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 Abstract: The earthquake generating stress field is studied in detail for the 
     Kuril-Kamchatka seismic region by using the data of initial motions of P-waves 

     from earthquakes which occurred during the period from January 1964 to March 1969. 
     The present analysis is based on the method of composite mechanism solution. 

     Earthquakes of reverse faulting are generally found at shallow depths with few 
     exceptions of normal faulting. The stress type of down-dip compression is prevalent 

     everywhere at deep depths, similarly to the results for other seismic zones in the 
     world. The stress pattern is not so simple at intermediate depths. The composite 

     mechanism solution indicates the stress type of down-dip extension in the northern 
     part of the Kuril seismic region. In the southern part of the Kamchatka seismic 

     region, however, it shows down-dip compression. The earthquake generating stress 
     field seems to change its stress pattern rather abruptly beneath the southern edge of 

     the Kamchatka peninsula. The stresses are opposite in sense between the southern-
     most and the northernmost parts of the Kuril-Kamchatka region. In the direction 
     perpendicular to the motion direction of the Pacific plate relative to the Eurasian 
     plate, the extensional force exists at the southernmost part and the compressional 

     force does at the northernmost part of the region. 

1. Introduction 

   Since the hypothesis of new global tectonics was proposed by Isacks et  al. (1968), 

mechanisms of major earthquakes have been analyzed (Isacks et al., 1969; Katsumata 
and Sykes, 1969; Isacks and Molnar, 1971; Ichikawa, 1971; Stauder, 1968, 1972) to 
investigate relations between the orientation of principal stress axis or the direction of 

slip vector on the fault and the plate motion expected for the hypothesis. 

   The major remaining problem in the hypothesis of new global tectonics is the 
driving mechanisms of the plate motion. Elsasser (1967) suggested that the motion 
of the plates themselves is not caused by viscous coupling with the mantle beneath, but 

that the cold slabs beneath island  arcs sink and pull the rest of the plates with them. 

 * Now at Department of Civil Engineering, Faculty of Engineering, Shinshu University, 
   Nagano, Japan.



68 S. HORIUCHI, J. KOYAMA, Y. IZUTANI, I. ONODERA and T. HIRASAWA 

It seems reasonable (McKenzie, 1969) that the cold sinking slabs act as a stress guide. 

   Isacks and Molnar (1971) demonstrated the idea that the descending portions of 

lithosphere into the mantle play an important role in driving the lithosphere, from the 
analysis of focal mechanisms of 204 intermediate and deep earthquakes of which 

solutions are precisely determined with the data of the initial motions of P- and S-waves 
recorded by WWSSN. They further suggested that at a seismic zone where deep 

earthquakes are absent, the gravitational force of the cold sinking slab makes the 
tension axis in the sinking slab parallel to the dip of the zone at intermediate depths. 

At deep depths, say 300 km or deeper, the sinking slab is resisted to its downgoing 
motion by hard material of the mantle, leading to compressional stress parallel to the 

dip of the zone. 

   Our previous work (Koyama et al., 1973) in the northeastern part of Japan indicated 

that the compressional stress parallel to the dip of the seismic zone is prevalent below 

the depth of about 80 km.  Isacks et al. (1969) determined the mechanism solutions of 
the earthquakes which occurred in the Tonga-Kermadec seismic region and concluded 
that the compressional stress parallel to the dip of the seismic zone is predominant 

at depths between 80 km and 600 km. It does not seem plausible that the cold slab 
as short as 80 km is able to pull the rest of the lithosphere with it. It is very im-

portant to investigate precise fields of the earthquake generating stresses for various 
seismic zones. 

   In the Kuril-Kamchatka seismic region, 9 well determined mechanism solutions of 
deep and intermediate earthquakes are tabulated in the work of Isacks and Molnar 

 (1971). Their results show that the mechanism solutions of intermediate earthquakes 
in the south Kamchatka and the middle part of the Kuril islands indicate the stress 

type of down-dip compression. On the contrary, the mechanism solutions of 
intermediate earthquakes are of down-dip extension type in other regions. It may be 

difficult to discuss in detail the earthquake generating stress field in the Kuril-
Kamchatka region only from the 9 solutions. 

   Oike (1971) estimated for 51 active seismic zones over the world the earthquake 

generating stress fields at intermediate and deep depths from the smoothed radiation 
patterns of P-wave initial motions by the method developed by Aki (1966). All the 
earthquakes of intermediate and deep depths in the Kuril-Kamchatka seismic region 
are gathered into one group, and the smoothed radiation pattern obtained for this 

region shows down-dip compression between the depths of 100 km and 500 km. 

   This paper discusses details of earthquake generating stress fields in the Kuril-

Kamchatka seismic region by using the data of initial motions of P-waves. The 
method of the analysis is similar to that in previous papers (Horiuchi et  al., 1972; 

Koyama et  al., 1973;  Izutani et  al., 1975). The materials are taken from the bulletins 
of I.S.C. All the earthquakes that occurred in the Kuril-Kmachatka seismic region 

during the period from January 1964 to March 1969 are adopted as the data of 
 analysis.
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1. Comparisons of the epicenter locations determined by I .S.C. with those by U.S.C.G.S., 
MOS, J.M.A., and S.K.L. The epicenters by I.S.C. are taken to be the origin of the 
coordinates for shallow earthquakes with magnitude greater than 5 .0 in the period 
from 1964 to 1968. Symbol of small size; an epicenter for one shock . Symbol of medium 
size; epicenters for three shocks. Symbol of large size; epicenters for five shocks . Open 
circle; U.S.C.G.S. Solid circle; J.M.A. Triangle; MOS. Square; S.K.L.

2. Reliability of the Data 

    The reliability of determination of the epicenters by I.S.C. is checked by compar-
ing them with those determined by U.S.C.G.S., MOS, J.M.A., and by S.K.L. Differences 
in the locations of epicenters determined by I.S.C. from those by other networks for 
the same earthquakes are plotted in Figs. 1 (a), (b), and (c). 

    The locations of the epicenters  determined by J.M.A. are systematically shifted 

toward the Japan island by about 100 km on an average in comparison with those by 
other networks as seen in Fig. 1. It has been pointed out that the epicenters of 

earthquakes in this region are determined not so accurately by J.M.A., since most of 
the J.M.A. stations are situated far from this seismic region and the azimuthal distribu-

tion of the stations is limited to a narrow range. In addition, the cause of the 
discrepancies may be due to the existence of the high velocity zone which the seismic 
rays to Japanese stations pass through (Utsu, 1967). 

    Most of I.S.C. epicenters agree with those by U.S.C.G.S., MOS, and S.K.L. within 

30 km in relative distance. It may be concluded that the error of the epicenter 
determination by I.S.C. is probably less than 30 km. We thus decide not to use the 

J.M.A. hypocenters but to use the I.S.C. hypocenters for our analysis. 
   The reliability of readings of the initial P-motion reported in the bulletins of  I.S.C. 

is examined as  follows: We numerically determine mechanism solutions individually 
for earthquakes in 1964 in the Kuril-Kamchatka seismic region, for which the number 
of P-wave data available is larger than 50. Figs. 2(a) and (b) show the relation of the 
score to the number of readings of the initial P-motion and the relation of the score to



70 S.  HORIUCHI, J. KOYAMA, Y. IZUTANI, I. ONODERA and T.  HIRASAWA

SCORE
100

SCORE

90 

 80  • 

 70  • 

 60.

• ., 

 

10, 
 ••411.  •

 

/  00 

90 

80 

70 

60

    . . 

  • • 

   •  •

    50  100  150 •  2O0  DEPTH  460  Km 
 (a)  READINGS  (b) 

  Fig. 2. The scores in the best fit solutions for individual earthquakes. The best fit 
     solution is obtained for each earthquake for which the number of readings is more than 50. 

 (a): The score versus the number of P-wave data. 
 (b): The score versus the focal depth of earthquake. 

the focal depth of earthquake, respectively, where the score is defined as 

                     SCORE  — 

 Nin, being the number of inconsistent data in the best fit solution and  N,01 the total 
number of the data. The results suggest that about 15% of the readings reported in 
the bulletins of I.S.C. are inconsistent, and that the score depends neither on the 

number of the readings nor on the focal depth of earthquake. It is concluded that 

the average score is about 85 even for a single earthquake regardless of its magnitude. 

3. Method of Analysis 

   An analysis is made of all the earthquakes that occurred during the period from 

January 1964 to March 1969 in the Kuril-Kamchatka seismic region from 43°N to 
57°N. This seismic region is divided into 50  sub-regions; 42 sub-regions for depths 
shallower than 80 km and 8 for intermediate and deep depths. 

   For depths shallower than 80 km, four ranges of the depth are adopted at an 
interval of 20 km. Then, for each depth range, the region is further divided into sub-
regions by taking into consideration the epicenter distribution of the earthquakes. 

In doing this an attention is paid not to divide the aftershocks of a large event into two 

groups. Isolated earthquakes are omitted in the analysis. 
   For depths deeper than 80 km, initial P-motions from each earthquake for which 

the number of readings of initial P-motions is more than 25 are plotted on the focal 
sphere. Then, comparing the distributions of initial P-motions on focal spheres for 
the earthquakes with one another, the seismic region is divided into 8 sub-regions so 

that the earthquakes which show similar distributions of the initial P-motions may be 

grouped into one. 
   The initial P-data from earthquakes occurring in each sub-region are superposed on 

a focal sphere and the best fit solution of focal  mechanism is obtained, where the number 

of inconsistent stations in the best fit solution being expressed by  Ni,,,°. We seek a set 
of solutions that satisfy  Nin,�(1+0.1)Ninc°, where  Ni„, is the number of inconsistent 
stations in a solution. The positions on the focal sphere of the pressure (tension) 

axis in these solutions cover some domain, which will be called the domain of pressure
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(tension) axis henceforth. The earthquake generating stress fields in the following 
discussions are estimated from these domains of the pressure and tension axes, and  their 
reliabilities are graphically expressed by the areas of the domains. 

   The hypothesis of new global tectonics suggests that an oceanic lithosphere is sink-
ing below island  arcs from trenches. It is expected from the hypothesis that the fault 

plane for shallow earthquakes near the trench should be parallel to the trench axis. 
The nodal plane solutions for shallow earthquakes are re-calculated by assuming that 
one of the nodal planes of P-waves is parallel to the trench axis for the cases where the 
scores are greater than 80. It should be recalled that this assumption is not used for 
the estimation of earthquake generating stress field, as stated in the previous paragraph. 

4. Results 

Shallow  earthquakes 

   The topographic feature of the Kuril-Kamchatka seismic region is shown in Fig. 

3. The focal mechanism solution and the domains of the pressure and tension axes 
are numerically calculated from the superposed data of P-wave initial motions from 

earthquakes in each sub-region, and are shown in Figs. 5, 7, and 9. The calculated 
results are omitted for the sub-regions where the number of the superposed data is 
less than 50. 

   The epicenters of earthquakes with depths between 0 km and 80 km in the south 
Kuril region are shown in Figs. 4(a), (b), (c), and (d), where the abscissas are taken along 

the line CD in Fig. 3. The obtained results for the pressure and tension axes are 
exhibited in Figs. 5(a) and (b) for the depth ranges of 0 km to 40 km and of 40 km to
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3. Illustration for the division of the Kuril-Kamchatka seismic region. The trench 

axis is represented by dotted line. Lines parallel to the trench axis are drawn at an 

interval of 50 km simply for the reference sake. The lines AB, BC, and CD are referred to 

in Figs. 4, 6, 8, and 10.
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 Fig. 4. Epicenter locations of earthquakes and divided sub-regions in the south Kuril seismic 
     region along the line CD shown in Fig. 3. The sizes of circles indicate the earthquake 

     magnitudes determined by I.S.C. Small size; Mag<5. Medium size;  5�Mag<6. Large 
     size;  6�Mag. This convention is applied also to Figs. 6 and 8. 

80 km, respectively. It is seen from these figures that the domains of both the axes 
are wide in area, and that the earthquake generating stress fields are not definitely 

 determined. It is noticed, however, that we cannot find any stress type of normal 
faulting in which the pressure axis is in nearly vertical. 

   In spite that Sub-Region Nos. 6 and 8 are in neighbor to each other along the 

direction parallel to the trench axis, the focal mechanisms in the two sub-regions 

are quite different, as illustrated in Fig. 5(a). The focal mechanisms of reverse faulting 
are seen in Fig. 5(b) for both Nos. 12 and 16. If the plane nearly horizontal is taken as 

the fault plane, the fault motion is of underthrust type. This suggests that the oceanic 
lithosphere moves under the lithosphere of the islands, as generally found for 
earthquakes in various seismic zones in the island  arcs. Sub-Region Nos. 11 and 14 
are adjacent to each other along the direction parallel to the trench axis and are located 
between the trench and the sub-regions of Nos. 12 and 16. The mechanism solution 

for the sub-region of No. 14 is well determined, where the number of the superposed 
data is 589. The tension axis is nearly east to west plunging about 45° toward west.
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In other words, the focal mechanism  for No. 14 is  reverse-faulting type but not  under-
                             1 type. The result for No.  is considered to be  similar to that for No. 14. 

   Figs. 6(a), (b), (c), and (d) show the epicenters of earthquakes in the north Kuril 

region for the depth ranges of 0 km  to 40 km and of 40 km to 80 km. The obtained 
results illustrated in Figs. 7(a) and  (b) indicate that the tension axis is nearly vertical 
and the pressure axis is nearly  horizontal, though the estimation of the focal mechanism 
solutions is not quite reliable.  Particularly for the depth range between 40 km and 

80 km, the focal mechanisms are  similar to one another, as seen in Fig. 7(b). No 
indication is found for the existence  of the stress type of normal faulting in the north 

Kuril region. 

   The epicentral distributions in the Kamchatka seismic region are illustrated in 
Figs. 8(a) and (b) for depths from 0 km to 40 km and in Figs. 8(c) and (d) for those from 

40 km to 80 km. The focal  mechanism of reverse faulting is evidently predominant 

                         show  he epicentral distributions of intermediate and 

depths  deeper than 80 km in the sub-regions of Nos. 43 

 e taken along the lines AB, BC, and CD in Fig. 3. The 

 !ssure  and tension axes for the above sub-regions are
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exhibited in Fig. 11. 

   Sub-Region Nos. 43 and 44 are located in the southern part of the Kuril seismic 

region and their depth ranges are from 80 km to 140 km and from 140 km to 200 km, 

respectively. There is a distinct difference, as indicated in Fig. 11, in stress type 

between the two sub-regions, though the domains of both the pressure and the ten-

sion axes are wide in area. The calculated result for No. 45 with the depth range of 

80 km to 200 km, located at the northeast of the sub-regions of Nos. 43 and 44, 

shows that the tension axis is nearly horizontal in the north to the south. 

   The tension axis beneath the east Hokkaido is directed also in the north to the
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south in the mechanism solutions of individual intermediate earthquakes obtained by 
Isacks and Molnar (Nos. 123 to 127 in their paper). There is a difference in orientation, 

however, between the pressure axis for the east Hokkaido and that for Sub-Region No. 
45 near the middle part of the Kuril region. Although the earthquake generating stress 

fields among the east Hokkaido region and the sub-regions of Nos. 43, 44, and 45 are 
different from one another, the tension axis tends to align in the direction from the 
north to the south in the southern part of the Kuril seismic region including the east 

 Hokkaido region. 
   The stress type at intermediate depths in the north Kuril region, namely No. 47, 

is of down-dip extension.  It is noticed that deep earthquakes below 300 km hardly 

occur in this region. On the contrary to the result for No. 47, the earthquake generat-
ing stress is the type of down-dip compression for No. 48 in the south Kamchatka 
seismic region. This result for No. 48 is consistent with the focal mechanism of No.
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117 in Isacks and Molnar's paper. 

   The calculated result for Sub-Region No. 49, at intermediate depths in the north 
Kamchatka seismic region, shows that the solution is fairly well determined. The 

pressure axis is  directed from southwest to northeast plunging toward southwest. The 
earthquake generating stress field is not classified as a down-dip compression or not as 
a down-dip extension either. This is similar to the result for Sub-Region No. 45 in 

particular at intermediate depths in the south Kuril seismic region, but the senses of 
the stresses in the two sub-regions are opposite to each other. It is interesting to 
compare the result for No. 45 with that for shallow earthquakes in the sub-region of 

No. 14 which is located just above the sub-region of No. 45. The comparison shows 
that the earthquake generating stresses are opposite in sense between the two sub-
regions (cf. Fig.  5(b)  ). 

   The calculated results for Nos. 46 and 47, at deep depths in the Kuril and the 

Kamchatka regions, respectively, indicate that the type of the stress fields is down-dip 
compression, similarly to the results in other seismic zones in the world. Further, the 

composite mechanism solution for No. 46 is consistent with the mechanism solution 

obtained by Isacks and Molnar for an earthquake (No. 116 in their paper) in this sub-
region. It is interesting that the homogeneous stress field at deep depths throughout 
the Kuril-Kamchatka seismic region is markedly contrasted with the complicated one 

at intermediate depths. 

5. Conclusion 

   The earthquake generating stress fields in the Kuril-Kamchatka seismic region 
are studied in details from the initial motions of P-waves by the method of composite 

mechanism solution. The main results are briefly summarized as follows. 

   Earthquakes of reverse faulting are generally found at shallow depths throughout 
the seismic region. The focal mechanism of normal faulting is not obtained for shallow 
depths in the present study. This result is similar to that for the region off the coast 
of Fukushima Prefecture, the northeastern part of Japan. It is different, however, 

from the result obtained by Koyama et al. (1973) for the region off the coast of Iwate 
Prefecture, north of the region stated above, and that by Stauder (1968, 1972) for the 

Aleutian islands, in which the earthquakes of normal faulting are widely found 
below the axis of the trench. 

   The earthquake generating stress fields are quite complicated at intermediate 

depths. In the north Kuril region where deep earthquakes below 250 km hardly occur, 
the stress type is of down-dip extension. In the south Kamchatka region, on the 

other hand, down-dip compression is prevalent below the depth of 80 km. In addi-
tion, no apparent aseismic zone between the two seismic regions is found from the 
hypocentral distribution of intermediate earthquakes. These suggest that the earth-

quake generating stress field abruptly changes its stress pattern beneath the southern 
edge of the Kamchatka peninsula. This complexity of the stress field in this region 
may not be accounted for only by the simple idea that the gravitational force of the 
cold sinking slab makes the tension axis parallel to the dip of the seismic zone at
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intermediate depths. In the northernmost part of the  Kuril-Kamchatka seismic 
region, a predominant compressional-force seems to exist in the horizontal direction 

perpendicular to such a relative motion between the Pacific and the Eurasian plates 
as suggested by Le Pichon (1968), Chase (1972), and by Minster et al. (1974). In the 
southernmost part of the Kuril-Kamchatka region and in the east Hokkaido seismic 
region, however, a predominant extensional-force exists in the same horizontal 

direction as stated above. 
   The composite mechanism solutions indicate the stress type of down-dip compres-

sion everywhere at deep depths throughout the Kuril-Kamchatka region. This result 
is consistent with those obtained for other deep seismic zones over the world by, e.g., 
Isacks and Molnar (1971) and Oike (1971). 
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