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   Abstract: The problem of the transmission and reflection of Love waves in a 

wedge-shaped medium is studied by the use of a finite difference method. Reflection 

coefficients of Love waves are obtained for wedge angle range 72° to 108°. Reflection 

coefficient for acute-angled corner is greater than that for obtuse-angled corner. 

Reflection coefficient is not symmetric about wedge angle 90°. The accuracy of 

numerical calculation was examined in various ways.

1. Introduction 

   Wave propagation in wedge-shaped medium is important and interesting because 
of its bearing on effects of topographic irregularities and crustal discontinuities 
on seismic disturbances. A number of investigators have studied the problems  of 
Rayleigh wave propagation in wedges both by theoretical and experimental means (e. 

g. De Bremaeker, 1958; Knopoff and Gangi, 1960; Hudson and Knopoff, 1964b; 
Mal and Knopoff, 1966; Lewis and  Daily, 1970). 

   Hudson and Knopoff (1964a) discussed transmission and reflection of Love waves 

in a wedge using a Green's function technique, in which they neglected the contribution 
from multiple reflections and diffracted waves. They pointed out that reflection 

coefficients for acute-angled and obtuse-angled corners are identical when deviation of 
wedge angle from 90° is the same. 

   Yamazaki and Ishii (1973) investigated Love waves in a wedge-shaped medium 

overlying an elastic medium by using a ray theoretical method. Their discussion is 

concerned with phase and group velocities at observation points far from an apex and 
is valid for small wedge angles for which the diffracted wave amplitude is negligible. 

   Since model experiments are difficult for the study of Love wave propagation, 

numerical experiments play an important role. Boore (1970) studied Love wave 

propagation in a medium with a sloping boundary between superficial layer and 
basement by the use of finite difference method. 

   In the present study reflection coefficients of Love waves at a corner are obtained 

as a function of wedge angle by applying a finite difference method. In the finite 
difference method space grids having the shape of parallelograms with sides parallel to 
the two free surfaces of the wedge are adopted. Coefficients of Love waves reflected 

at an obtuse-angled corner and acute-angled corner are discussed in comparison with 
the results of Hudson and Knopoff (1964a). Computed seismograms and phase 

velocities of reflected Love waves are obtained. Wave displacements including
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  Fi g. 1. The geometry of the problem. Fig. 2. The rectangular coordinate system 
                                               (x, y, z) and the oblique coordinate 

                                                     system (x', y',  z'). 

reflected Love waves and refracted body waves in the entire spatial region of interest 
are also discussed. 

2. Equation of Motion and Boundary Conditions 

   Consider the geometry shown in Fig. 1, where a  wedge-shaped elastic medium is 
bounded by its two stress free surfaces. A low-velocity surface layer of thickness H 
with shear wave velocity  ji and density p1 is in welded contact with a high-velocity 
substratum with elastic parameters  132 and  P2• The wedge angle is denoted by  O. 

   We introduce an oblique coordinate system (x', y', z') related to a rectangular 
cartesian coordinate system (x, y, z) as shown in Fig. 2, in which  x'=x,  --=y.  An 
angle between oblique coordinate axes ox' and oz' is denoted by a. In this problem 
only SH motion is considered, the motion being independent of y. Equation of 
motion in the rectangular coordinates 

 62vi  a2vi a2vi  i = 1,2, (1) 
       aoax2322' 

becomes in the oblique coordinates 

         a2vi Ri2 a2v. a2vi62vi            r  —2 cos a  i = 1,2 ,(2)  at2 sin2 a8,x'2  ax'az' az'2) 

where  vi is the horizontal displacement in y direction in the two regions  (i=  1, 2). The 
boundary conditions are that stresses on the free surfaces of the wedge vanish and 
stresses and displacements on the interface are continuous. Hence the boundary 
conditions in the oblique coordinates are given as follows, 

                                av           --cot  a  •aviicosec  a.  —  0  , on z' =  0  , (3)          axaz' 

 avi avi                — cosec a •   +  cot  a  •=-- 0  , 1 =  1,2  , on x'  ax' az', (4) 

 Vi  7)2  , on  z'  =  H  cosec  a  , (5)
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            avlay,  

                              ),u,(— cot a •  xvicosec aaz,—,u,(—  cot  a  •ax,az'  cosec  a  •—3v2) 
                                              (6) 

                                     on z' =  H  cosec  a  , 

where  pi and  1,12 are rigidities of the low-velocity layer and high-velocity medium, 

respectively. The angle a related to the oblique coordinates is taken equal to the 
wedge angle  O. 

3. Finite Difference Formulation 

    Finite difference techniques have recently been applied to elasticity problems 

(Alterman and Karal, 1968; Alterman and Rotenberg, 1969;  Alterman and Loewenthal, 
1970; Boore, 1970; Ottaviani, 1971;  Sat& 1972; Munasinghe and Farnell, 1973). 

Although we are familiar with rectangular space grids, when a boundary or an interface 
does not pass through grid points, special devices must be made at a boundary or an 
interface in finite difference approximation of boundary conditions and wave equation 

(Boore, 1970). We now proceed to deal with space grid having a shape of paral-
lelogram with sides parallel to the free surfaces of the wedge, or, parallel to the 

oblique coordinate axes ox' and  oz'. In this case it has the advantage that all the 
boundary conditions and wave equation are replaced by finite difference approxima-

tion without introduction of special devices. Further details of such grid are dis-
cussed by Morley  (1963). 

   Applying standard centered finite difference approximation to equation (2), 
displacement at a point  (x'  ,  y', z') at time  t+  k can be written in the form 

 v  i(x'  ,y'  ,  ,  t  +  k)  =  2v  i(x'  ,y1  ,z'  ,t)—vi(x'  ,y'  ,  z'  ,t—k)+  k2L(vi) , (7) 

where  k is the time increment, and  L(vi) is the finite formulation of the term of the 

righthand side of equation (2) and is expressed by 

                            2 

       L(vs)  — h 
sin a[-4vi(x',/, z',h,                                      vi(x',y, z', t) 

      ) 

              +  vi(x'  —h,  y'  ,  z'  ,t)+vi(x'  ,y'  ,  z'  +h,t)+vi(x'  ,y'  , t) 

              — 2 cos a  •  (vi(x'  +  h,  y'  ,z'  +  h,t)—vi(x'  +  h,,y',  z'  —h,t) 

             —  vi(x'  —h,y'  ,z'  +h,t)+vi(x'  ,  z'  —h,  Oil  , (8) 

where  h is the mesh size both in the x' and z' directions. When the displacements at 
time t and t—k are known, the displacements at next time step  t+k can be computed 

by using equations (7) and (8). Once each displacement value at time  t  +k has been 

calculated, the corresponding values at time t and  1—k may be replaced by the new 
values. 

   The recursive finite difference scheme must satisfy a certain criterion for the 
stability of the system, that is, 

                            k sin a  

      2(9)                             1/—
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where h is the grid spacing and  13„, is the maximum shear wave velocity. If a=90°, 

equation (9) becomes  /„,  •  klh<  1/1/  2  , which is the stability condition in the case of 
square space grid. 

   The corner point is a kind of singular point and a number of methods are 

suggested for the treatment of the condition at this point.  Sata. (1972) briefly sum-
marized the methods and proposed a new device for the study of Rayleigh wave 

propagation in the elastic quarter space. In this study we smooth the corner by a 
curve passing through the point in such a way as that discussed by Alterman and 
Rotenberg (1969). 

   At time  t=0, displacements of sinusoidal Love waves with wave length  A and phase 

velocity c, truncated by a rectangular window with length of 4A, are given by

and

 v(x,y,z)

 v(x,y,z) =

0 

A cos (27r/A  •  -Vc2/32—  1

0 

A cos  (27r/A  .1/c2/1312—  1

  for  x<0,x>4A,0�z-�H, 

z) sin  (27r/A  •x) 

  for  0  -�x�4A,  0�z�H, 

 for  x  <  0  ,  x  >  4A  ,  z  >  H, 

 H)  e_zirikv1_c21,60.(Z-H) sin  (27r/A  •  x) 

 for  0  x  4A  ,  z  >  H  ,

where A is a constant. 

4. Accuracy of Numerical Computation 

   It is necessary and important to examine the accuracy 

numerical method. Checks are made for two cases for which
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3a. Numerically calculated and theoretical dispersion curves in a layered half-space when 

 N1=3.51  km/sec,  pi-2.84 g/cm3,  fl2=4.50  km/sec,  p2=3.10 g/cm3, H=35 km. Calculated 
phase velocities are derived from Fourier transform of computed seismograms. Phase 
velocity is normalized by the shear wave velocity  /31 and period is normalized by  HIP,. 
3b. Relative phase velocity errors  dcic as a function of normalized period  13,77H, where T 
is period. Phase velocities are computed by using parallelogramic space grids with various 
angles 90°, 99° and 81°.
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       against the normalized distance  s/A.. waves on a layered half-space and 
                                                     Love waves reflected at a  90° corner, 

                                               denoted by (I) and (R), respectively. 

available. The first case is a wellknown horizontally layered half-space and the 

second case is a quarter space with a superficial layer (wedge angle  0=90° in Fig. 1). 
Fig. 3a shows the comparison of numerical and the theoretical phase velocities. 
Numerically calculated phase velocities of Love waves are in an excellent agreement 
with the theory. The geometrical shape of our space grid is a parallelogram with sides 

parallel to two free surfaces of the wedge. By using the space grid having various 
shapes of parallelogram, we may obtain practically the same result . The phase 
velocity error  Acfc is shown in Fig. 3b with various values of a, a being an angle related 
to rhombic space grid. Here,  dc is the difference between numerical and theoretical 

phase velocities. In Fig. 3b phase velocity error  dole falls within 1% for different 
shapes of space grid. 

   The transmission factors are given in Fig. 4 with different angles of the oblique 
coordinate system. The abscissa in Fig. 4 is a normalized distance s/A, where A is the 

predominant wave length and s is the path length along which Love waves traversed. 
The transmission factor is defined as the spectral amplitude at a given station 
normalized by the amplitude at a reference station. Theoretically for any angle a of 

the oblique coordinate system it should be unity during wave propagation along the 
free surface of the layered half-space. It is found in Fig. 4 that the errors of the 

transmission factors are within 2% and inaccuracies in the calculation do not seriously 
increase during the numerical computation. 

   Let us now consider Love waves propagating for a 90° corner.  When Love 

waves travelling on the free surface ox' reach the corner, it may be expected that 

Love waves are perfectly reflected back along  ox', reflection coefficient being unity. 
Calculated seismogram for a layered half-space is shown in the upper curve of Fig. 5 and 

the lower curve shows calculated wave form of Love waves reflected at a 90° corner. 
In both cases of Fig. 5, distances along which Love waves travelled are the same. Here 

the predominant wave length is 141 km and the corresponding phase velocity is 
4.07  km/sec. As obviously seen in Fig. 5 wave forms in the two cases are identical. 

Fig. 6 represents phase velocity of waves reflected at a 90° corner obtained by means of
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 Fig. 6. Numerically calculated phase veloci- Fig. 7. Reflection coefficients of reflected 
     ties of Love waves reflected at the  90° Love waves on the quarter space with a 

     corner, compared with the theoretical superficial layer, plotted against period. 
     dispersion curve for the  layered half-

      space. 

the Fourier transform of the seismograms shown in Fig. 5. Numerical phase velocity 
fits well to the theoretical dispersion curve, and it implies that reflected waves are 

certainly Love waves. Reflection coefficient defined as a spectral amplitude ratio of 
reflected Love wave to incident Love wave is shown in Fig. 7. It is concluded from 

the above results for Love wave propagation on the layered half-space and the quarter 
space that this numerical method can be safely applied to more complicated models. 

The accuracy of computation in a more complicated model will be discussed in Section 6. 

5. Results 

   Consider Love waves propagating in a wedge-shaped medium (Fig. 1). Incident 
Love waves propagate along the surface of the superficial layer into a corner. 

Interacting at the corner, a part of Love wave energy is reflected back into the 
surface layer and the remainder of the energy is diffracted in the form of body waves. 

   Reflected Love waves measured at the free surface of the superficial layer are 
illustrated in Fig. 8 for wedge angles 81°, 99° and 90°. In both models of wedge 
angles 99° and 81°, deflection angles from 90° are identical, say, 9°. The period 

given to incident Love wave is 34.7 sec and the corresponding wave length is 141 km. 
In these three cases of wedge angles 90°, 99° and  81°, sums of a distance from a point 
at which incident Love waves begin to travel to the apex and a distance from the 

apex to an observation point are identical. Fig. 8 reveals some features of reflected 
Love waves for an obtuse-angled corner and for acute-angled corner, as compared with 
features of Love waves for the 90° corner. For the obtuse-angled wedge  99°, the 

reflected Love waves arrive later than those for the 90° corner, and the first one 
cycle of the wave trains becomes longer than that for the 90° corner. On the other 
hand, for the acute-angled wedge, the arrival time of reflected Love wave is earlier 

and period of the first motion is shorter than that for the 90° wedge. It is seen that 
Love wave amplitude of predominant period for  81° wedge is slightly greater than that



             LOVE WAVES REFLECTED AT A CORNER 61 

 0  =  81°  IA  AA            80  100   200  IF V 300 
                                                     t (S  EC) 

 0=99° Ili A 
                                                     •__ 

 111   I  v 

     i 

     11YVT 
  Fig. 8. Computed displacement seismograms of reflected Love waves for  81°, 99° and  90° 

       wedges.  

1  '  1  '  1  1  ''  1  '  1  '1  •i  

1.20'  —  1.20—  

-  6  =  99° 

 _ 1.10 —1.io — =81° 

•  -  —  THEORETICAL  -  -  
•   —  THEORETICAL 

 •  CALCULATED  -  •  CALCULATED 

 1.00  –  1.00  
1  1  1  1  I  I  .  1  

 0  2  4  6  8  10  0  2  4  6  8 

     /3,17H  AVVII 
     Fig. 9a Fig. 9b 
  Fig. 9a. Numerically calculated and theoretical phase velocities of reflected waves for 99° 

       wedge. 
  Fig. 9b. Numerically calculated and theoretical phase velocities of reflected waves for 81° wedge. 

for wedge angle 99°. 

   Calculated phase velocities of reflected waves for the 99° wedge and the  81° 
wedge are illustrated in Figs. 9a and 9b, respectively. Numerical phase velocity 

in the case of  ji1T/H-7.76 in Fig. 9b does not fit the theoretical value. In this case 
of  191TIH=7.76 for the 81° wedge, however, measured points are not far from the 

corner and Love waves reflected at the corner superpose on Love waves travelling 
towards the corner. Accordingly, it is  difficult to distinguish reflected waves from 

incident waves. Numerical phase velocities agree fairly well with the theoretical curve 
as a whole, and the reflected waves may be concluded to be Love waves. 

   Fig. 10 shows the comparison between the reflection  coefficients obtained here
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    Knopoff  (1964a). length is 230 km,  GA= 2.2 and correspond-
                                                ing period is 54 sec. 

and the result obtained by Hudson and Knopoff (1964a). The abscissa is a velocity 
ratio  03,, where c is phase velocity. As the ratio  c/fl1 increases, the corresponding 

period becomes longer. According to Hudson and Knopoff, the reflection coefficient 
for 99° wedge is equal to that for 81° wedge. But it is easily seen in Fig. 10 that the 

reflection coefficients for acute-angled wedge are greater than those for obtuse-
angled corner. The reflection coefficient for 99° wedge decreases with an increase in 

period, however, the coefficient for  81° wedge is nearly constant irrespective of period. 
In Fig. 11 the reflection coefficient is shown as a function of wedge angle 0, as compared 

with that by Hudson and Knopoff. Our result shows that the reflection coefficient is 
not symmetric with respect to 90° over wedge angle range 72° to  108°. 

   Fig. 12 shows displacement field of Love waves propagating toward the corner and 

Fig. 13 shows displacement field of Love waves reflected at the corner, which travel in 
the opposite direction from the corner. Differences of the features between the two 

displacement fields are obvious. In Fig. 12 Love wave displacements, decreasing 
monotonously with depth from the free surface, becomes insignificantly small at the 

depth of about two times of the wave length. On the contrary, amplitudes of reflected 
waves shown in Fig. 13 are not so small at that depth and there exists some phase lag 

from those on the surface. In Fig. 12 the wave fronts of incident Love waves are 
straight while those of reflected waves in the lower layer are curved. It is inferred 

that the curved wave front is due to body waves converted from Love waves. 
   As a final check of the computation we adopted several grid sizes. Figures 14a 

and 14b show reflection coefficients as a function of grid points per wave length for the 

cases of  1.22, corresponding wave length  A  =230 km and  clfli=1.16,  A=141 km, 
respectively. In Fig. 14a there is a negligible difference between result obtained by 38 

points and that by 40 grid points per wave length. Deviations of the result derived 
by coarse mesh (26 grid points) from that by fine mesh (40 points) are 3% and 7% 

against the latter result for 81° and  99° wedge, respectively.



LOVE WAVES REFLECTED AT A  CORNER 63

 0  
1  I

20
 I

40

 

i
60 
 I

 

i
80 
 1

 

I
 100AX

 50At

0

 -20

 -40AX

Fig

 

. 12. Spatial distribution of displacement of Love waves before they reach the corner for the 
moment  t=504t, where  At is time increment. The wedge angle is  99°.  dx is mesh size, 

 e=3.86  km/sec,  A-90.8  90.8 km. Full line shows displacements in y direction and broken line 
shows displacements in the opposite direction.

 20—

40—

60

 80AX 

  Fig.

0

 290At

13. Displacement field of Love 
 290dt, c=3.86 km/sec.

waves reflected

80  100

at the 99° corner for the

 120AX

 moment t =



64 Y. NISHINO

 1.0

0.5

                      -o- -0 

           •  8=81° 

          o  9  •  99°

1.0

0.5

     — -o- - - -0

 9.81' 
 B°99°

20 30 40 20 30 40 

GRID POINTS PER WAVE LENGTH GRID POINTS PER WAVE LENGTH 

     Fig. 14a Fig. 14b 

Fig. 14. Effects of mesh size on the reflection coefficient: (a) for the case of  clfl,=  1.22, (b) 
   for the case of  c113,=1.16. The ordinate is the reflection coefficient and the abscissa is 
   number of grid points per wave length.

6. Conclusion 

   In this paper study of a numerical experiment on the problem of the transmission 

and reflection of Love waves in a wedge-shaped medium was carried out by the use  of 
a finite difference method. When we employ this numerical method, it is necessary to 

check the accuracy of computation. As stated in Section 4, the solutions with satis-

factorily high accuracy are obtained  for the problems in a layered half-space and a 

quarter-space with a superficial layer. Furthermore, in order to insure a high 
accuracy of the computed reflection coefficient of Love waves reflected at a corner, we 
take progressively finer meshes until there is no appreciable change in numerical 
results. 

   The results obtained are as  follows: 
   1) Reflection coefficient of Love waves for acute-angled corner is greater than 

that for obtuse-angled corner. This is inconsistent with the result by Hudson and 
Knopoff (1964a) that the reflection coefficient is symmetric about  90°. 

   2) The reflection coefficient for 99° wedge decreases as period of Love waves 
becomes longer, whereas that for 81° wedge is almost constant (i.e. independent of 

period) in the period range treated here. 
   3) As deviation of wedge angle from  90° becomes larger, less of the incident Love 

wave energy is reflected back into the superficial layer. The remainder of the energy 
is diffracted into the high velocity medium. 
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