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 Abstract: Wind waves are special phenomena having the characteristics both 
of water waves and turbulence. A new conception on the growth process of the wind 
waves is made, not on the standpoint of treating the growth of individual waves 
deterministically, but on the standpoint of treating the processes  macroscopically

, 
and several principles have been obtained. Although very simple , they closely 
correspond to experimental facts. 

 Firstly is obtained the three-seconds power law expressed by  H*---BT*312 , where  H*
..--gH/u4,2 represents the dimensionless significant wave height , normalized by the 

acceleration of gravity, g, and the friction velocity,  u,k, and T*.—.---.-sT/u* the dimension -
less significant wave period, and B a universal constant having the value of 6.2  X 10-2 . This is a remarkably fine relation, derived from a hypothetical concept that 
the dimensionless rate of work done by the wind stress to the wind waves is proportional 
to the dimensionless wind stress, u**...=t-u,03/gP, where  v represents the kinematic viscosit

y of air. Using this relation, the significant wave steepness  8 is  given by  5----27eBT*-1/2.    A 
combination of the three-seconds power law, and the similarity of the  spectral 

form of wind waves, leads to the following concepts on the energy spectrum of wind 
waves. In the gravity wave range, the gross form of the spectrum is proportional 
to  gu*cr-4, where a. is the angular frequency , and the factor of proportionality is 2.0  X 10-2. The wind waves grow in such a way that the spectrum slides up , keeping its 
similar form, along the line of the gross form, on the log  0-log  o diagram , where  cp is 
the energy spectrum density. The value of  p, at the peak frequency of the fully 
developed sea, is proportional to  g2a-5, the factor of proportionality being 3 .8  X  10-2. 
The  fine structure of the wind waves, in purely controlled conditions such as those in 
a wind-wave tunnel, shows a characteristic form oscillating around the  cr-4-line , and th

e form is always similar in the gravity wave range. As the wave number becomes 
large, the effect of surface tension gradually transfers the  cr-4-line to a  cr-5/3-line , and th

e  r-5-line to a  v-7/3-line. 
    Concerning the relation of the sea surface wind stress to the state of wind waves, 

it is shown that the dimensionless roughness parameter ,  21/42.0/v, is determined by a 
function of two dimensionless  parameters  : u*L/v and  S/p

wgL2, where L represents th
e significant wave length , S the surface tension and  pw the density of water.

                            1. Introduction 

   Examples of stroboscopic pictures, taken in our wind-wave tunnel
, of white 

neutral particles showing path lines of water particles in wind waves
, demonstrate that 

the skin flow is large, and that particles which have been at the surface f
requently 

enter into the subsurface, and particles in the subsurface go up to the surface
. When 

the breaking of wind waves occurs , the turbulent structure of this kind is much more 
evident. Thus, the standpoint of the present paper is to treat the field 

of wind waves 
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in a macroscopic feature, which comes out after reorganized through the turbulence, 

to obtain macroscopic principles of the growth of wind waves. 

   The momentum is supplied by the wind to the sea, and enters to waves and cur-
rent, its working becomes the energy of waves and current, and these physical processes 
must be determined by the fields of local wind and waves. Namely, the budgets of 

momentum and energy should be balanced locally. To obtain their quantitative 
structure in macroscopic forms is the objective of the present paper.

2. Local balance, variables 

 In a macroscopic expression, the mean wind stress  7., or the mean vertical trans-

port of mean horizontal momentum of the air, per unit horizontal area of the sea surface 

per unit time, goes partially to waves  (Tu,) and partially to current  (Ta), namely, 

                   (to water) (to wave) (to current) 
    Force: T =  T  w  . (1) 

The notation of  Tw is used here for this specific meaning. The working performed by 

the force to the water is, 

                   (to water) (to wave) (to current) 
       Working:  r  (uo+u,)  TU0 +  TUE  . (2) 

where u0 is the wave current, or the average horizontal velocity of surface water 

particles which occurs by the existence of waves, and  u, is the rest of the average water 
velocity. Consequently,  Tuo goes into the wave energy to become  dEldt: 

 dE  

 dt —Tuo  • Rd, (3) 

where  Ret is the retention function and represents the residue of the dissipation of 
the wave energy. 

   Now the variables are rearranged. Dimensional variables are the duration  t and 
the fetch F, which are both independent variables; characteristic wave period T, wave 
height H, and  u, are dependent variables; T is considered as the external condition; 

and there are physical constants g,  pw,  pa,  flu),  pa in the usual meanings, and the surface 

tension S. There are thirteen variables. But the ratios  p„,1p, and  ,u,„/µa are constant 
for given temperature  and salinity, so we may eliminate  pi„ and and and use only p(= 

 pa) and  a  (=Ita). We may further eliminate p to obtain v  (=It  p) and  u*  (=VT/p) 
as usual. If we are concerned solely with wind waves, we may construct seven dimen-
sionless  variables: the duration t*,..gt1u* and the fetch  F*-a-gFlu*2, which are independ-

ent variables, the wave period T*a-.-.gT1u*, the wave height H*,_--gHlit*2 and the ratio 

Y-7_.--TwIT, which are dependent variables, the wind stress  14**  u*algv as the conditioning 

parameter, and lastly,  S*EaSlp,„g3T4 of which the meaning is given later. 

3. The three-seconds power law 

   Now, the working to the waves  Tu, in Eq. (2) is normalized by pgv. Namely, the
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u0 is approximated by the wave current of Stokes wave for the characteristic waves 

given by 

 7r3H2 
 uo  =  K2a2c  — (4) 

                                      gT3  ' 

where  ,c is the wave number, a the amplitude and c the phase velocity, then follows 

 TUo 7r3u**H*2 
                                                                                             ____ 

         pgvT*3(5) . 

Now an assumption is  raised: "the dimensionless working to the waves is proportional 
to  u** or the dimensionless wind stress" (the second concept of Toba, 1972). It should 

be noticed that this assumption implies that the working to the waves is related only 
with wind stress  u*, and not with the present state of waves. Then immediately

H*
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follows the three-seconds power law: 

 H*  =BT*312  ,  B  =  0.062  , (6) 

stating that the H* is proportional to the three-seconds power of T*, where B is a 
universal constant which has been determined by actual data of wind waves. 

   Figure 1 is an example of the actual data, showing the three-seconds power law. 
Black triangles are from a wind-wave tunnel experiment (Toba, 1961), black circles 

are from our observatiou at Shirahama Oceanographic Tower Station (Toba et  al., 
1971), white circles are points obtained by the use of empirical formulas by Wilson 

(1965) for significant waves, and white triangles obtained by the use of similar empirical 
formulas by Mitsuyasu et al. (1971). Points for situation including swells show some 

 deviation; otherwise, all of the data here seem to support the three-seconds power 
law. Figure 1 includes almost full ranges of T* and H* for wind waves. 

   The three-seconds power law is accompanied by the following lemmas. 

               Lemma 1:  14,—  7r3B2u*  =  0.12u*, (7) 

 H  271-.8                  L
emma 2:(8)                                           Tc .12 ' 

and 

          Lemma 3:L 1uH T*1/2*  . (9) 
 v  27z-B 

The first one postulates that the wave current  u, is always proportional to  u*. The 
second one gives the form of steepness. Namely the steepness of significant waves
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Fig. 2. Lemma 2 of the three-seconds power law for wind waves. 

   proportional to the root of the dimensionless period T*.

   200 

The steepness  a is inversely
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is inversely proportional to the root of T*. The third one is the relation between two 

dimensionless  variables:  u*LIv and  u*H1v. 
   In Figure 2 is shown lemma 2. The data is the same with before, and points 

including swells show again some deviation. The meaning of the three-seconds power 

law is considered as follows. Firstly, it has diminished the number of dimensionless 

variables by one, and secondly, it gives an implication about the mechanism of growth 
of wind waves. 

4. Spectral form 

   Now we proceed to the spectral form of wind waves. The three-seconds power 
law may be written in a dimensional form by 

 H2  =  B2gu*T3. (10) 

Then we convert T and H to the peak angular frequency  up and the spectral density 
 by 

                                            (11) 

and 
          co H2 H2 

       Oda— (12)                            2 (2.83)2 16 

and see how the point  (a  p  ,  Op) moves or grows on the logarithmic  (a-c6)-diagram, when 
the point (T, H) moves on the logarithmic (T-H)-diagram, according to the three-seconds 

power law. 
   We assume the similarity of the spectral form of pure wind waves on the logarith-

mic  (a-q5)-diagram (the fourth concept of Toba, 1973a). Then the normalized  95 and 

 a, namely, 

                                           (13) 

and 

 a 

 = (14) 
 ap 

give a constant value of the  integration: 

                     1  
 = Oda = constant =  A  . (15) 

 o 'PPP  o 
From this form, the line, on which the peak point  (a  p,  p) grows, is obtained as 

                =  app*a  1,-4  . (16) 

The value of A, consequently the value of the constant ap, has been determined by 

actual data as 

 n-3.132 
               ap — 2A — 1.173.B2 =  0.13  . (17)
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   As will be shown later, actual gross forms of the spectra obtained from the wind-
wave tunnel lie around a line parallel to the peak's line. Namely, the gross form is 

given empirically by a similar form given by 

 cbg  aggu*a-4 (18) 
and 

                      1 
                     ag =-6=2.ux 10-2  • (19) 

   The peak point for fully developed sea, or the terminal of the growth of the peak 

point, is shown here by the subscript 1, or by  (a  950. Using the empirical value of 
 T1*  : 

 27r  T
1*  = X 1.37 ,(20) 

where CD is the drag coefficient,  a, is given by 

 27r 0.029g 
 a1=  (21)  T

1  u* 

Eliminating  u* from Eq. (21) and Eq. (16), since  951 is the terminal of  4p, the equation 

of  0, is given by 

 451.  (al) =  a1g2(71-5 (22) 
and 

 ai  =  3.8X10-3. (23) 

   The effect of surface tension is expressed by replacing g by 

 SK2 
 g*  g+ (24)                                      P

w 

for infinitesimal waves, where  is is the wave number and may be expressed by  Cr as the 
solution of the cubic equation of  fc: 

 S 
  K3+  gx—a2 ------  0  , (25) 

 Pu' 

by the following equation: 

                               a

g2                            2  K  = f(a*) 
                    1/2 1/31/21/3 

        AO)102+(,*4   + 1042_ (04+   27 )27)1 

 a 

 * 

 am                 = 

and 
                                           1/4 

        a.--=1/2g  Pwg   (26) 

Then the equations for  Op,  ch  g and  01 are given by
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 cbp =  apg*u*or  p-4 

 cbg =  agg00-4  , 

 Cba.  (cri)  aig*2cr1  , 

the equations on the  (0-K)-space are given by 

 2SK  p2              43,0=—1apg*-112u*  (1 ± 
           2Pt. g + SK 

                                  2SK2  &g =__ agg*-1/ 2u*  ( I ± 
 2  p,  g+  SK2 

           1 2SK12            ~xl(Ki)— al  (  1  +   2pu,g+ Sic?K1 — 

capillary wave range of  g<SK2I  tow, these equations 

                             S  1/3 
 (f) ap    u*ap-8/3 

                               w 

                              S 1/3 
                    (frg  ag   U*CI-8/3 

                            Pw 

 951(60 = S 2/3 -7/3 

                                                                                I 

 Ptv 

                                          112 

                      95,cp  =2—3apSPwU*ICp-7 

                    3                   (15,cg ag (13S1/2                                           1.5-' U*K-71: 
 2 

                       3   O
K,  (xi)  = %xi-3  ,

OF WIND

  Kp-5/2 ' 2 
^K p 

  ) K-5/2 SO 

)K1-3 .

WAVES

are given by

 67 

(27)

For

and 
                                               112 

                        95„p23ap( PSw•u *lc1,-712 , 

 3 

                                               1/2 

                                               K                          g 2S a  g(21v)14*K -7 /2 , 

 95„,  (xi)  2  %xi-3  , 

respectively. 
   In Figure 3 are shown Eqs. (27). The dotted lines shoN 

 u*. Namely, the peak point grows up on these lines, up to  t 
line for  J is reached. The gross form is shown by the  thin 

This is just a vertical displacement of the  corresponding  do 

than about 30, the effect of the surface tension is seen. 
   Figure 4 shows an example of the actual spectra of  win( 

tunnel. The  u*, determined from the wind profile, is  78.6  crr 

m. The solid line shows the gross form equation, or  the  cf,, 

  * Equations  (2.26) through (2.28) of Toba  (1973a) are revised  here 
    Mitsuyasu and Honda (1974). 

 ** Equations (2.34) through (2.36) of Toba (1973a) are revised here.

 (28)*

(29)

 (30)**

show  Op for three values of 
to  he point where the thick 

 ain  ine, for  u* of 50 cm/sec. 

 dotted line. For a larger 

 wind waves, in a wind-wave 
 3  m/sec and the fetch is 6.9 

 le  cf,g-equation, which has a 

 lore according to comments by
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  Fig.  3. Peak values of the energy spectra of wind waves grow along the dotted lines, the thick 
     line being the terminal. The thin line is an example of the gross form of the spectrum. 

grdient of a-4, and the broken line indicates the  951-equation, which has a gradient of 
 a-5. The gross form of the spectrum lies around the  95g-equation up to large values 

of a of 125. Figure 5 shows another example. Quite similar situations may be seen 

for various combinations of  u* and F. 
   We may see an oscillating character in the spectrum. Figure 6 shows three differ-

ent examples of the spectrum, in a normalized presentation. The capillary range is 

omitted here. The solid line shows again the gross form equation of the gradient of 
 a-4. The second peak is seen at  2ap, and the third at  3a  p. The entered short lines 

have gradients of  a1° and  a-10, as an empirical fact. When the spectral form grows up 
along the  a-4-line, the phenomena of overshoot and undershoot may be observed for 

each fixed frequency, since the spectrum grows in such a way that it slides up, keeping 
its similar form, along this line of a-4.
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An example of the energy spectrum of wind waves in a wind-wave tunnel. The solid 

shows a  0-4-line for the gross form, and the broken line a  0.1-5-line as a reference.

   All of these examples have been taken from wind-wave tunnel experiments, where 

constant winds blow. In the actual sea, the wind is always fluctuating with space 

and time. Consequently, the pure spectral form of this kind tends to be obscured. 

5. Sea surface wind stress 

   Now we turn to the problem of the sea surface wind stress. In our treatment 

so far,  u* has been used as the conditioning parameter. But the problem of drag 

coefficient CD, which relates the wind speed to  u*, has been for long time in a confused 

situation. The problem has three different aspects. The first is the problem of 

measurement techniques. The second is related to the thermal stratification in the 

lowest atmosphere, The third is the relation between the wind stress and the present
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    Fig. 5. Another example of the spectrum. 

 . Here we will confine the problem to the third one. 
surface, the dimensionless velocity  ulu* is expressed as a function 

height  u*.21v as is well  known: 

              u* 

               t(uP*z  \.                                  (31) 

surface, the function should contain two more  parameters: 

 uf u*z U*E" 

 u, 
        , (32) 

  * v 

ht of roughness, and H represents the type of roughness. Over 

 .vo parameters may be replaced by  u*Ltv and  Slpu,gL2, namely,
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            u — f/u*z, u*L S 

  3 

      u* v v'pt„gL2i'(33) 

is the characteristic or significant wave length. 

Eq. (31), the logarithmic law is obtained as is well known: 

         u 1    — In  u*z ,13=0.111,(34) 
             u*k137, 

 .s von  Karman constant. For Eq. (32), it is modified to 

          u  1 z 

 —  

 uk Inz,  —(35) 

    * 

 lucing  zn, the roughness parameter, which represents the vertical shifting of
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   Consequently, the dimensionless roughness parameter  u*zolv should be a function 
of  u*Elv and 11: 

 u*zo 6   = fnu*ll)  - (37) 
Over wind waves, this should be a function of  u**, T*,  H*,  r, and S*. However, as 
already stated, H* is expressed by  T* by the three-seconds power law. The r is also 

expressed by T* (Toba, 1973). Consequently,  u*zolv should be a function of  u**, T*, 
and S*. Corresponding to  u*E.  Iv, we may construct  u*L/v from  u** and T*. According 

to lemma 3 of the three-seconds power law, we may also use  u*Hlv instead of  u*Lfv. 
Also,  S* corresponds to  IL The  S* or  SL*  : 

                       SL* = (38) 
                                   pg1,2 

has a meaning of the ratio of the surface tension term to the gravity term in Eq. (24), 
namely, 

  =  (27r)2Se  . (39) 
 Ptvg 

It represents the relative importance of capillary waves in the present state of wind 

waves. In conclusion,  u*zolv should be expressed by a function of two dimensionless 

parameters  u*Llv and  Se  : 

                       u*zo /  Lu*           fS

L                                         pu,gL2 

   Figure 7 clearly shows this situation. The data contains wind-wave tunnel 
experiments by Toba (1961) and by Kunishi (1963). The entered figures show —log 

SL*. At the same time, the broken line indicates the rate of breaking crests. It seems 
that the rate is also expressed by the two parameters. 
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