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          Abstract: A brief description is given of the characteristics of the ruby laser 
     radar system which has recently come into operation at Zao Observatory, Tohoku 

     University. This lidar can transmit more than 5  joules per shot, and a dye laser is 
 adaptable between the ruby head and the telescope for resonant scattering measure-

     ments. Due to Rayleigh scattering, the atmospheric density up to 100 km will be 
     deducible by 1000 shots of ruby laser, and any existing dust layer wiil be easily 

     detected by this lidar. For aeronomic researches, a resonant scattering lidar system is 
     shown to be of invaluable use. For a  groundbased observation and a rocketborn measure-

     ment, the minimum detectable density is estimated as the function of altitude for 0, 
     N, Na, K, N2, NO, and  N2+. 

1. Introduction 

   After Elterman (1951) estimated the atmospheric density up to the altitude of 
about 60 km by measuring the light intensity scattered from a searchlight beam, 

attempts have been made to utilize the powerful artificial light source for atmospheric 

researches. In 1960, Mainman (1961) first succeeded in devicing a so-called laser by 
exciting optically a solid state ruby. The monochromatic and coherent features 
of a laser light at optical frequencies are quite advantageous for atmospheric researches. 

When a laser is operated with the use of the Q-switching technique, an extremely 

powerful light can be generated in a very short pulse. The first actual use of a laser 
in atmospheric studies was made by Fiocco and Smullin (1963). They used a ruby 
laser radar and received echoes from the altitude of about 140 km. In subsequent 

years, the laser radar technique was developed markedly and the utility has been 
increasingly recognized in the fields of meteorology and space physics. For the 
atmospheric research, a laser radar has the advantage of detecting much smaller 

particles, atoms, or molecules. 
   Table 1 summarizes the history of laser radar measurements performed in recent 

several years. Fiocco et  al. (1963, 1964) ascribed the scattering light echoes from the 
altitude ranging from 110 km to 140 km to a dust layer, but this is now entertained 
with a doubt by themselves. Collis (1965), Ligda (1966), and Northend et al. (1966) 

utilized the  laser radar for meteorological observations. Bain and Sandford (1966) 
in England measured the light due to Rayleigh scattering from altitudes up to 90 km, 

and found the enhancement of echoes from  hights near 70 km. Kent et al. (1967) 
in Jamaica also detected the enhancement of returns from altitudes 15-30 km. 

McCormick et al. (1967) of Maryland University found the enhancement of signals from
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                           Table 1. 

Summary of laser radar measurements for upper atmosphere researches.

Institution

Laser

Energy/Shot

Diameter of 

Receiving 

Telescope

 Maximum 

Observed 
Altitude

 Object

Results

1963-4

M. I. T.

(Fiocco 
    et  al.)

Ruby

 0.5J

30 cm

140 km(?)

Upper 

Atmospheric 

Research

110-140 km 
Dust layer 

 (?)

 1964-7

Standford 
Res. Inst. 

(Collis 
    et  al.)

  Ruby 
Neodymium-

     glass

0.2 J 
 0.5 .f

 10  cm 
15 cm

 20  km

Meteorologi-
cal Res.

 1996  --  7

Radio and 
Space Res. 
Station, 
Backs 
(Bain 

    et  al.)

Ruby

 5J

 90  km

Up. Atm. 

Res.

 —70 km 

Dust layer

1966

Univ. of 
West Indies, 
Jamaica 

(Kent 
    et  al.)

Ruby

 3J

 50  cm

 80  km

Up. Atm. 

Res.

15-30 km 

Dust  layer

1967

Univ. of 
Maryland 

(McCormick 
    et  al.)

Ruby

 1-5J

 50  cm

100km

Up. Atm. 

Res.

 --80 km 

Dust layer

1969

Rad. and 
Space Res. 
Station, 
Backs 
(Bowman 

    et  al.)

Dye

3-10  m  J

100 cm

140 km

Up. Atm. Res. 
(Resonant 
     Scat.)

 --90 km 

Na layer

the altitude of about 80 km. The last three experiments employed the mechanical 

shutter in the giant pulsed laser radar system in order to reduce the optical noises  re-
sulting from the fluorescence of a ruby. In 1969, using a dye laser, Bowman et al. (1969) 

succeeded in the experiment to detect the upper  atmospheric sodium layer at the 
altitude near 90 km on the basis of the measurement of light echoes due to the 

resonant scattering. Thus, the measurement of the density of atomes or molecules in 
the upper atmosphere by laser radar is shown to be quite fruitful in the aeronomic 
study. 

   This paper describes the characteristics of the laser radar which has recently come 
into operation at Zao Observatory and the theoretical basis are given for the obser-

vation of the upper atmospheric constitutents. 

2. Laser Radar at Zao Observatory for Upper Atmosphere Researches 

   Fig. 1 shows the block diagram of the laser radar system established at Zao 
Observatory for Upper Atmosphere Researches. The siting of the Observatory 

is 38.1°N, 140.5°E, and the elevation is 430 meters above the sea-level. The 

characteristics of the equipment are tabulated in Table 2. The Q-switched
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1. Block diagram of the laser radar system at Zao Observatory for Upper Atmosphere 

   Researches. 

 Tab*  2. 

Characteristics  of  the  laser  it  operating  at  "Lao  alasierratbmay,  Talkoku University.

Transmitter 

 Laser 
   Wavelength 

   Output  tmergy 
   Pulse  imgth 

   Max.  SRR 

   Telescope 

    Beam  ..divergeffaoe

Receiver 
   Telescope 

   Field of view 
   Filter bandwidth 

   Detector (P.M.) 
   Counter 

   Cooling system 
   Gate width

 witched  ruby'  laser 
6941k. 
 >5  joideisilmit 

 <ireser 
 0-2,/sec 
 D= CrIn 

 <1 firlrad

 83-50  a  Cassegrarin 
 <5  =rad 

30A. 
EMI  9558  Q13  ,(S-20,) 
10 channel 
EMI Electronic 
5 km  (33p sec), 10 km  (66  It sec)

ruby laser is employed for the optical source. The oscillation threshold is found 
to be 2.4 kv. As shown in Fig. 2, the out-put power exceeds  5 joules per one 

shot. A powerful pulsed laser at 6943A is  tranmitted through a 15 cm diameter 
telescope and reflected to the vertical by a plane  mirror-  The  duration of a shot of a 

laser beam is  confined within  1/2 sec, and each shot consists of several short  pules of about 
40-50 nsec width. This corresponds to the range resolution of 150 meters. The beam 

divergence is measured to be within 1 m rad. The photograph of the transmitter is 
shown in Fig. 3. The detection of the back scattered radiation at a single photoelectron 

level is achieved by the use of a  50  cm diameter Cassegrain telescope and a photomuliplier 
 tub  e (P.M.). Photon pulses are counted by a counter with 10-channelled  integraters after
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                Fig. 3. A photograph of the transmitter at Zao  Observatory, 

passing an amplifier and a pulse height discriminator. Simultaneously, the echo train can 
be displayed on a Brown tube by means of an A-scope. The gate width time for each 

of the channels is selected to be 33  tc sec or 66  ,u sec corresponding to the height range of 
5 km or 10 km, respectively. 

3. Rayleigh Scattering Observations 

   The laser radar equation for measuring the upper atmospheric density can be 

written as 

 WR  = 4 7AhT2N ( (1°-  A  dSI I h2-107 , (1) 

in which
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             T2 = exp H 2  a(h)dhl  . (2) 

Here, WR denotes the energy received ,  W,, the transmitting energy,  zlh the height range 
under consideration, N the number density of scattering centers,d(d the differential 
back scattering cross section, A the effective area of the receiving  objective, h a range 

(altitude) of relevant scattering volume, K the transmission of the optical system,  fl 
the quantum efficiency of the detector,  P an attenuation factor on a two-way path in 
the atmosphere, and a is an extinction coefficient for absorption and scattering in the 

atmosphere. The SN ratio in photon counting is given by 

                              Sn, 
            N—1/Its + nn(3) 

where  n, is the number of photoelectrons due to the reception of signals and  n. the 

number of photoelectrons caused by the instrumental noises and contaminating lights. 
   Now, an estimate will be given of the possible detection of Rayleigh scattering 

returns from an altitude ranging from 30 km to 100 km. In Eq. (1), put  Wo  =5J, 
 411=5 km, A =2  x 103cm2,  K  =0.5, and  77=3  x  10-2. Since a laser light suffers 

extinctions mainly in the lower atmosphere, we are allowed to take roughly T2=0.2 
when the upper atmosphere above 30 km is concerned (Kent, et al., 1967; Sandford , 
1967). The differential cross section for the Rayleigh scattering is known to be  1.8x 
    28--2 10-cm ster-1 for 02 and 2.1  X  10-28cm2  ster-i- for N2. In Eq. (3),  nn depends essentially 

on background light which is about 1  Rayleigh/A at midnight. Other kinds of noises 

such as a dark current in P.M. are negligible as compared with the background noise. 
   Employing the CIRA Standard Atmosphere, the photon numbers scattered from 

the altitudes 30-100 km and the SN ratio can be calculated on the basis of the 
characteristics of our new laser radar, and the results are shown in Figs. 4 and 5. In
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Fig. 5. Calculated photon count per 100 or 1000 shots due to Rayleigh scattering and the 

       expected SN ratio as the function of altitude.

Fig. 4, count of signals per one shot are shown as the function of alitutde. The 

background noise level is given by the dashed line, and the consequent SN ratio is 
indicated on the ordinate.  If  the repetition of measurements is made, and a statistical 
treatment of the data is employed, the SN ratio is improved markedly as shown in Fig. 

5. The reliable limit for the data reduction is thought to be at  SIN=3, so that the 
atmospheric density profile will be obtained up to about 60 km, 80 km, and 90 km, by 

1, 100, and 1000 shots, respectively.  If particles such as "noctilucent clounds" exist 
in the region concerned, a photon number enhancement will be possibly detected. 

4. Resonant Scattering Laser Radar System 

   As mentioned above, measurements of the atmospheric density are limited in the 

region below 100 km, because of the very small cross section, being of the order of 10-28 
cm2 ster-1, for Rayleigh scattering. If the incident light can be tuned at the 
frequency equivalent to the difference between two energy levels of an atom or a 
molecule, the so-called resonant scattering will be expected. Differential cross sections 

for resonant scatterings are extremely large as compared with those for Rayleigh 
scattering, being of the order of  10-12cm2  ster-1 for Na and K. Therefore, with the 

use of a resonant wavelength laser, a very small amount of specified atmospheric 
atoms or molecules will possibly become detectable. Attempts have recently been 
made to tune the wavelength at the sodium D line with the use of a dye laser, and the 

detection of sodium vapor in the upper atmosphere has been succeeded in England 
on the basis of the resonant scattering (Bowman et al. 1969). In this section, after 

presenting briefly the theory of resonant scattering, expected resonant scatterings will 
be considered for atoms and molecules existing in the upper atmosphere, and 

estimates will be given of the minimum dectectable number densities for some of the 

atmospheric constituents.
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 4.1. Theoretical Consideration of Resonant Scattering 

   The classical theory of the resonant scattering was treated by Chamberlain (1961), 
Hirono (1964), and others on the basis of the one photon process. Recently, Huber 

(1968) has developed the quantum mechanical theory based on the two photons process. 
According to the results given by the Huber's theory, the resonant scattering cross 

section for a single atom can be calculated for the three limited  cases: i)  yN>yc>yD, 
ii)  yD>yN>yc, and iii)  yc>yN>yD. Here,  yN denotes the natural linewidth, yc the 
collision width, and  yD the Doppler width. The cross section will be considered 

below in each of the three cases. 
i)  YN>Yc>yD. In this limit, the expression for the cross section takes the form 

 d20-  (e s)27r2Cco1co; 

         dS2 d80— (02),(4)         co,+ 

in which 

 X= lail2laf12   2
irc4h2 

In the above expressions,  w„ is the resonance frequency, w1,  w2 the angular frequencies 

of an incident and a scattered light, respectively, c the light velocity, h the Plank's 
constant, and  a1,  a  f are the matrix elements for the component of the dipole moment 

operator along the direction of polarization of an incident and a scattered light. 
ii)  yD>yN>yc. The cross section for the resonant scattering is given by 

 Acr  (Co1)  7.,,xy;i  Arno  
 exp2—c°02mc2(2(00—co, —)2)2mc2        [——       d12Ck02kT sin 0                           4(0?kT(1—cos 0) 4roTkT(1+ cos  0)-1 , (5) 

where k is the Boltzmann's constant, T the gas temperature,  In the mass of an atom, 
and 0 denotes the scattering angle  (0  =0 corresponds to a forward scattering). 

iii)  yc>yN>yD. The cross section is given by 

       d2o-(Ct)i)27rXoyoYC I  YOr  

          dS2dco,(roi---,7)0)2+741.-3(w1—C°2)±VNI(0,2—E)0)2+vg (6) 

where ii),----w0H-w0c with  woc being the shift frequency resulting from collisions. In Eq. 

(6), the delta function characterizes the coherent scattering, while the second term is 
the cross section for resonance fluorescence. 

   Now, let us consider what is the case in the upper atmosphere. Table 3 tabulates 

the calculated  yr) and yc for N2. Since 

 Dap 
           YD  OC M  w  1 and  Yc  cc :1^/MT  (7) 

where T is the absolute temperature, M atomic or molecular weight, D the diameter 

of a particle, and  p the pressure of a gas concerned. The values of  yD and  yc for gases 
in which we are interested are of the same orders of magnitude as those for N2, 

respectively. As for the natural linewidth,  yx is known to be usually less than  10-2cm-1.
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                                   Table 3. 

Doppler width and collisional width for N2 in the atmosphere for an incident light at 5000A.

 h  (km)

 0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100

T  (°k)

290 
230 
210 
235 
260 
270 
260 
210 
190 
210 
240

 P (atm)

1 
 2.76  x10-1 

 5.  51  x10-2 
 1.25  x10-2 
 3.16X10-3 

 9.  86  10-4 
 2.76  X  10-4 
 7.  10x  10-5 

1.32 X 10-5 
 2.  90  X  10-6 
 5.  52  ><10-7

YD  
 2ir (cm-1)

 4.  6  ><10-2 
 4.  1  10-2 

 3.9X10-2 
 4.2><10-2 
 4.4X10-2 
 4.  5  x10-2 

 4.  5  x10-2 
 4.  0  >(10-2 
 3.  9  ><10-2 
 a  9  ><10-2 

4.  1  x10-2

 C 

 7t

 Y 

2
 (cm-1)

 1.  8>(10-1- 
 1.  7  x10-3 

 3'6X10-3 
 7.  6  X10-4 

 1.  8  X10-4 
 5.6)(10-5 

 1.6X10-5 
 4.6)(10-6 
 9.0)(10-7 
 1.9)(10-7 
 a  3><w-8

Hence, the second limit in which  yD>yN>yc is thought to be the case in the upper 

atmosphere above 10 km. From Eq. (5), 

                                                     _ coo) 2nic 2 

                                                                                                                        . 

              der(6)1)(27e3)1/2Xy-lco?exp[—(coi  
             d2 (kTimc 2) 1 / 22ro?kT 

 (271.3)1/2Xco c°1—rt)o)2  exp((8) 

 YNYD  2yD2 
where 

 ni=col(kTInic2)112  . (9) 

4.2. Expectable Resonant Scattering 

   Some resonant transitions which are likely to be caused by a laser light are listed 
in Table 4 for constitutents in the upper atmosphere. The conditions for a resonant 

transition are described as  follows: i) The energy difference between the two levels 
should be equivalent to the frequency in visible or near ultrared region. ii) The lower 

level should be the ground state or a metastable state. Table 4 shows the wavelengths 
of possible transitions and the corresponding differential scattering cross sections cal-
culated from Eqs. (8) and (9) for the condition at the altitude of 80 km. It is almost 

impossible to calculate matrix elements of respective atoms and molecules, so that the 
cross sections are estimated by employing transition probabilities which are already ob-

tained by many workers  (Corlliss and Bozman, 1962; Nicholls, 1964). In the table, the 
transitions from the excited levels are marked by stars, and circles indicate those which 

are of practical use for a resonant scattering laser radar system. For reference, the 

partial energy diagrams for N2,  N2+, NO, 0, N are shown in Figs. 6 through 10. In the 
figures, the transitions in which the resonant scattering is probable are marked with
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                              Table 4. 

Expectable resonant transitions and relevant differential scattering cross sections.

Transition

Na  (1s22s22p63s2S1/2) 
   3  or2S1/2-3P2P1/2 

 3s2s1/2-3P2P3/2

K  (102s22p63s23p64s2S1/2 
   o  4s2S1/2-4P2P112 

 4s2S112-4P2Pah

 N*

 o  3,4p5/2_3p4p50/2 
 3s2P3/2-4p2S2/2

 0*

 3s5S20-3p5P1 
o  3s3V-4P5P2 

 3s3S10-4paP

 N*2

 1st Positive Band 
 (B3/1,—A32„+)

 N÷2
 1st Negative Band 

 (B.E.,41--X2Sg+) 

Meinel Band 

 (A2//.—  X2  I  g+)

 NO*
Ogawa 2 Band 

 (b4E  —a4/l)

o 2,0 band 

 3,0

o 0,0 

 1,0

o  2,0 

 3,0

1,0 

2,0

Wavelength (A)

5895.92 
5889.95

7698.98 
7664.91

 8216.32 

 4935.03

 7775.39 

 7774.17 

 4368.3

7694 

6824

 3914.4 
 3582.1

7850 

6872

8683 
7898

 

(  (112  )D  (cm2ster-1)

 6.  6  x  10-15 

 1.2  x  10-12

 1.7  x  10-12 

 3.0  x  10-'2

 5.  8  x  10-15 
 1.8  x  10-14

 8.  8  x  10-18

3.  4  x  10-15

4.  2x  10-1s 

 3.  x  10-13

 3,  5x  10-1, 

 I.  2x  10-"

 9.  3  x  10-13 

 3.1  x  10-13

 40-14 
(by Nugent)

4.3. Minimum Detectable Number Densitiy 

   The laser radar equation for the resonant scattering system can be written as shown 

below, in the two cases in which an observation is made on the ground (G) and in space 

(S), respectively (Kamiyama et  al.  1970)  ; 

             WG =  WoGLIIITN (kr  AG Kell, (10)                              1 a )D  h2 

and 

                            ( do-A            Ws-"=.WosliN KsnL  , (11)                      ( a ID Rs 
                                        where  (d0-1(1,Q)D is the differential back scattering cross section  for a resonant scattering 

at the altitude  h, L the resonant scattering efficiency,  R, the nearest distance of relevant 
scattering volume from the instrument, and the other symbols have the same meanings 

as in Section 3. The number density of atoms at a lower energy level is denoted by N.
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                    NJ            N =  (N)„-oEN
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where  S(J) and F(J) are the functions  of 

light is  4w1, L takes the following values; 
 L  1 

and 

                               ry   7113   L 

In view of the pumping system and the qu 

devide the wavelength region into two  par 
 X�7000A and the other (II) is that in which 

based or rocket-born laser radar system, 

used for the case in which a laser light at 
in the ground-based radar system, and so 
be 100 nsec and the band width of the  ir 

in Table 5 are adopted for W and  W, in the 

TG=0.5,  zlh=10 km,  KG,--0.1,  Ts=1,  R0=1 
wavelength tuning has already been  achie-
1969) ), the minimum detectable density, 

for N2, NO, N,  0, Na, K, and  Na as she 

figures, dashed lines show the probable dis 
or molecules under consideration. 

4.4. Discussion 

   The minimum detectable densities of 
calculated for a twilight condition. From
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space is found to be of greater use than that on the ground. In addition, the former 

has an advantage to improve the altitude resolution. 

   From Fig. 13, one finds that Na and K are easily measured by a ground-based 

observation. Especially, Na seems to be detectable even in the daytime. Fig. 12 implies 
that excited  0* and N* may be detectable at high altitudes, since the excitation of  0 
and N are expectable when the ultraviolet radiations at about 10ev (1200A) or particles 

having the same order of energies are incident in the upper atmosphere. A little is 
known, however, as to the abundances of  N2*, NO*, and  1\14'. A resonant scattering 

laser radar measurement might provide an information about the fundamental quantities 
in aeronomic problems. 

5. Summary 

   In this paper, an outline is described about the characteristics of the ruby laser radar 

which has recently come into operation at Zao Observatory for Upper Atmosphere 
Researches, Tohoku University. The output energy is measured to be more than 5 

joules per shot at input voltages exceeding 2.75 kv at the flash tubes. The transmit-
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Fig. 12.
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13. The minimum detectable densities of Na and K in a twilight condition as the function 
    of altitude. 

14. The minimum detectable densities of  N2+ in a twilight condition as the function of 
    altitude.

ter is designed so that a dye laser is adaptable between the ruby laser head and the 

telescope. 

   With the use of the 50cm-diameter receiving telescope, the atmospheric density 

will be deducible up to about 100 km with 1000 shots of ruby laser by the reception of 

photons due to Rayleigh scattering. Any dust layer, if exist below this altitude, will 
be easily detected by this lidar. In Section 4, a resonant scattering laser radar system 

is shown to be of great use for aeronomic researches. In the two cases , a ground-based 
observation and a rocket-born  measurement, the minimum detectable density is es-

timated as the function of altitude for specified constituents such as 0 , N, Na, K, N2,
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NO, and  N. According to our estimate, Na is possibly detectable up to about 150 km 

by a ground-based observation. If small fractions of  0, N, N2, and NO are in the 

excited states, they are also shown to be detectable in the region in which we are in-

terested. In view of an insufficient knowledge about the density distributions of these 

constituents, especially in the excited states, a resonant scattering lidar system is con-

cluded to be of invaluable use for aeronomic studies.
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