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 Abstract: Earthquake generating stress fields around the Izu-Bonin-Mariana 
arc are investigated in detail. Region-by-region analysis of composite mechanism 
solutions, obtained from superposition of P-wave initial motions, is performed in 
connection with the plate tectonics theory. Composite mechanism solutions at shallow 
depths near the trench are well explained by the interaction of the Pacific plate and 
the Philippine Sea plate. Solutions in the Philippine Sea plate show the strike-slip fault-
ing with the tension axis (T-axis) in the direction of east and west. This implies that 
the stresses in the Philippine Sea plate are not directly induced by the movement of 
the Pacific plate. The regularity that the pressure axis is parallel to the direction of 
the local dip of seismic zone at intermediate and deep depths is confirmed only for the 
Izu-Bonin region where the seismic zone takes a simple, plane-like form. In the 
Mariana region where the shape of seismic zone is not simple but concaved eastward, 
the mechanism solutions that suggest tearing of the descending plate are found at 
intermediate depths. The orientation of T-axis in this region seems to have some 
correlation with contortion of the descending plate.

1. Introduction 

   Two typical types of focal mechanisms were found by Stauder (1968) for shallow 
earthquakes in the Aleutian island  arc: The seismically active zone at the inner margin 
of the oceanic trench is characterized by thrust faulting, which is considered to represent 

the relative motion of two converging plates of lithosphere. Earthquakes on the outer 
wall of the trench, where the oceanic plate begins to flex as it dips under the island arc, 

is characterized by normal faulting. The mechanisms of interaction between plates 
and of the flexure of a plate have been discussed by means of focal mechanisms of large 

earthquakes near the trench (Kanamori, 1970a, b, 1971a, b; Katsumata and Sykes, 
1969; Fitch, 1972). 

   The focal mechanisms of deep and intermediate focus earthquakes were studied 
by Isacks and Molnar (1971) from the standpoint of new global tectonics. Their 

discussions were focused mainly on the relation between stress fields within lithospheric 
slabs and the orientations of principal axes of stresses. Based on the theory of a 

finite moving source, the source process of  intermediate and deep focus earthquakes has 
recently been studied by means of wave-form analyses (e.g., Mikumo, 1969, 1971a, b; 
Fukao, 1970, 1972; Koyama, 1975). From their results, shear faulting in the source 
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region is considered to be an appropriate source model for intermediate and deep 
focus earthquakes at least as a first approximation. 

 In order to understand the driving and deforming mechanisms of plate, it is 
required to investigate focal mechanisms of earthquakes. Since there are few large 

earthquakes for which P- and S-wave data are obtained at widely distributed observa-
tion stations, an analysis of composite mechanism solution of small earthquakes is of 

great importance (Ritsema, 1955; Aki, 1966). Oike (1971) investigated the earthquake 
generating stress fields at intermediate and deep depths of all the seismically active belts 
in the world by using the Aki's method (1966). His results are consistent in a statisti-

cal sense with those of Isacks and Molnar (1971). 
   Topographic and geophysical features at the western margin of the Pacific plate are 

characterized by island  arcs, deep sea troughs, volcanic chains, and high-level seismic 
activities. Koyama et al. (1973) have shown the stress pattern in the northeastern 

Japan arc. Their analysis of deriving the regional stress fields is based on the method 
of composite mechanism solutions originally introduced by Ritsema (1955) and on the 

revised Aki's method. Recently Horiuchi et al. (1975) have investigated the stress field 

in the Kuril-Kamchatka arc by the method of composite mechanism solution. 
   In the present study earthquake generating stress fields in the Izu-Bonin-Mariana 

arc are studied. The deep seismic zone of this region is more complex in topographic 
feature than those of the northeastern Japan region and of the Kuril-Kamchatka 

region. A discussion will also be made on the relationship between the stress field and 
the shape of the deep seismic zone. 

2. Method of Analysis 

   About a thousand earthquakes are analyzed which occurred around the Izu-

Bonin-Mariana arc during the period from January, 1964 to March, 1969. Data 

pertinent to hypocentral coordinates during the period from 1964 to 1967 are supplied 
by Katsumata and Sykes (1969) and those during the later period are taken from the 
bulletins of the International Seismological Centre (I.S.C.). Epicentral locations of the 

earthquakes are illustrated in Fig. 1. 

   First, the seismic zone is divided into nine regions from A to I whose boundaries 
are represented by dotted lines in Fig. 1. The hypocenters of earthquakes included 

in a region are projected on a vertical section, which is indicated by each solid line-

segment from A-A' to I-I' in Fig. 1 and nearly perpendicular to the local strike of the 
trench axis. Projected hypocenters on each vertical section are denoted by solid 
circles in Figures from 2 to 10. Next, earthquakes which are projected closely to one 

another on a vertical section are taken as one group. P-wave initial motions from 

earthquakes in a group are superposed on a focal sphere. If the distribution of P-
motions for a group is similar to those for its adjacent groups, all of the groups are put 
into one. 

   After this careful grouping of seismic regions, the composite mechanism solution 

 for each group is obtained by the method of Horiuchi et al. (1972). Using the weighting
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  Fig. 1. Seismicity map around the Izu-Bonin-Mariana arc. 
     Solid lines of A-A' to I-I' indicate the strikes of vertical sections onto which the hypocenters 

     of earthquakes enclosed by dotted lines are projected in Figs. 2 to 10. Chained lines 
     indicate the trenches. Large and small symbols of circle, triangle and square imply 

      10 earthquakes and  1 earthquake, respectively. 

function  Wi introduced by Wickens and Hodgson (1967), the accuracy of the solution is 
indicated by SCORE defined as 

              SCORE = 50  (1+  (EWi•  sgn  Ri•  sgn  SO/E-Wi)  , 

 Wi  =  15'1(1—  1,5,1/2)+0.3  , 

where  Ri and  Si are the observed and theoretical amplitudes of P-wave initial motion. 

The theoretical amplitude  Si is so normalized that its maximum value takes unity. If 
the SCORE of the best fit solution for a group is lower than 65.0 or the number of  P-

wave observations is less than 15, the use of the solution for the group is abandoned. 
The best fit solution for each group is illustrated in Figures from 2 to 10, and their 

point source parameters are tabulated in Table 1. 

3. Composite Mechanism Solutions 

   (i)  Izu-Bonin region 

   Around the  Izu-Bonin arc (regions from A to D), the local strike of the trench is



4 Y. IZUTANI, J. KOYAMA, S. HORIUCHI and T.  HIRASAWA

Table 1. Composite mechanism solutions

A- 1 
A- 2 
A- 3 
A- 4 
A- 5 
A- 6

B- 1 
B- 2 
B- 3 
B- 4 
B- 5 
B- 6 
B- 7 
B- 8 
B- 9

C- 1 
C- 2 
C- 3 
C- 4 
C-  5 

C- 6 
C- 7 
C- 8

D- 1 
D- 2 

D- 3 

E- 1 
E- 2 
E- 3

F- 1 
F- 2 

F- 3 
F- 4 
F- 5 
F- 6 
F- 7 
F- 8 
F- 9 
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G- 1 
G- 2 
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the north. (to be continued)
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4. Composite mechanism solutions on 

the vertical section along C-C'.

almost parallel to the island chain and is nearly straight line running from north to 

south. Most of shallow earthquakes are located between the trench and the island 

chain, and the high seismic activity is concentrated near the trench. The vertical sec-

tions of  these regions are shown in Figures from 2 to 5. The three-dimensional 

variation in topographic feature of the seismic zone is significant at depths deeper

(continued) 
 Inc; inclination angle of an axis measured from the downward vertical. 

 N,; total number of observational data of  P-wave initial motions used in deriving a solution. 
 Ne; number of observational data inconsistent with the radiation pattern expected theoreti-

   cally for the best fit solution.
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   (ii) Mariana region 
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km at the southern Mariana (regions H and  I). 

   At shallow depths both the mechanism solutions of reverse faulting and strike-slip 
faulting are seen in regions E and F. Among groups having solutions of strike-slip fault-
ing, the group F-6 consists of earthquakes that occurred apparently in the Philippine 

Sea plate, while  E-1 and  F-1 consist of those located beneath the trench where the two 

plates, the Philippine Sea plate and the Pacific plate, are interacting with each other. 
The groups of shallow earthquakes in region G have no mechanism solution whose 
SCORE is higher than 65.0. At shallow depths in regions H and I, the reverse faulting 

is predominant. However, the mechanism solution for the group H-3 is somewhat 

peculiar and the orientations of P- and T-axes are in contrast with those for the group 
 H-1 that is adjacent to the  11-3. 

   At intermediate and deep depths mechanism solutions for groups E-3 and G-1 
are of down-dip extension type which is characterized by the T-axis parallel to the 
local dip of the seismic zone. The solutions for groups other than the E-3 and G-1
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show neither down-dip compression nor down-dip extension type but have comparati-
vely large strike-slip components. Around the Mariana arc the topographic profile of 

the seismic zone is not so simple compared with that around the Izu-Bonin arc. The 

complexity of the profile may be reflected on the composite mechanism solutions. 

4. Tectonical Implications from Composite Mechanism Solutions 

   Composite mechanism solutions obtained in the preceding sections are  briefly 
summarized as  follows: 

   (1) Solutions of reverse faulting with P-axis mainly in the direction of east and 
west are found at shallow depths near the trench throughout the  Izu-Bonin region and 
in some parts of the Mariana region. 

   (2) Solutions of strike-slip faulting with P-axis in the direction of north and 
south are found at shallow depths for groups of earthquakes that are located in the 
Philippine Sea plate. 

   (3) Solutions of strike-slip faulting, which have characteristics different from 
those of (2), are found at shallow depths near the trench in the Mariana region. 

   (4) Solutions of down-dip  compression type are found at deep depths in the 
Izu-Bonin region. 

   (5) Solutions of down-dip extension type are found at intermediate and deep 
depths in the Mariana region. 

   (6) Solutions, which show neither down-dip compression type nor down-dip exten-
sion type but have a significant amount of strike-slip component, are found at 
intermediate and deep depths in the Mariana region. 

   The mechanism solutions of large earthquakes in the region discussed here have 

been interpreted by Katsumata and Sykes (1969) and by Fitch (1972) in connection 
with the movement of the plates. Since the large earthquakes whose mechanism solu-

tions are obtained from the P-wave initial motions of individual earthquakes occur 
mostly near the boundary of the plate, their discussions are limited to the interactions 

at shallow depths between the Pacific and the Philippine Sea plates. In the present 
study, however, the earthquake generating stress fields have been obtained in more 

detail than those of their studies. 
   The pressure axis in the direction of east and west at shallow depths stated in (1) 

indicates the existence of thrusting force between the Pacific plate and the Philippine 
Sea plate. This may further be regarded as a manifestation of the underthrusting of 

the Pacific plate beneath the Philippine Sea plate, if we take the nodal plane dipping 
toward the island arc to be the fault plane. The solutions of the strike-slip faulting 

near the trench stated in (3) imply the existence of the relative horizontal-motion 
between the Pacific and the Philippine Sea plates. The interpretations given above 

for the earthquake generating stress fields are similar to those by Katsumata and Sykes 

(1969) and by Fitch  (1972). 
   The solutions mentioned in (2) give an interpretation about the stress fields in 

the Philippine Sea plate. The P-axes are all in the direction of north and south, and
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mainly by the  pressure of the Pacific plate moving toward the west or the
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    T-axes relative to the seismic plane. 

the T-axes in the direction of east and west. These trends of the P- and T-axes are 
inconsistent with the idea that the stresses of the interior of the Philippine Sea plate are 

induced mainly by the pressure of the Pacific plate moving toward the west or the 

northwest. In the  ease of stress fields in the northeastern Japan, Koyama et  al. (1973) 
obtained, from composite mechanism solution, P-axes generally parallel to the motion 

direction of the Pacific plate against the northeastern Japan arc. This parallelism 
suggests that there is a direct relationship between the motion of the Pacific plate and 
the stress fields in the northeastern Japan arc. On the other hand, in the present case 

there exists no direct effect of the motion of the Pacific plate on the stress field in the 
Philippine Sea plate. It is possible to consider that the extensional stress in the 

direction of east and west results from the descending motion of the Philippine Sea 

plate at the western margin beneath the Ryukyu trench. 
   We now discuss stress fields at intermediate and deep depths. Three typical 

composite mechanism solutions are taken up in the items from (4) to  (6). The 
regularity in orientation of P- and T-axes relative to the local dip of the seismic zone 

can be seen more clearly in Figs. 11(a) and (b). In the figures the local dip direction 
and dip angle of the seismic zone are taken, for convenience sake, to be  —90° and 45°, 
respectively, and the orientations of P- and T-axes are shown relatively to this reduced
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seismic plane. Here, the local dip direction and dip angle of the seismic zone at the 

focal region for each composite mechanism solution are estimated from the profile of the 

seismic zone projected on the vertical sections. 

    Fig. 11(a) shows the  P- and T-axes in solutions for the Izu-Bonin region (regions 
from A to D), where the seismic zone is planar in comparison with that in the Mariana 

region. From this it is evident that the P-axes are all parallel to the local dip of the 
seismic zone. This regularity of the P-axis for intermediate and deep earthquakes has 

already been pointed out by Isacks et al. (1968),  Isacks and Molnar (1971), and Oike 

(1971). 
    On the other hand, the orientations of the T-axes do not show any apparent 
correlation with the local dip of the seismic zone. Comparing the local profiles of the 

seismic zone with one another among the neighbouring vertical sections from A-A' to 

D-D' (cf. Figs. 2 to 5), it is seen that the seismic zone is more contorted at large depths 
than at relatively shallow depths. It can be recognized from Fig. 11(a) that the 

T-axes for groups at relatively large depths (for example, B-8,  B-9, and C-6, in 

particular) are parallel to the local strike of the seismic zone and, consequently, the 
B-axes (null axes) are perpendicular to the seismic zone. On the contrary, the T-axes 

for groups at relatively shallow depths (for exmaple, A-5, B-5, and C-5) are 

perpendicular to the seismic zone. Isacks et al. (1968) have noted on the irregularity 
of T-axis that the difference between the intermediate and the least principal stresses 

is less than the difference between the greatest and the intermediate principal stresses, 

and that the stress state may be quite variable owing to contortion of the slab. The 

present result suggests that the orientation of T-axis is regulated by the spacial rate of 
contortion of the descending plate. 

   As shown in Fig. 11(b), the tendency in orientation of the principal axis of stress 

in the Mariana region is quite different from that in the Izu-Bonin region, and the  P-
axis has no regular tendency. As stated in (5) and in the preceding section, the T-

axis for the group G-1 is nearly parallel to the local dip of the seismic zone. The 
region G is situated at the middle of the Mariana arc and the seismic zone is almost 

vertical below about 200 km. The result for the orientation of T-axis suggests that 
the descending plate is in a state of extension at depths approximately from 200 km 

to 300 km. 

   The complex feature in topography of the seismic zone is reflected on the 
complexity of the stress field in the Mariana region. From the mechanism solutions 

obtained for the groups  F-8 and H-5 at depths of about 200 km, it is apparent that 
the orientations of P- and T-axes are opposite in these two cases. If we take nodal 

planes whose strikes are nearly in the direction of east and west as the fault planes for 
both the solutions, the solution for F-8 shows the left lateral movement and that for 

H-5 does the right lateral. These motion directions are consistent with the topographic 
feature of the seismic zone that the deeper part of the region G is pushed out eastward. 

This suggests that tearing of the plate occurs in the regions of F-8 and H-5. 
   Isacks and Molnar (1971) introduced the concept of tearing of a plate in order to
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explain the deformation of a descending plate at the triple  junction of plates where 
three plates are converging. They showed an example; the Pacific plate is tearing off 

the Boso peninsula, and one of the torn parts is down-going beneath the northeastern 

Japan arc and the other beneath the Philippine Sea plate. It is suggested from the 
present result that tearing of a plate takes place not only at shallow depths near a 
triple junction but also at intermediate depths where the seismic zone is considerably 
deformed. Considering the solution of down-dip extension type for  G-1, it should 
further be noted that the gravitational force may play an important role in deforming 

the down-going plate of lithosphere in the Mariana region. 
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