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 Abstract: In order to measure the infrared absorption in vibration-rotation 
      band of atmospheric constitutents at low temperatures, a new apparatus which provides 

      the highly accurate measurements with simple operation, has been fabricated. This 
      system can continuously change the temperature of the sample gas in the range of 80 

      to 400 K. Its availability was confirmed by taking the spectra of the 4.7  fs carbon 
       monoxide band at various temperatures. 

          The imperfect mixing of sample mixtures and the effects which falsify the concentra-
      tions of uniform sample mixture in the low-temperature absorption cell, were examined 
      by a gas chromatograph and their problems are discussed. 

1. Introduction 

    The interest in radiative transfer and heat balances of planetary atmospheres has 

prompted many studies of infrared spectra of atmospheric constituents under con-
trolled laboratory conditions. These studies have included the determination of total 
absorptance of vibration-rotation band and of molecular constants, but for complete 
charactarization of a band, it is necessary to know the strengths and half-widths of 

the individual absorption lines and their dependence on pressure and temperature. 
In particular, recent spectorscopic studies of the  atomospheres of Mars, Jupiter and so 

forth, require information on these parameters at low temperatures for making valid 
estimates of the composition and temperature of their atmospheres. A detailed 
knowledge of those parameters also contributes to a currently important problem in 

molecular physics such as molecular structure and intermolecular forces. Nevertheless, 

a few measurements of these parameters at low temperatures have been made until now 

(Darnton and Margolis, 1973; Goldring and Benesh, 1962; Hoover and Williams, 1969; 
McMahon et al.  1972; Tubbs and Williams, 1972a,  b,; Tubbs and Williams,  1973; 
Varanasi et al. 1973; Varanasi, 1975: Varanasi and Bangaru, 1975: Varanasi and 
Sarangi, 1975). The line strengths at low temperatures can be estimated from these 

values obtained at room temperatures by the use of theoretical relation (Herman and 
Wallis, 1955). However, the validity of the line-broadening theory such as Anderson-

Tsao-Curnutte theory (Anderson, 1949: Tsao and Curnutte, 1962) at very low tempera-
tures has not yet been verified by the sufficiently accurate measurements. 

   We have therefore intended to measure the line strengths and line half-widths  of 
atmospheric constitutents at temperatures ranging from 80 to 400 K and a special 
apparatus have been constructed for this experiment. Although some apparatuses 
have already been offered for the same purpose, the advantage in our system comparing 

with these systems is that its operation is not only very simple but it provides
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measurements with a high accuracy. 

   The purpose of this paper is to present details of the equipment and to discuss 

experimental procedures of absorption measurements at low temperatures . 

2. Apparatus. 

   Figs. 1 and 2. show a block diagram and a photograph of the apparatus , respectively. 
Details of each part are described in order.
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    The response linearity of detector-amplifier-recorder system is checked by 
inserting rapid rotating sector wheels in the sample beam. After carefull adjustments, 

uncertainties of spectral absorptance are confined to less than ±0.004 over the full 

range of  absorptance. The wavenumber calibration was made using the line positions 

of infrared active gases. 

(b)  Sample  gas supply system 

   Fig. 3 is a schematic diagram of sample-gas supply system. The portion 

surrounded by dashed line is a storage chamber in which sample gases are mixed 
according to demand. The chamber has a large volume of about 5.5 1 to prevent the 
excessive decreases of total pressures when sample gases are introduced into the 

absorption cell. An oil free and vaccum tight diaphragm pump is attached to the 
chamber to accomplish a rapid mixing of gases. Pumping on the system is provided by 

an oil-diffusion pump with nitrogen-trap and pressures lower than  5  x  10-5 Torr are 

typical of the vaccum obtainable after the pumping for about 1 hour. Since its leak 
rates are observed to be less than  1x  10-6  Tom  //sec, pressure increases or decreases 

due to leakage are  confirmed negligeble. Sample gases are introduced into the chamber 

through the buffer tank and needle valve from sample-gas cyliders. As ultra-high 

purity gases are available, an equipment for further purification is not installed on the 
way from sample-gas cyliders to the chamber.

KJJMir 

'

 7

 Fig. 3 Schematic diagram of sample-gas supply system. 
 A: absorption cell,  B: precision mercury manometer,  C: oil manometer,  D: pirani 

     vaccum gauge,  E: ionization vaccum gauge,  F: diaphragm pump,  G: brass chamber, 
     H: sample-gas cylinder, I: buffer tank, 3: diffusion pump, K: pre-pump, L: cylider valve, 

 M:  butterfly valve,  N: needle valve,  0: burdon-type pressure gauge,  0: vaccum valve, 
     S1, S2, S3: Sampling points for gas analysis. 

   Pressure measurements in the range of 10 to 800 Torr are performed by a precision 

mercury manometer with an accuracy of  ±0.1 Ton. Pressures from 0.1 to 30 Ton are 

measured by an oil manometer with a precision of  ±0.05 Torr and lower pressures 

are measured with a pirani vaccum gauge or ionization vaccum gauge.
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   The chamber is wrapped with an insulating material in order to minimize the 

pressure changes induced by room-temperature fluctuations in the course of measure-
ments. The temperature of sample gases is monitored by three  thermistor-thermometers 
inserted into the chamber. These monitores indicate that temperature flucutations are 

always restrained to less than  ±0.3 K by the aid of air conditioner of the laboratory. 

(c) Low-temperature absorption cell 

   Three  low-temperature absorption cells with different lengths are made of copper 

to reduce temperature difference over the cell and to be cooled well. 
   The cross section of the absorption  cell with path-length of 6 cm is depicted in 

Fig. 4. In the design shown in Fig. 4, sapphire windows (or other windows if desired) 

are used together with indium gaskets and end plates to seal the cell. The structure of 
the 1—cm absorption cell which is similar to that of the 6—cm absorption cell is not 

illustrated by a figure.
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   Investigations of the absolute strength of the individual lines in vibration-rotation 
band at low temperatures need an absorption cell satisfying particularly the following 

requirements: (1) The cell must have a path length of the order of millimeter, (2) This 

path length must be uniform and known with the accuracy of about one percent. (3) 
The cell must be vaccum tight and cooled enough. The principal features of our 

shortest cell arrangements are shown in Fig. 5. An accurate spacer is sandwiched 
among two sapphire windows D, end plates C and I and tightened by screw J. This 

insert is slided snugly into the cell body and slight gaps between them are sealed by 
means of the end plate B and indium gasket. Small holes which are made in the end 

plate I for screw J, are  also sealed with the end plate K and indium gaskets. Notched 
annular rings of a quartz or metal served as an adequate spacer. Whether or not this 

cell satisfys the requirement (2) depends on the flatness and parallelism of window 

plates and spacer. Therefore their both surfaces are polished thoroughly. Although
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 Fig. 5 Components of low-temperature gas cell with pathlength of mm order for infrared-

     absorption studies. 
 A: screw,  B: end plate,  C: end plate,  D: sapphire window,  E: exterior screw to bring the 

     cell into thermal contact with coolants,  F: cell body,  G: spacer,  H: indium gasket,  I: end 
 plate,  J: screw,  K: end plate. 

this type of construction has no particular advantages for cells longer than about 1 cm, 
it would be useful for short cells as far as accurate and thin spacers are available. 

   Every cell body is equipped with cupro-nickel capillary through which sample 

gases can be introduced and has the small wells into which thermocouples can be 
inserted for temperature measurements. In the assembling of the cells, screws are 

tightened with a torque screw driver to reduce the strains on windows. 

(d)  Cryostat 

   The cells are cooled by a cryostat whose construction is shown schematically 

in Fig. 6. This cryostat is fabricated from stainless steel except copper bottom of 
inner tube to decrease gas emission, and its outer tube is equipped with Ca  F2 windows. 

An oil-diffusion pump is used to evacuate the region between inner and outer tubes to 

prevent the condensation of atmospheric water vapor on the windows and to lessen the 
evaporation of a coolant. 

   The cell suspended from the bottom of inner tube in the insulating vaccum of the 
cryostat is in thermal contact with contents in reservoir through a copper block. 

   When the probe inserted into reservoir, detects the change of coolants such as 

decrease in volume or increase in temperature, it sends warning signals. If liquid 
nitrogen serves as coolant, the probe supply an adequate amount of liquid nitrogen 
automatically from the external dewar to reservoir by operating its slave circuit. 

   Any one of liquid nitrogen, aceton-dry ice and water-ice is properly used as coolant 
according to the required temperature range. 

(e) Temperature controller 

   Temperature of the cell is roughly controlled by choosing suitable material and 
cross-sectional area of the ring (see Fig. 6.). The finer control of temperature is
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attained by manganin heater wound onto a copper block (see Fig. 6.). The electric 

powers of heater are regulated with a temperature controller which operates efficiently 
to minimize the differences between desired and actual temperatures. Schematic
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                Fig. 7 Schematic diagram of TRIAC temperature controller. 

diagram of this temperature controller is shown in Fig. 7. An input circuit is designed 
to accept resistance or voltage generating temperature sensors such as thermocouples, 
Pt sensors and thermistors. In the present work, the copper-constantan  thermo-

couple is used as temperature sensor. The differential signal,  Vo-V, between thermal 

voltage of a thermocouple, V, and set voltage of a standard D.C. supply, V0, is 
magnified by a chopper type D.C. amplifier with amplification factor, A, of 100 dB. 

The output,  A(Vo-V), is supplied to  U  JT (unijunction transistor) relaxation oscillator 
after passing through a low-pass filter which cut off the frequencies higher than 10 Hz. 

According to magnitude of A  (170-V), the oscillator judges when TRIAC (Triode A.C. 

semiconductor switch) of the heater circuit should be turned on in half cycle of wave of 
A.C. voltage which is supplied to heater and furnishes a gate of TRIAC with a triger 

pulse at suitable time. Since the triger circuit and electric power source of heater 
circuit is synchronous and TRIAC is trigered at half of half cycle of A.C. wave when 

A  (V9-V)  =0, above operations minimize the differencial voltage,  Vo-V. Therefore the 

cell is automatically maintained in the region of the temperature which corresponds 
to the set voltage of standard D.C. supply. 

   The absolute temperature of the cell is determined from the voltage output of 

copper-constantan thermocouples embeded in the cell body. These thermocouples are 

thermally anchored to the lower part of copper block (see Fig. 6.) to reduce an influence 
of external heat flows on temperature measurements, and calibrated within  ±0.1 K by 
comparing with standard Pt-resistance thermometer in a constant temperature box. 

The voltage outputs are measured by means of potentiometric methods or digital 
voltage meters and their outputs are monitored by the recorders. 

3. Results and discussion 

   The absorption measurements of foreign gas broadening require uniform mixtures 

as a sample. It is well known that pure gases, especially at elevated pressures and in 

complex systems, may diffuse so slowly as to require very long periods of time in order
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Torr,  Temp: 24.4±0.2 K.

to make a uniform mixture. Therefore the perfection of mixtures in our storage 
chamber was first checked by use of a gas chromatograph. For example, when CO gas 
was introduced in the chamber without a diaphragm pump and total pressure of about 

760  Torr obtained by the addition of N2 gas, the variations of CO concentrations at 

three representative points, S1, S2, S3 (see Fig. 3.) by diffusion are shown in Figs. 8 
and 9. Experimental errors in determination of CO concentrations are  ±  0.5 Ton or 
less. Since a small quantity of mixture, about 1 ml, was necessary for one gas analysis, 

influence of this sampling is almost negligible. The mixtures would be perfect at the 

time when three curves in  these figures coincide at the same concentrations. It can 
be seen in  these figures that our chamber wastes a very long time in order to mix gases 

perfectly and that the mixing of gases takes place more and more slowly with increase 
in CO concentration. Accordingly, if the cell is connected to the storage chamber in 
the course of this slow mixing, significant concentration difference should be expected 

over long periods of time in that system. 

   In order to solve this difficulty, we adopted a method of mixing by diaphragm 

pump (see Fig.  3.); gases in the chamber are forced to circulate through the by-pass 
with using of diaphragm pump and to  mix completely by means of the combined 

operations of butterfly valve and cylinder valve (see Fig. 3.). The merit of this method 

is that rapid mixing can be achieved in a very short time period at room temperature. 
   Although uniform mixture can thus be obtained in the storage chamber, there still 

remain the possibilities that  uniformity of gas mixture breaks in  low-temperatur cell 
when the mixture is introduced into the cell. Most probable cause of them is due to 

adsorption phenomenon; the composition of gas mixtures may be falsified by the 

occurence of selective adsorption on the wall of the cell, especially at low temperatures. 
For  CO-N2 mixtures, the actual CO concentrations in cooled cell were therefore 

analysed by a gas chromatograph at various conditions which will be employed in 

our absorption measurements. From this analysis, we found that there are no 
appreciable differences of CO concentration between in the storage chamber and in the 
cell. This means that the uniformity of the  CO-N2 mixtures is still maintained in the
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 coiled  cell  as  being  in  the storage chamber. 

   In general, since the obscure gas concentrations in the cell will inevtiably yield 
large errors for the results of absorption measurements and since the adsorption is 

highly selective in nature, it is necessary to check the ultimate composition of the 

mixture in the cell by means of gas chromatograph, mass spectrometer and so on. 
   With suitable coolants in the reservoir of cryostat, our cooling system could 

maintain the cell at desired temperatures for a long time within an accracy of +0.3 K 

over a wide range of temperature. The temperature difference over the body of the 
cell is never exceed 0.2 K. For example, the results of 1-cm cell cooled by liquid 

nitrogen are shown in Figs. 10 and 11. Fig. 11 is a record of the temperature fluctua-
tions after magnification. The cell is heated at first by the sub-heater source. When 

the temperature of the cell nearly reached the desired temperature (i.e. 166 k in this 

case), the sub-heater soruce is switched off and TRIAC temperature controller is on to 

regulate the temperature of the cell. In order to attain the steady state of temperature 
control quickly, the timing of the above exchange should properly be chosen as the 
temperature of the cell comes to the desired temperature smoothly. If we intend to 

change the temperature of the cell regulated at one temperature into some other 
temperature lying in a temperature range corresponding to the thermocouple's e.m.f. 

of +400  pV, it can be performed easily and automatically by only resetting the voltage 

of standard D.C. supply (i.e. from 3583  IuV to 3292  pV in the case of Fig. 10). The 
fluctuations and drifts of the temperature of the cell regulated by  TRIAC temperature 

controller are very small and both less than +0.1 K as shown in Fig. 11. In daytime, 

however, the drifts of the temperature of the cell are occasionally increased by the 
fluctuations of  A.C. source. According to this effect, the final error in the regulation of 
the temperature of the cell becomes  *0.3 K at most. This value is accurate enough 

for almost all purpose of the absorption measurement, so no further improvements have 

been attempted. 
   The medium-high resolution spectra of the 4.7  ,u carbon monoxide vibration-rota-

tion band taken by the present apparatus are shown in Fig. 12. The spectrum A, B, C 
and D are that obtained at 300, 200, 150 and 100 K, respectively. The absorber 

thickness of each spectrum is restricted to 0.600  atm. cm. From the figure we can
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12 Typical spectra obtained at various 

temperatures by the present apparatus.

recognzie a remarkable temperature depen-

dence of the band profile, which is mainly 

due to the temperature dependence of the 

rotational line strength. As mentioned 

already, magnified spectra obtained by a 

slave recorder can be served for detailed 

analysises. 

4. Conclusions 

   The apparatus which is composed of 

spectrometer, sample-gas supply system, 

low-temperature absorption cell, cryostat 

and TRIAC temperature controller has 

been constructed in order to measure the 

infrared absorption in vibration-rotation 

band of atmospheric constitutents at the 

required temperatures in the range of 80 

to 400 K. Its  availavility is comfirmed 

by obtaining the spectra of 4.7  ,u carbon 

monoxide band at 300, 200, 150 and 100 

K. The gas chromatographical analysises 

show that the concentrations of the  CO-I\T, 

mixture are not  falsified by the selective 

adsorption on the wall of our cooled absorp-

tion cells under the condition which will 

be employed in our absorption measure-

ments. 

   The specifications of the present ap-

paratus are as follows. 

   1. The uncertainties of spectral absorptance of our spectrometer is less than 

 +0.004 over the full range of absorptance. 

   2. Temperatures and pressures of sample gas can be measured with an accuracy of 

less than ±0.1 K and ±0.1  Torr, respectively. 

   3. The low-temperature absorption cells with different lengths of 6 cm, 1 cm and of 

mm order are made of copper. These cells are maintained at the required temperature 

ranging from 80 to 400 K for a long time within an accuracy of  ±  0 .3 K by the 

TRIAC temperature controller and cryostat with sutiable coolant. The temperature 

difference over the body of the cell is smaller than 0.2 K. 

   4. The perfect mixing of the sample gases is attained in a short period of time 

by forced circulation of the sample gases through the storage chamber. 
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