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 Abstract: The dynamic fracture process on a pre-existing fracture surface is 

investigated under the prescirbed stress boundary conditions in the presence of the 

static and the dynamic frictions as modelling the source process of small earthquakes. 

The solutions show that the final displacement exceeds the value expected from the 

static solution of the problem. It is demonstrated that, in spite of the excess of the 

displacement, the backward slip is hardly possible for frictional slidings. It is 

found that slippage continues after the crack expansion stops, which is considered to be 

an important feature of the dynamic fracture process. We also study the effects 

of the viscous friction on the fracture processes to find that the physical quantities 

such as the rupture velocity, the slip velocity, the final displacement, and the 

duration of motion are mutually related through the conditions of frictions.

1. Introduction 

   The source mechanism of earthquakes has been one of the most important problems 
in seismology. It is generally assumed that seismic radiations are generated by the 

fracture of material at the focus. Recent observations show that the shear fracture 
is a likely process at an earthquake focus, and the thoeretical predictions of seismic 
radiations have mainly been based upon the consideration of shear dislocation. Disloca-

tion models have been of use in predicting the static fields of seismic radiations and 
have well applied to the observed data of crustal deformations caused by earthquakes 

(Maruyama, 1964 Steketee, 1958; Chinnery, 1961; 1964; Savage and Hastie, 1966). 
Dislocation models have also been utilized in predicting the dynamic fields of seismic 
radiations and in the analyses of the observed seismic waves to estimate the physical 

parameters of the source (Aki, 1968; Haskel, 1964, 1969; Savage, 1966; Wyss and 
Brune, 1968). Most models have assumed simple forms of the dislocation time function 
for the purpose of ready utility, the temporal and spatial variations of the disloca-

tion function being arbitrarily given. 
   The seismic radiation fields must depend upon the fracture process at the focus, or 

mathematically upon the dislocation time function, and the actual process is obviously 

governed by the stress fields and the material properties in the source region. 
Therefore, the dislocation time function should satisfy certain physical conditions in 
the source region. In propositions of more elaborate source models , attempts have 
been made at eliminating the arbitrariness in specifying the dislocation time function, 
and the seismic source process has become to be discussed in detail in terms of the
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relation between the spectral parameters of seismic waves and the physical parameters 
of the source. Brune (1970) has related the time function directly to the effective stress 

available for the acceleration of the two sides of the fault, and has presented a 
theoretical representation of the shear wave spectrum. His model has widely 

been used (Hanks and Wyss, 1972; Trifunac, 1972; Wyss and Hanks, 1972), and has 
well applied to the field data, however, his derivation of the theoretical representation 
still appears intuitive. In particular, the effect of the propagation and stoppage of 

rupture are not accounted for. On the other hand, Sato and Hirasawa (1973) have 
counted in the rupture propagation in their source model. They have placed 

restrictions on the dislocation time function so as to satisfy the condition that static 
equilibrium of the stress is kept at each moment during rupture. Their assumption of 

static equilibrium of the stress would be applicable to the dynamic process of 
rupture in some limited cases, but in others, its validity must carefully be exmained, 

especially in relation to the rupture velocity. 

   The specification and the derivation of the dislocation time function in the 

previous models seem not to be free from being intuitive, and the assumptions not to be 
always justified from the physical standpoint. The common lack may be sufficient 
examinations of the consequent relation between the rupture velocity, the temporal and 

spatial variations of the slip motion resulting from the physical conditions. In order 
to study the seismic source process in more detail, it is naturally to be desired that 

the source time function should be a derivation from the appropriate physical condi-
tions. The possible process of slip motion should be investigated under the physical 
conditions considered. 

   From this point of view, the dynamic behaviour of the medium with cracks has 
been of increasing  importance. There have been two ways of treating the rupture 

problems, the difference being on the fracture criterion. One is based upon the 
consideration of energy balance at the tip of the crack (Ida, 1972; Kostrov, 1964a, 
1964b), and the other upon the consideration of friction as a controlling factor (Burridge, 

1973; Burridge and Halliday, 1971; Burridge and Levy, 1974; Knopoff et al., 1973). 
In the former case, no preferred surface is needed in principle, while in the latter , a 
pre-existing surface of weaker breakage strength is preferred. In recent years, the 
importance of the role of friction in the dynamics of fracture has been pointed out. It 
is considered that friction is an essential  factor in investigating the dynamic process of 

the seismic source. 

   In this paper, we study the dynamic behaviour of cracks under given stress 
conditions in the presence of the static and the dynamic frictions as modelling the 

source process of rather small earthquakes, and the interrelation between the rupture 
velocity, the final displacement, and the duration of motion is investigated through 

the conditions of stresses and frictions. Unfortunately, it is in general very difficult 

to solve the rupture problem to given conditions of stresses and frictions in a three-
dimensional manner, that the two-dimensional antiplane strain shear cracks are 

treated. We employ the fracture criterion that slip will occur when the total shear
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stress overcomes the static limiting friction. As concerns the fracture process during 
an earthquake, it is considered to be more appropriate to study the fracture process 

on a pre-existing fracture surface, and the fracture criterion employed to be physically 
reasonable. 

   According to Burridge, the stress just ahead of the tip of the crack in self-similar 
solutions is finite under the same situations as is considered here. This suggests 

applicability of the difference method to the problem. Solutions are obtained 
numerically by the difference method within the desired accuracy. In order to make 
the physical meanings clear, only the initial stresses and the frictional stresses are given 
on the fracture surface and the fracture criterion mentioned above assumed, no other 

assumptions being made. As for the dynamic friction, the viscous term which 

increases proportionally to the slip velocity is considered. The influence of this 
term on the fracture process will be discussed. The velocity-dependent friction has 
been taken into account only by Weertman (1969). 

2. Description of the problem 

   We consider an unbounded elastic medium, which is supposed to be homogneous 
and isotropic, with a pre-existing fracture surface.  It is considered that across the 

fracture surface the material is not welded but merely in frictional contact. The 
fracture surface is taken to be a plane, and we refer to the Cartesian coordinates x, y, 
z so that the plane  y=0 corresponds to the fracture surface (Fig. 1). 

   In the initial state, the medium is held in static equilibrium by the tractions at 
infinity which create the uniform stress field around the fracture surface. The initial 

stress has a negative component  cyyj,0---A, and positive shearing component  gyz0=__  To, 
all other shearing components zero. The static limiting friction, the product of the 

normal stress and the coefficient of static friction, is now supposed to be high enough to
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Fig. 1. The schematical view of the fracturing system. The plane  y  —  0 is the fracture 

   surface. The displacement is always parallel to the  z-axis,  e indicates the crack edge 

   at time t.



 58 T. MASUDA, S.  HORIUCHI and A. TAKAGI 

prevent relative slipping across the fracture surface in spite of the non-zero initial 
shear stress 

   Relative slipping will take place when the total shear stress overcomes the static 

limiting friction. While relative slipping is in progress, the motion is resisted by the 
dynamic friction, which is taken to be somewhat lower than the initial shear stress . 
This is a necessary condition, or no motion will take place. 

   We suppose that at some instance in time ,  t=-0, and due to some local irregularity 
in the static limiting friction, slip across the fracture surface is initiated in the z-
direction and along the line  x=0. Then the zone of slip may spread out symmetrically 
in the positive and negative x-directions . We shall refer to the zone of slip as "the 
crack". The coordinates of the crack tips at the positive and negative side shall be 
denoted as and  -e, respectively, and we refer to  2 as "the crack length" . During 
the subsequent motion, slip occurs in a  strip  —e<x<C, and  y=0. Here we assume 
that the extent to which the crack is allowed to propagate is limited by some barrier 
of high static friction, so that displacement discontinuity takes place only within a 
range —L<x<L, 2L being the maximum crack length . 

   Let u, v, w be the displacement components measured from the static state of the 
initial stress in the x-, y- , and z-directions, respectively. Owing to the assumption 
that the initial stress field is uniform around the fracture surface with all shearing 
components being zero except for the yz-component , the crack is infinitely long in the 
z-direction and the displacement components u , v are always zero, the only non-zero 
component w depending upon the coordinates x, y and time t, but not upon the co-
ordinate z. Then the problem is reduced to a two-dimensional one, and only SH motion 
will take place. We need no longer mention the displacement components u , v and the 
coordinate z. 

   We assume that the stress-strain law for infinitesimal linear elasticity holds . Then 
the equation of motion is 

                     1  a2w32w  a2w  

                  132  at2  ax2ay2                         for I> 0 (2-1) 
and initially 

                           ate) 
          w — —  
at0 for t  � 0 (2-2) 

where the shear wave velocity  fl—V,alp,  j being the shear modulus of the medium 
and p its density. The stress components  cryz,  ax, of the total stress field are given by 

                               yx                awaw                    0 "   =yz=T0+g  ay ay 

                                                        (2-3) 
                            az 

 axz  —  iu • 
 ax 

On the fracture surface, the following boundary conditions apply: 

At  y=0 but off the crack,
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1  ayil  <Fs  =  —vs°.  yy  7)SP0 

 F, >  To  (2-4) 

 = 0 and w is continuous , 

where  F, denotes the static limiting friction,  vs the coefficient of static friction, and dot 
superscript is used to indicate the time derivative. 

At  y=0 and on the crack, 

                            ays  =Fd 

 Fd<T, (2-5) 

                       w is discontinuous across y  0  , 

where Fd is the dynamic fraction. 

On the whole of  y=0, 

                          ayzis continuous. 

   The dynamic friction is supposed to involve the term which increases in proportion 

to the slip velocity  b=tirF-ev-, and is related to the slip velocity and the normal stress 
as  follows: 

                       Fd  —sgn.  (b)vd°ayy  —  bvagyy 

               = sgn  (b)vd°P0+E'vdPo (2-6) 

where  Vd° and  Vd are the constants, sgn means the sign function, and D is the displacement 

discontinuity across  y=0.  ev  1- and  tin are the particle velocities referred to the 

positive and negative sides of y=0, respectively. 
   The direction of frictional resistance is opposite to the motion direction, so that the 

sign of Fd depends upon that of  D. We demonstrate that it is reasonably expected that 

 b�o, (and never becomes negative). From the condition that initially  cry,°—T,>0, 
slip at x=0 is initiated so that  b>0, and besides, slip at each point on the crack will 

occur so that  b>0 at the beginning, since it is hard to imagine that the total shear 
stress becomes negative at the tips of the crack. While  D  >0, the shear stress due to 
the particle motion is given by 

 aW  
            • —  —(To—IFdl)  z —  (To—v2P0)  —ae° (2-7) 

On the other hand, when the particle on the crack is in the backward motion, that is 
 b<o, the following condition must  hold: 

               aw  
          • ay (T0+1Fdl)S(—To+Vd°130)  (2-8) 

   The shear stress  tt(aw/ay) must necessarily decrease at least by an amount  21/2/30 
when  b changes its sign. Moreover, if the particle motion is  inhibited by the static 
friction when  b=0, much more decrease in the shear stress is needed. It is considered 
that the medium will be at rest before the shear stress enough for the backward slip is
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stored up, unless we take  vd0.1A, to be very small. Thus it is reasonably expected 

that on the crack and for each moment, 

 b  0 
and that 

 aw  

 6y> — (T + vd0130) 

The case where  au(awlay)<-(T0d-v2P0) is not accounted for in our calculation . The 

possibility of the backward slip will be discussed later in relation to the value of 
 violio and the time interval needed for the stress accumulation enough to cause the 

backward slip. 

   The boundary conditions are then written as  follows: 

At  y=0 but off the crack, 

                       aw 
                    ,u <  F,—T,                    6y 

                                                          (2-9)  D  =  b  -  0 

At  y=0 and on the crack, 

                       aw 
 ,u =creo-i-bvdP0  ay 

                                                         (2-10) 
 >  0  , 

but if 

 aw  

                          a< —(ree                    y 
 (2-11)  D =0 

where we use the notation  ae° for  (To-vd0P0)• 
   The problem is to solve  (2-1) subject to the initial condition (2-2), the boundary 

conditions  (2-9)-(2-11), and the condition that 

 e  L (2-12) 

   By the symmetry of the problem, we note that 
 w is an even function of x but an odd function of y, 

 ay; is an even function of x and y. 
 o an odd function of x and y, 

so that we need only consider the region  xz0, and  y�0. In the next section, the 

problem is reformulated in the difference form and the effect of the different mesh 
sizes on the accuracy of the solution is examined. 

3. Reformulation in the difference form 

   We shall rewrite the equation of motion, the initial and the boundary conditions 
by replacing the various derivatives by their difference approximations. We put
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 x=m4L,  y=n4L, and  t=fidt, where  AL is incremental length along the x-, or y-axis, 

and  At an increment in time. Since the region  x>0,  y>0 for  t>0 is considered,  m, n, 

and  p take on positive, including zero, integral values only. 

 v2w, sum of  62wfay2 and  32w/ ,)y2 may be replaced by its centred difference  ap-

proximation as 

                       (ZIL2[wm+i,n,P+wm—i,n,p+Wm,n1,P+Wohts-1,P-4Wns,n,p]            ) 
                                    1  

                                    (ilL)2lw  (3-1) 

or in another form 

 v2w  1                 [wm +1,,o-Lp + + Wm- —4wm,n,P]  2(4L)2 

 1 
  4272)(3-2) 

 2(4L)2 

In the above equations the notation  wm,„,p means the value of w at the point 

 (m AL,  n4L) for time  t=pAt. Similar meanings apply to other subscripts attached to 
w.  v'w is correct to second order in incremental length  AL for both approximations. 

v2w may be also represented as a linear combination of  (3-I) and (3-2), 

         v2„, 1 1a Aiw+b 42w (3-3)                        (41.)2 2(4L)2 

We put  a=2/3 and  b=1/3, then w is correct to fourth order in AL.  620t2 is replaced 
by its centred difference form as 

 32w  1 r 
 LWm p+1-2wm,n p+Wors,s05-11  (3-4) 

and is correct to second order in the increment  At. 
   From (3-3) and (3-4), the equation of motion (2-1) is rewritten as 

           wm,n,p1-1 = 2wm,N,p—Wtts,n,P-1+3 \ AL2 ( 13412 )41W +  1 (  134t2 )A2W                                                     (3-5) 

It is required for  AL and  At that 

 —  

 AL0(1) , (3-6) 

so that the equation (3-5) should be correct, and that 

                       13At   <  1  
, (3-7)                         AL 

so that (3-5) should be stable. As far as the condition (3-6) and (3-7) are satisfied, the 
equation (3-5) is an approximation of the equation of motion  (2-1) in a sense that 

(3-5) approaches to  (2-1) as AL,  dt--*0, and the error in (3-5) is of the order of  (AL)4 
and of  (41)2. 

   The symmetry condition implies that for all n and
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 w-10,05  =  wiot,P  (3-8) 

The initial condition (2-2) is interpreted as 

 Wm,n,-1  =  Wm,n,11  = 0 (3-9) 

for all m and n. The equation (3-5) is explicit, and we note that, by (3-5) together with 
the symmetry condition (3-8) and the initial condition (3-9), it is possible to compute 

the value of w for all p>0 and n>0. The calculation stencil for (3-5) is shown in Fig. 
2. The difference equation (3-5) is applied to either medium except for on the 

fracture surface y=0. The motion at  y-=-0 is determined by the boundary conditions 

 (2-9)-(2-11)  . 

 P-t

 n—y

            e-/4(                                -----lir" 

                                  • 

                                                  I 
                                                  1 

 M--  X  : 

 t 

                   Fig. 2. The calculation stencil for the displacement w. 

   We may replace the derivatives  aw/ay and  awiat by the forward the backward 
difference approximation,  respectiVely. 

              aw 1 

 ay  =  AL[wm,i,p—w+m,o,pi 

 aw 1  

 _                     [ 

 at  dtw+mio,p—w+mro,p—ii 

 wl-„,„,p means the value of w referred to the positive side of the fracture surface. The 
boundary conditions  (2-9)—(2-11) are then rewritten as: 
At  y=0 but off the crack, 

 tz   
  AL[wma,p—wi-„,,,,p]  <  F  s—T  0 

 w+  m,o,P  —  0  '  (3-10) 

At y--.-.--0 and on the crack 

                     tz r„„, 
                        Lurma,p—W±,n,0,15]==—Cre° -1-v dP 02—[w+m,0,2,—w+„„0,i,_1] (3-11)   AL dt



DYNAMIC FEATURES OF EXPANDING SHEAR CRACKS 63

 w+m,a,p>  w+m,o,P-1, 

but if,u[Wma ,p-7.12,°m,o,01  <  —6e° 

 wH-mio,p-i.  • (3-12) 

In (3-11), the symmetry condition is applied, i.e., 

 w+m ,o,p 

By (3-11), the initial value of  wo„9,1 is computed, then it is possible to compute the 
value of  ze)„,,„,p for each time level  p�2 step by step according to (3-5) and (3-10)-(3-12). 
Practically the medium is bounded by rigid walls at  x=M4L and  y=N4L where the 
value of w is always zero. M and N are taken to be large enough that the reflected 

waves do not disturb the motion around  y=0 and  x�L before the final state at rest is 
attained. 

   The accuracy of a solution depends upon the choice of values of  di- and  dt. In 
order to exmaine the effect of the different mesh sizes, computations are carried out 

for five choices of  414, 0.2, 0.1, 0.05, 0.033, and 0.025, for a typical situation of friction. 

The value of  41 is fixed to be  40'6 for each case. Fig. 3 shows the solutions at  x=0, 

 y=0 for the five different mesh sizes. In Fig. 4(a), the values of the final displacement 
at several points on the crack are plotted as a function of  4L/L, and in Fig. 4(b), the 
effect of the mesh size on the arrival of rupture front is shown. As is seen in the figures, 

the deviation between the values for  Z1L/L�0.05 is small, and it is considered that the 

solution for  4L/L�0.05 is sufficiently accurate.  tILIL is taken to be 0.033 in our 
calculation. We also exmained the effect of the value of  134tIAL on the solutions to 
find that the deviation due to the difference in the ratio of  134tI4L, is much smaller

1.0

b 

 1

 3

 0.5

 - 

// /

         0 

Fig. 3. The time functions 

    mesh sizes. It is seen

 AL 

 L— =  0.2 
*  =0.1 

*  = 0.05 

* = 0.033

 1.0 2.0 Pt 3.0 4.0 
                 L 

of the the displacement at the centre of the crack for five  different 
that the deviation between the values for  4/4/..�0.05 is small.
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 I-.— 
                                   z 

                                                   cc 

 t2  —                                                      w.8./X=.6L 
         —•—•—• 

                                     • 

    w1.0                                                           a.                                              R.6— 
                                                                            LL. 

 u) •8 — — •/ X=.2L 

 .6  —c                                                         e.2    

1  
     .025 .05 .1 .2  a .025 .05 .1 .2  AL 

 L  L 
       Fig. 4 (a)  Fig. 4 (b) 

  Fig. 4. The dependency of the value of (a) final displacement and (b) arrival time of the rupture 
      front upon the mesh size. 

than that due to the difference in  414 itself.  tqz1tIdL is taken to be 0.25. From Fig. 
4(a) and Fig. 4(b), it is seen that errors are estimated at 0.02 in the displacement 

values and at 0.05 in the arrival time of rupture front for  AL/L=0.033 and  484t14L= 
0.25. 

4. Results 

1) General features of the dislocation time function 

   The example for the case of no viscous friction is most typical of the dynamic 
features of slip motion. In Fig. 5, the particle motion at several points on the crack 
is shown for the case where no viscous friction acts  (vd  =0). The static friction is taken 

as  Fs=T0+0.25a,°. 

   First of all we note that the final value of displacement decreases with increasing 
x, approximated within the precision of our numerical solution as 

 0 

 W  f K  (L2—  x2)112 (4-1) 

This is of the same form as the well-known solution in the static case of the problem 

(Bilby and Eshelby, 1968). The static solution gives K=1, while our solution shows 
that  K-1.3, that is, the final displacement exceeds the value expected from the static 
solution by 30 percents. Consequently, the total shear stress on the crack at the final 

state is less than the  value of the dynamic friction  vd°P0, and the stress drop is larger 
than  cre° by a factor of 1.3. This means that the particle on the crack is stressed 

backward to the negative x-direction, and the backward slip may be possible. The 
backward slip requires that the value of the dynamic friction should be less than 0.13
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 T0. It is found, however, that it takes much time, longer than  3L/j9 when  v2P0=0.13To, 
for the accumulation of the shear stress enough to cause the backward slip. Thus, it is 

supposed that the particle is probably blocked by the static friction again while  i)=0. 
It may be concluded that the particle on the crack is frozen at its maximum displacement 

and that the backward slip is not likely as far as the friction resists the slip motion on 

the crack. 

   Next, it is found that the history of the particle motion at a point on the crack is 

characterized by the three epochs, arrival of three distinct phases; the rupture breakage, 
the stopping phase, and the healing phase. The rupture front arrives at x=L at time 

 t=Llig, that is, the rupture velocity  V,.=i3. It is found that the crack propagates at the 

S-wave velocity for various values of the static friction smaller than  To  +0.4cre°, the 
rupture velocity being independent of the value of the static friction. This result is in 

harmony with those of the self-similar cracks obtained by Burridge (1973) and Burridge 

and Levy (1974). On the other hand, Kostrov (1964a, b) has shown that the self-
similar crack propagates at a velocity lower than the Rayleigh wave velocity. The 

difference in the rupture velocity in these examples may be attributed to the difference 
in the fracture criterion. Kostrov's solution is based upon the consideration of the 

inelastic energy dissipation at the crack tip. Burrdige and Burrdige and Levy consider 
that only the friction resists the slip motion on the crack but no other inelastic effect is 

counted in. From our result together with the results on the self-similar cracks, it is 
considered that the crack propagates at either the P or the S wave velocity as far as the 
rupture occurs in the form of the frictional sliding and unless any other inelastic effect 

acts. 

   On the arrival of the rupture front, relative slipping takes place at the point. The 

slip velocity, twice the particle velocity, at the breakage increases with increasing x. It is 
about 1.3  flcre°Iu at x=0 but it amounts to 4.0  ficre°411 near the edge of the crack. The 

slip velocity is rather high until the arrival of the second phase (indicated by arrows in 
the figures), when the particle is suddenly decelerated to a lower velocity. The second 

phase is interpreted as the stopping phase. The information that the rupture propaga-
tion is stopped at x=---L is transmitted backward to the centre of the crack as the 
reflected stress wave. The propagation velocity of the stopping phase is found to be  j. 

The particle motion is decelerated due to no more expansion of the crack. The 

particle near the edge of the crack is most affected by the reflection of the shear stress, 
the slip velocity dropping off from 4.0 to 0.11  igae°411. 

   Finally, at time  t=246, the particle at x=0 is set at rest and the healing phase is 

propagated to the edge of the crack (indicated by wedges). At x=0, the arrival of the 
stopping phase and the healing phase is almost simultaneous. The particle around 
the centre of the crack has a constant velocity almost all during the motion to its final 
state of displacement. The particle motion around the centre of the crack may be well 

approximated as a ramp time function. Its rise time is about  243, twice as long as 

the time needed for the crack to propagate to its end  x=L. On the contrary, the 

particle motion near the edge of the crack is step-like, having a high particle velocity at
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the breakage so that the final state of  displacement is nearly attained in a short time. 
The duration of effective slipping, when the slip velocity is high, is very short, about 

0.1  L83. 
   The  dislcoation function is of a complex form both temporally and spatially. It 

is not possible to represent the slip motion as a simple function as was used in the 
conventional source models. We note that at time  t=413, just when the crack reaches 

its maximum length, displacement at any point on the crack is less than its final 
value. The duration of the particle motion on the crack is longer than that needed 

for the crack expansion to the final length. The slip motion consists of two 

processes. One is the rupturing process and the other the relaxation to the final 
state at rest. This is a remarkable feature of the dynamic process of expanding 
cracks. 

2)  Effect of the viscous friction 

   In Fig. 6 through 8, the dependence of the particle motion on the crack upon the 
viscous term of the dynamic friction is shown. The value of  vd takes on 0.2, 0.5, and 

 1.0  p/(Pop), the static friction fixed as  F5—T  +0.25ae° as in the case for  vd=0. As is clear 
in the figures, the viscous friction has much influence on the slip motion. The depend-

ence of various quantities upon the value of  V  d is summarized in Table 1. 

                                        Table I.

 PaCtt/PoM  0

K 
V,(,3) 
D (acr eV II) 

 T  r(L/  fl)

 1.  30 

 1.  00 

 1.  3 

 2.  0

0.2 0.5 1.0

 1.  21 

 1.  00 

 1.  1 

 2.  3

 1.15 

 0.92 

 0.  9 

 2.7

 1.04 

 0.83 

 0.  6 

 3.  5

The dependence of the various quantities upon the value of 

 vd. K, the ratio of the final displacement in our solutions 

to the static value;  V  r, the rupture velocity; D, the slip 

velocity;  T the rise time of the particle at the centre of the 

crack. The unit for each quantity is given in the parenthesis.

   The general feature of the particle motion is nearly the same as in the case for 
 vd=0. The arrival of the stopping phase is also identified, but the motion is somewhat 

smoothed by the damping effect of the viscous friction. The slip velocity at a point on 
the crack is as a matter of course decreases as  vd increases. The slip velocity at  x=0 
takes on 1.1, 0.9, and 0.6  igaNg for  vd=0.2, 0.5, and 1.0  ,u4(P,13), respectively. Since 

the slip velocity is reduced to a lower value due to the damping effect of the viscous fric-
tion, the motion of the whole medium is also damped. Consequently, it results that 

more time is needed for the stress consentration at the tip of the crack, causing the 

rupture velocity to be lower. When  vd is small, the crack propagates at the S-wave 
velocity. As  vd increases, however, the rupture velocity decreases. 

   The viscous friction also affects the values of final displacement on the crack and 

the duration of slip. The final displacement is found to be approximated as (4-1), the
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same form as in the case for  vd=0. The value of K is at its maximum 1.3 for  vd=0, but 
it takes on smaller values 1.21, 1.15, and 1.04 as  V  d increases as 0.2, 0.5 and 1.0  µI  (Po 

 11). The duration of slip is elongated by the effect of the viscous friction. The rise 
time of the particle at x=0 is 2.3, 2.7, and 3.5  Lip for  vd=0,2, 0.5 and  1.0/4(Po/3), 
respectively. For a value of  vd larger than 1.0  ,u,f(Poi3), the value of K may be no 

more than 1.0, the final displacement corresponding to the static displacement, and 
the duration of slip will be much longer. In that case, the stress drop is as same as  cre°, 
lower than in the case where no viscous friction acts . It may be expected that when the 
material on the fracture surface is much viscous, the period of observed seismic waves 
is longer and the amplitude smaller compared with those generated from no viscous 

sources for the same  cie°. 

    A high viscous friction results in the low effective stress during the slip motion. 

This causes the particle velocity to be lower, or the momentum of the particle to be 
decreased. The consequence of this is the decrease in the inertia of the partiale, and 
the energy in unit time available for the crack expansion is decreased. Therefore , 
a low rupture velocity is obtained and the amount of the overshoot in displacement at 

the final state from the static solution is decreased. This interpretation implies that 
these quantities, the rupture velocity, the slip velocity , the final displacement, and 
the duration of slip are mutually related through the effect of the viscous friction. 

5. Conclusions and discussions 

   We have studied the dynamic fracture process on a preexisting fracture surface 
under prescribed stress conditions in the presence of the static and dynamic frictions 
as modelling the source process of rather small earthquakes . The dynamic friction is 
supposed to involve the viscous term which increases in proporition to the slip velocity , 
and the effect of this term on the slip motion is invesitaged . The fracture criterion that 
slip occurs when the total shear stress overcomes the static limiting friction is 

employed, which is considered physically reasonable as far as the fracture process 
during an earthquake is concerned. In order to make the physical meanings clear, no 
assumptions have been made but the stress boundary conditions and the fracture 
criterion. The problem is solved numerically by the difference method within the 
desired accuracy for the antiplane strain shear cracks. Some remarkable results are 
obtained on the dynamic features of the fracture process, and it is shown that the 
physical quantities which mathematically describe the fracture process, such as the 
rupture  velocity, the slip velocity, the final displacement, and the duration of slip 
are mutually related through the conditions of friction . 

   In the exmaple for the case of no viscous friction , the dynamic nature of slip is 
clearly seen. It is found that the final displacement on the crack is of the same form as 

the static solution of the problem within the precision of our numerical solution , but that 
it exceeds the value expected from the static solution . The overshoot of displacement 
than the static position may be a consequent result of the dynamic motion of a particle 

on the crack. Since no viscous friction acts on the fracture surface , the effective
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stress during the slip motion is as much as the stress difference  a  e°=7'  o—vd°Po. A particle 

has a velocity as high as is driven by the stress difference  cie°. The motion yields the 
inertia of the particle, so that a particle could not be stopped abruptly at the static 

position of the stress difference  cre°. As a result from the excess of displacement over 
the static position, the stress drop, the difference in the stress before and after fractur-
ing, is larger than the effective stress during the fracture. On the other hand , when 
the viscous friction is strong, the final displacement on the crack is no more than the 

static value. A high viscous friction decreases the effective stress to a smaller value 
than that in the case of no viscous friction for the same stress difference  ue°. In this 
case, the stress drop is  ae°. Our result suggests that the viscous friction is an important 
factor in the study of the problem of the effective stress during the slip motion and of 
its relation to the stress difference  ge° and the final stress drop . 

   The excess of displacement over the static value at the final state causes the 

particle to be stressed backward. It is demonstrated, however, that the backward 
slip is hardly possible when the particle is resisted by frictions across the fracture surface. 

The backward slip is only possible when the fracture surface is much lubricated. Then 

the particle on the crack will oscillate to its static position (Burridge, 1969). In this 
case, the far-field spectra of the body waves may have a peak at the corresponding 
frequency to the oscillation of slip at the source (Molnar et al. , 1973; Archambeau, 1968). 
It is hard, however, to imagine that no friction acts on the fracture surface while the 
slip motion is in progress. It may be consluded that the backward slip is unlikely 

during a fracture process and consequently that the far-field spectra of body waves due 
to shear faulting will not have a peak. 

   It is also found that the rupture velocity is as fast as the S-wave velocity when the 
viscous friction is weak. This result is in harmony with the results of self-similar cracks 

obtained by Burridge (1973) and by Burridge and Levy (1974). On the contrary, as 
the viscous friction increases, the rupture velocity takes on a smaller value. Kostrov 

(1964 a, b) have shown that the crack is possible to propagate only at a lower velocity 
than the Rayleigh wave velocity. Kostrov's solution is based upon the consideration of 

inelastic energy dissipation at the crack tip, while Burridge and Burridge and Levy 
have considered no inelastic effects acting at the crack tip. A low rupture velocity is 

often obtained in the experimental studies (Archuleta and Brune, 1975; Kitagawa and 
Yamamoto, 1975) and in the analyses of the seismic waves (Trifunac and Udwadia, 

1974; Izutani, 1974). Recently some experimental studies show that the rupture 

propagates as fast as the S-wave velocity (Wu et al., 1972; Johnson et al., 1973). High 
rupture velocities are observed in the experiments of frictional sliding on clean surfaces. 

The experiments which give low rupture velocities have been carried out on samples 

which have no pre-cut or which are considered to have much of inelastic properties. 

In these cases, some amounts  lof energy may be lost as the work done against the 

cohesive force or as the inelastic dissipation. It is considered that the crack will 

propagate at the S-wave velocity, or possibly at the P-wave velocity, so long as the 
material at the fracture region has little of inelastic properties other than frictions.
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    We have shown that the fracture process consists of two distinct processes, the 

rupturing process until the crack expansion is stopped and the following relaxation 

process to the final state at rest. Slip continues after the rupture propagation is 

stopped, not decelerated until the arrival of the stopping phase , which propagates at 
the S-wave velocity from the edge of the centre of the crack . This is an important 

feature of the dynamic process of fracturing in consequence of the dynamic causality 

condition that any information is transmitted at a finite velocity . The source time 
function is required to satisfy this condition . Any seismic source model has not 

accounted for this consequent requirement from the dynamic condition . The ratio 
of the displacement on the expanding crack to that on the static crack of a corresponding 

length is less than 1.0. This means that the stress is not in static equilibrium during 

rupture. This is considered due to the high rupture velocity . Some portion of the 

released energy must be used for the kinetic energy of the crack expansion . It is 
supposed that the ratio will approach to 1 .0 as the rupture velocity decreases. The 

assumption made by Sato and Hirasawa would be valid for the cracks propagating at a 

very low velocity. Referring to the result by Kostrov, the ratio is nearly 1.0 for the 
cracks which ropagate at lower velocities than  0.215', but it takes on smaller values 0.91, 
0.88, and 0.84 for  Vr=0.5, 0.7 , and 0.98. For the cracks propagating as fast as the 
S-wave velocity, the displacement is always less than the static value at the moment 

when the crack expansion is stopped , and slip continues after the stoppage of the 
crack expansion. The characteristics of the theoretical predictions of seismic waves 

will be much affected by this dynamic feature of the slip motion . The relation between 
the spectral parameters of seismic waves and the physical parameters of the source 

must be carefully examined under the dynamic conditions of the slip motion . In 

particular, the relation between the corner frequency and the source dimension is 
considered to be most affected . 

   The viscous friction, as a mechanism of the inelastic energy loss on the fracture 

surface, is found to have much effect on the dynamic behaviour of slip . Furthermore, 
the rupture velocity, the slip velocity , the final value of displacement, and the duration 
of slip are mutually related through the effects of the viscous friction .  These 

quantities could not be given independently, but they should be specified so that 
their possible interrelation is satisfied under the physical conditions considered . This 
condition is important easpecially in the analysis of the seismic waves to the estima -
tion of the physical process of the source . 
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