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 Abstract: The structure of the steady state boundary layer between a magnetic 
     field and a hot plasma is described in a one-dimensional model. An arbitrary velocity 
     distribution is assumed for particles in the plasma. The problem is formulated by 

      combining the equations of motion, Maxwell's equations, and the equation of continuity. 
     It is shown that an equilibrium boundary layer is established when the initial velocity 

      distribution of protons is equal to that of electrons. The structure of the magnetic 
     field in the layer is evaluated for some typical velocity distributions. The characte-
     ristics of the layer are shown to be quite dependent of the velocity distribution function. 

                             Introduction 

   The confinement of a magnetic field by a plasma flow is of the fundamental interest 

in the magnetospheric physics. This  problem was first considered by Chapman and 
Ferraro (1931) and succeeded by a number of authors. As a fundamental approach, 

the interaction between a cold plasma flow and a magnetic field was studied by Ferraro 

(1952), Dungey (1958), Mjolsness et al. (1961),  Longmire (1963), and Watari and 
Kamiyama (1971). However, the problem is needed to be re-examined by considering 
the effect of a velocity distribution of the particles in a plasma. Under this situation, 
attempts were made by Grad (1961), Hurley (1963), Longmire (1963), and Sestero 

(1964) to describe the problem, but the exact solution has not yet been obtained. 
   For a better understanding of the problem, the analysis is simplified by employing 

a one-dimensional model in which all quantities depend on the single variable x. The 
magnetic field B is composed of a given uniform field and the field induced by the 

diamagnetic current, and is assumed to be directing to the z-axis in the right-handed 
coordinate system. When the boundary surface lies in the y-z plane, the electric field 
E resulting from the charge separation is in the x-direction. A plasma flow coming from 

 x=—oo is assumed to be composed of protons and electrons having the common velocity 
distribution function  f(V). These conditions are  sufficient, in general, for  finding a 
unique solution. This paper analyzes the magnetic structure of the transition layer 

for some typical velocity distributions. 

                            Analysis 

   Considering that a proton and an electron have a same initial velocity  Yo=(Vo., 
 17,„  V0) at  x=--co, the velocity in the layer is given by the equations of motion for a 

proton (mass M) as
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              17+ Vy +V!Vg--2e-0 (1) 

        VY=--  Voy—  (2) 

 Vx =  Vox (3) 

and similarly for an electron (mass m) as 

 2e  
         4+ V;+v:Vg+(4) 

 e  

    vy=Voy+  
MC(5) 

 vs  =  V  os (6) 

where, e, c,  0 and  n are the electric charge, the light velocity, the electric potential, 

and the y-component of the magnetic vector potential  (B=A/dx), respectively. From 
these equations one finds directly the conservation of momentum in the y-direction, 

 MVy+mvy.---(M+m)Voy (7) 

and the conservation of the initial kinetic energy, 

                2               1mv2+1 -2mv2 = 2(m+ynr)vg (8) 

       - 

 or from  V„=v,=V„, 

          2   111           —m(Ti+ v2Y2) +—7r1(4+ v2Y) =2—(m+ m)(V8,+ V8y) (9) 

Substituting (7) into (9), one obtains 
 -11=  nx-P2e2+122(-178x_  tt2e2_4) (10) 

where E-----vy-Vo, and  µ2=m/M. Since  v, does not seem to exceed  V,,, the approxima-

tion can be made that 

 17=Tigx—p2e2 (11) 

At the turning point of a proton,  Vx=0,  E=Voxlit, and  V  y=Voy-iuV„, then  vx=0. 
This indicates that a proton and an electron having a same initial velocity penetrate 

into the same depth. 
   At an arbitrary point x, the number of protons, dN, having initial velocities 

between V and  Vd-dV is given by the equation of  continuity as 

                      dN =  V  „(17,—  itt2e2)  -1/2.1M  d3V 

If  Vex denotes the initial velocity of a proton which turns at x, protons having initial 

velocities exceeding  Vc, penetrate to further depths. Thus, the proton number density 
N(x) contributed by the inward flow is expressed by the integrated form as
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                  co co  co 

 N  (x)  = I I v p2e2) —1/ 2 f (V) d3V 
                           Vc, —co — co 

 co                     = 2Noi v x(ri—a2712)—"2 f (V x)  dV  x (12) 
 . where 

 fcn—Nof(v.)/(vy)fcv.),  ff  f(V),)/(Vs)dVydV,= 1 
and  No is the proton density in the plasma flow moving towards the boundary. The 
factor of two appeared in the expression (12) is introduced by a consideration of the 

return flow. Denoting the electron density by n, the electric charge density is given 

by 

 p  e(N  —n) (13) 

From the condition of over-all charge neutrality, I p  dx=0  , the electric field at x is 
given by 

                                                                      oa 

               E(x)  —47r1  p dx (14) 

Substituting (2), (3), (13), and (14) into (1), one obtains the  expression for the electron 
density, 

                            d2           n(x)  =  N  (x)  + 8
7-te2dx2[(1—,u2)e2+2Voyel 

                                 m  d2   N  (
x)  +  8

7re2  dx2 ±'795)2                                           (15) 

Since the diamagnetic current in the layer flows in the y-direction, its y-component is 

              j =  1- (NV  y—nvy) (16) 
and the magnetic field satisfies 

                       dBd2n           =  —47E1 (17) 
                     dx  dx2 

Then, combining (2), (12), (15), (16), and (17), we  find that the magnetic vector poten-

tial satisfies 

   —  47re (NV—nv ) 
   dx2 c 

                                        co              87ge2N°njV, (V;2,— a27)2) —1/2f(V x)  d  V  „ 
                                an                    mc2 

  (I70ed2                                       V+ e2  2ec ̂Y MC ) dx2("  me(18)
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When  uy<c2, the  integration of (18) under the boundary conditions that  n=dniclx=0 
at  x---co gives approximately (see Appendix) 

        00 03 
      dn 

 dx —1/167tMN0Ti;f (V x)dVI V x(V—a491/2 f(Vx) dV,}112(19) 
 0 Thus only the  x-component of the velocity is participating in the interaction with the 

magnetic field. Then, for a given velocity distribution, the vector potential  n is 
uniquely  determined as a function of x. The solutions of (19) will be evaluated for 
some representative velocity distributions in the following section. 

         Structure of Magnetic Field within the Boundary Layer 

(1) Rectangular distribution function 

   Let us first consider the distribution function  f(V  „) given by 

 f  (v  x)  =  {(V2-171)-1  (V1�Vx�V2)                                            (20)  0  ((V  
„<17  1,  V  2<V  x) 

as illustrated in Fig. 1 (a). The deepest penetration point reached by particles having 
the largest velocity V2 is assigned to be  x=0, and a plasma is assumed to be emitted 

from  x=-oo. Then (20) becomes 

         dn167eMNo1/2ifV22           21/2 

         dxV—V)Vx dV  „—.1 V x(9—a2n2)1/2  dV  xl (21)              2,                                    vi 

where  S=an when  V,<ansV  2, and  S=-V, when  an<V1. Since  T=V 21a and  S=V2 at 
x=0, the magnetic field intensity at x=0 is given by 

                                                              1/2  Bo= (—dn 3 7rMNo(V1 +V LT/2+ VO} (22)       dx 
 x=0 

which in turn leads to the pressure balance equation 

 BD  2 MN
°(V1+V,V2+VO(23)  87e  3' 

                               Introducing the following variables and parameters, 

                       a2n2)1/2        Y= (1—XR=—a=i                                                    -V— 
         V2AR , V2 
 -1/2 

                 2             A,R={-3(1+ a +a2)}A.ande 2)1/2 
                                                  87rNe2                                                             0 

we find Eq. (21) is reduced to the dimensionless equations 

 Y3  -1/2  Y(1—Y2)-1/2}1- 1— a3dY = —dXR (24) 
when  V  isans  V2 or  OS  Ys(1—a2)112, and
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 f(Vx) f(Vx) 

                                       , 
    v2,Li  N  o 

                            -1114; ieri/` 

                            

-1.4' 

 --1-  vx  Vx 
         0 ‘44 V2 0 VO 

         (a) (b) 

  Fig.  I. Initial velocity distribution functions given at  .x----00; (a) the rectangular distribution 
     and (b) the Maxwellian distribution superposed on a bulk velocity  V0. 

 —1/2                         Y3(a2-1+ y2)3121  y(i_  y2)-1/2  11—  +‘ dY =—dXR (25) 
 1—a3  1—a3 

when  all  <V  , or  (1—a2)112<  Y�1  . 

   Numerical integrations of Eqs. (24) and (25) have been obtained for several values of 

a. The magnetic fields normalized by their boundary values  Bo are shown in Fig. 2 
as a function of the converted distance  x/A. The result shows that the thickness of 

the boundary is remarkably influenced by the number density  N, and by the para-

meter a characterizing the distribution function. The thickness decreases as a tends 
to 1. In the extreme case when  a=1, the result is coincident with that obtained in 
the study of the interaction with a cold plasma flow. 

(2) Maxwellian distribution 

   Fig. 1 (b) illustrates the Maxwellian distribution given by 

 m-  1/2            f— (  27rkT  x)  exp  [  M          " x-I 7 0)2]  2kT ,(V—                                            (26) 

where  Tx is the effective kinetic temperature of a plasma measured in the direction 

perpendicular to the boundary surface and  vo is the bulk velocity of a plasma moving 
in the x-direction. When the velocity distribution is thermally isotropic,  Tx may be 

replaced by  T. If  MV,7  2  >kT„ the approximation may be made that  j°  .f(V  %)dV  zr,O. 
Then, one has 

     . . 

                 If (I 7.%)d1 7, =  j  f  (Vx) dIT x          -00  o 

and (19) becomes 

     cin  7r/1/3N1/2 ir      _ 2 (802                  vx exp  [—   (Vx—Vo)  21  dV„ 
   dxkTxl o 2kTx 

 oo  1/2  —  j V z (T1—a2n2)1/2 exp [—  M 2kT(Vx—V°)21 dV x I (27) 
 an ,
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the boundary layer formed by the interaction of 
velocity distribution is assumed. The field inten-
normalized by  Bo and x, respectively.

If the penetration depth of particles having the mean velocity  Vo is assigned to be  x=0, 
the deepest penetration point of the  injected flow becomes x=  +oo, where the magnetic 
pressure balances the dynamic pressure of the flow. The pressure balance equation 
can be btained easily from (27) as 

 BS 2M N1/2r°aM
7e-= MN°kT xJ  o)v! exp F ____ (V x—V 0)2idV x 

         8 

                     L 2kT , J 

              =  2N  °MPS  +  2N okT  x 

 —2N  0M  (11+  V%) (28) 

where  V  ,x denotes the x-component of the thermal velocity  V  i, and is given by  Viz= 

 (kT  xlM)112. Eq. (27) is also transformed as 
 co  —1/2 

 {1—   11 \ j  -7, _I (1 +r)[(1 +1)2 _Z2]1/2 exp (—E81,2) all  dzd y                                                                      = —. .m 

                                           (29)        (1+ i3-)1/ T s-1 
where 

              Z = anIV 0 , Xm — xpt,m ,  r= (V x—V 0)11/0 

 /9  =  MV812kT  x and  XM = (2+  1/13)-1/2 X 

Under the condition that  Z=1 at  x=X  ni,---0, the integrations have been made  numer 
ically for several values of  13. The results are shown in Fig. 3 in units normalized by 

 Bo as a function of the converted distance  x/A. The magnetic shielding distance 

increases towards smaller values of  13. This result is consistent with that obtained on 

the basis of the rectangular distribution.
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3. For representative values of  the  -factor  which is given by  /1/1702/(2kT„), distribution 
of the magnetic field in the boundary layer formed by the interaction of a plasma flow in 
which the  Maxwellian distribution is assumed. The normalized units are employed as in 
Fig. 2.

                          Summary 

   The steady state transition layer formed by the interaction between a magnetic 

field and a plasma flow having an arbitrary velocity distribution is  examined in a one-

dimensional model. It is shown that the self-consistent solution of the nonlinear 

plasma-field equation can be obtained for any velocity distribution given at a point 
sufficiently distant from the boundary region when the initial velocity distribution is 

assumed to be common both for protons and electrons. The quantities participating 

in the interaction are essentially the density of the flowing plasma and the velocity 

component normal to the boundary surface. It is also noted that the equation of 

continuity in the entire velocity space is not satisfied in the boundary layer, since the 

penetration depth of particles ranges widely according to their initial velocities. The 
thickness of the layer is shown to be remarkably dependent of the velocity distribution 

function. The thickness minimizes when a cold plasma flow incidences.
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                           Appendix 

   Eq. (19) in the text is derived through the following steps. 
   Multiplying by  dnldx, one finds that (18) becomes 

 d( do  )287re2dom2 d jd                                     (V+   e n)2  2(Al)  2  dx  dxme dx 8e2 dx dx 

The integration of (Al) under the conditions that  n=dr)  Idx=0 at x=—co gives exactly 

 ,7  2 oo oo    =  167-eMN,{  -1/1/(Vx)dV„—  f  Vx(V;—a2712)1/2fiVx,  )dV,} 
        dx 

                                                          an 
                                                        2 2             ,m2de 

               4e2  {dx  (V0+ me)(A2) 
Since 

                     v=                      yVOy+ 7) and 71 < c2 
 me 

one finds that
2( M2  I d (+ e2m2c2 dvY)21d  2)2V

dx4e2 dx 0YMC71)I2 =e2(dx4c2 dx vY  ) 
               M22dv y)2(1 _  t/,M2C22dv()2 

           e2dx)c2e2dx dx 

Thus, (A2) becomes 

 2oo 

      (1471)c 167rMN,jV,2,f(Vx)dVx—f  Vx(V,2,—a2n2)1/2f(Vx)dVx1 (A3)  dx  0 

which leads easily to Eq. (19).


