approaches the zenith. This is because the effective optical thickness of the 
layer becomes smaller for a radiation propagating along less slant path, so that the 
thickness of the layer bringing the same phenomenon must be larger for such a 

radiation. The profile for reflection with  w0= I approaches the zero line when T is 

sufficiently small or large, and it has an extremum at a medium value of  T, with an 
exception of the profile for  /to  =0.1, which does not approach the zero line as T becomes 

small. To understand these behaviors of the profile, we consider a schematic diagram 
for three characteristic directions of incidence as shown in Fig. 8, where the 

truncated part of phase function is schematically shaded.  If  the layer is sufficiently 
thin and the direction of incidence is not too slant, the scattering as shown in case (II) 

predominantes and the reflected radiation mainly consists of the backwardly 
scattered radiation by the untruncated part of the phase function, so that the error 
introduced in the reflected fluxes by the truncation is small. Even for such a thin layer, 

if the direction of incidence is very slant, the scattering in case  (I) predominates and the 
considerable portion of the reflected flux should be attributed to the single scattered 

radiation from the truncated part of the phase function. The truncation procedure 
injects this portion as an unscattered radiation into the layer, so that the error does 

not reduce to zero even for a sufficiently thin layer. As the thickness of the layer

 ( I  )

 

(  I  I  )

 

(  III  )

no"

 B

A

 LB  Co Le.A

 Fig. 8. Schematic scattering diagrams for three characteristic directions of incidence. The 

   shaded area indicates schematically the truncated forward peak of phase function, which 

   consists of two parts A and B propagating along the lower and upper paths LA and  LB, 

   respectively.
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increases, part of the forward-scattered radiation will reappear from the upper surface 
through the multiple scattering. Radiation injected deeper into the layer by the 

truncation may transmit the layer before it becomes the reflected radiation. Hence 
the truncation approximation underestimates the reflected flux and the error  EFt 
becomes a negative large value, i.e. the reflectivity of the layer decreases by the 

truncation. As the thickness of the layer increases further and becomes  sufficiently 
large, the injected radiation will be also reflected through the multiple scattering 

process, and then the error is diminished. 
   Next, we shall look at errors eFt for transmission in Figs.  6 and 7. The behavior 

of  eF  .1, for  w0=1 can be interpreted in contrast with that for reflection because the flux 
conservation is well established in the truncated system. If absolute errors for 

transmission and reflection were pictured their profiles would be entirely symmetrical. 
The profiles for the absorbing layers with  7c0=0.5 and 0.1, however, need some other 
interpretation. Common characteristics for these profiles are following: the error 

reduces to zero for a sufficiently thin layer, it increases to a positive value as the 
thickness of the layer increases, and then it decreases to a negative value at a medium 

thickness, and again it increases infinitely as the thickness further increases. This 
characteristic behavior is more evident for the layers with lower  w0. A simple inter-

pretation of this behavior is proposed with the help of the illustration in Fig. 8. For a 
thin layer in which the single scattering is prevailing, both of the radiations in parts A 

and B propagating along the paths LA and LB  respectively, can contribute to the 
transmitted flux. Since these radiations are assumed to be unscattered and to 

propagate along the same path  L, in the truncation approximation, the contribution of 
radiation in part A to the transmitted flux may be underestimated and the contribution 

of B may be overestimated. Difference of the path length between LB and  L, is larger 
than that between  L, and LA, so that the overestimation effect of B surpasses the 

underestimation effect of A. Hence, the transmitted flux is overestimated by the 
truncation,  eF1 becomes a positive value. For an intermediately thick layer , radiation 
in part B along the longer path LB becomes negligible. Then, the underestimation of A 

predominates, and therefore the transmitted flux is weakened by the truncation, 
i.e.  EF4, becomes a negative value. Finally for sufficiently thick layer , the radiation 
propagating in vertical direction as shown in (III) predominantes deep in the layer 
(Kattawar and Plass, 1976). Since the truncation procedure injects the scattered radia-
tion deeper into the layer, the transmitted flux is intensified by the truncation , i.e.,  eF1 
becomes a positive value. In the case of vertical incidence, scattering in case (III) of 

Fig. 8 always predominantes and the error profile becomes a monotonous increasing 

function of  r as shown, for exmaple, for  1u0=-0.9 with w0=0.5 and for  pe----1 with  wo= 
0.1. 

   From the figures the relative error EF4 for transmission seems to be increasing for 

much larger  r, however, the absolute error in the transmitted flux will be unimportant 
because the transmitted flux itself becomes very small for such large optical thicknesses . 

   Figs. 9 and 10 shows errors  eFt for the truncation at  8, =15°, as a function of  po,
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Fig. 8 into the layer as an unscattered radiation. Of course, it should be noticed that 

radiative transfer in the layer is not a single scattering process, but a multiple 
scattering process: this makes the behavior of error profile complicated and dimmed. 

5. Summary 

   We have estimated the relative errors of the emerging fluxes from the cloud and 

hydrosol layers by solving the multiple scattering problem for a characteristic phase 
function with and without a sharp forward peak. And we have proposed a physical 

interpretation for the error profiles by considering a simple scattering model. 

   Errors in the emerging fluxes from the cloud layer are smaller than those for the 

hydrosol layer; because considerable portion of the truncated part of the cloud phase 
function concentrates around a smaller scattering angle than that for the hydrosol phase 
function. For the same layer, of course, the approximation brings a larger error for 

the peak truncation at a larger scattering angle  ©t or for a larger truncation ratio  St. 

For almost all parameter values used here, the relative errors in fluxes seldom exceed, 
respectively, 1.5% and 0.5% for the cloud phase functions truncated at  0,=--15° and 

6°, and those for the hydrosol phase functions truncated at  e,—  15° and 10° are within 
5% and 1.5%, respectively. 

   Behaviors of error profiles for the reflected and transmitted fluxes are complicated 

but systematic. For conservative layer  (w0=1), the flux transmissivity is a little in-

tensified by the truncation approximation, while the reflectivity is diminished. For a 
absorbing layer, the relative errors EFf for the reflected flux are still negative and are 
almost indpendent of the optical thickness, while errors  EF4 for the transmitted flux 
become negative for a medium optical thickness depending on an incident angle  po. 

A significant error both in the reflection and transmission occurs for a very slant 
incidence as 0.1, without respect to  T and  wo. 

    In general, errors introduced by the peak truncation approximation in fluxes are 

small enough for widely varying values of the incident angle, optical thickness and 
absorption, and they will be unimportant for most applications. This assures the 

usefulness of the peak truncation approximation in the multiple scattering problem with 
a phase function having a sharp forward peak. 
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