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 Abstract: The refraction of explosive sound from a line source in a liquid into a solid 
     is solved by an exact evaluation of formal solution of wave equation, especially on the 
     variation of wave amplitude due to the change in positions of source and receiver. Wave 

     patterns at various depths in the solid are given. Amplitude decrease of the pseudo Ray-
     leigh and the Stoneley waves with increasing depth indicates that most energy of the 
     waves are confined within the depth of the order of one wave length. 

         The theoretical results are applied to an actual case. It has been frequently 
     reported that a big amplitude of shear wave was observed in the case of explosion at 

     the bottom of  water. Theory can check whether or not this wave may be taken as pseudo 
     Rayleigh wave of which the travel time is close to that of shear wave. This idea, 

     however, is not supported by theory especially in the small change in amplitude of 
     pseudo Rayleigh wave due to the change of position of source. 

1. Introduction 

   The propagation of transient wave in liquid-solid half spaces in contact has been 
studied by Roever, Vining and Strick (1959) and Emura (1960). According to their 
results, the disturbances on the interface before the direct pulse arrives are similar to 
those in Lamb's study (Lamb, 1904) when concentrated force acts vertically 
downwards on the surface of solid. Their discussions, however, were concerned with 
the motions in liquid and on the interface. In the present paper, the refracted wave 
in a solid from a line source in liquid will be theoretically treated by the exact  evalua-
tion of integrals in formal solution of the wave equation and the effect of change in 
seismic wave velocities in solid and the positions of source and receiver will be also 
discussed. 
   Recently in Japan and some other countries, many observations have been done 
on the seismic wave generated by explosions in water. It may be of some interest, 
therefore, to give a mathematical basis on the wave forms in such cases. An applica-
tion of the theoretical result to a practical problem will be also discussed in this paper. 

2. Exact transient solution 
   Consider a liquid half space of density  pi and compressional wave velocity  a1, 

superposed upon a solid half space of density  p, and compressional and shear wave 
velocities  a, and  p, (Fig. 1). The subscripts 1 and 2 refer to the quantities in liquid 
and solid respectively. The xy-plane is taken in the horizontal plane interface and the 
positive z-axis is directed toward the liquid. A line source located at x=0 and  z=11 is 
assumed to emit an explosive sound, the motion being independent of y.
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   Let us define the Laplace transform by 

 f  (x,  z,  p)  f  (x,  z,  t)  e-PE  d  t (1) 

and all the transformed quantities are denoted by superimposed bars in this paper. 
The potential  c6, for the initial pulse satisfying the transformed equation of motion, 

      a2 a ci3O                       —  P2 1,-0 0 , R^x2 (h — z)2 (2)        a R2  R  a  R  
ce12 

is given by 

 yto  J (p)  Ko  (P R  I  at)  , (3) 

where  .1  (() is the transform of a time function which should be selected as to represent 
the time variation of initial pulse, and  K0 the modified Bessel function of the second 

kind and zero order. Taking the explosive source, we put  f(p)---11p, where the 
negative sign is introduced for the algebraic convenience. Then the radial component 

of displacement for the initial pulse is expressed by 

 90 —0 ,t < R I a, ,        a R
(4) 

 >  R  R  -1/  t2  0,
1)2 

   The transforms of displacements in solid are given as follows (Emura, 1960). 

                                               CO 

                  2 ,u2  Imu [ (2 u2 + 122) eN2pY161 — 2 722P 1)2s e P712s=iail                2---- —  al 

              1  
               u)  XF(e-P Criph +i""1 du,(5) 

 2  ,u2                        Re  n2f,  [  (2  u2  +  ,u2)  CP'72filill 2  u2eP-12.e/0 
 a, 

         X 1e-P(niph+lux)1,q.  du  , (6)  F  (
u)
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            F (u) =  (P2/P1)  7'p { (2  U2 +  P2)2 — 4  m275722,}  +  /14,12p 

 74,5  /u2 + 1  '  722P =  1/ u2 + v2  772, =  V u2 +  ,u2  (7) 

 Re  nip  >  0  ,  Re  7721,  >  0  ,  Re  772,  >  0  , 

 v  a2,  fu  = P2 

The inverse transformation of these expressions is performed by means of Garvin's 
method (Garvin, 1956). The integration with respect to the variable  u is reduced 

to that over the time  t„ or  t by the replacement, 

 t„  ={Yu2  +  1  h  -1/  u2  +  v2  z  +  lux}  I  a,  , (8) 

or 

 =  {Vu2  +  1  h  u2  +  ,u2  z  +  iux}  . (9) 

Since the integrand is independent of  b except for the exponent, the inverse transforma-
tion gives the delta function with respect to time, and the final expressions for the 
displacements are 

        2'u2 d  u du 1 u(10) 
 it2rinT (2 u2,2)                                            — 2 ̀ 172fi  7723                    ' d  

tv d t  F(u) 

           2'a2du —u'17 2/5   W2 — Re r (2 u2 + ,u2) — 2 u2 (11)          al  d  t  dt„  _  F(u) 

These displacements are computed in terms of  u(4) and  u(1„) which satisfy the relations 

(8) and (9) for real  1„ and 
   As the singularities of integrands in (5) and (6) give the  major contributions to the 

integrals, the travel time of each pulse is given by the values at corresponding singu-
larities as 

 tp1~RI  a1, 

 tp,p2  =  (h  cos  0  —  7.2  sin2  0  +  x  sin  0)  Ia1, 

 tfilp2,2= (11  1)2  Z  V  ft2  -  v2 +  x  v)  I  a  , (12) 

 tp1s2 (h cos  0  — z  ____ (11 I ja) 2  sin2  (xlv) sin  0)  I  a1  , 

 ,,   
k      (1 ) 9 

    (2)  PP  fi2  el  (1'2  /32 
 P,  P2  P,  S2  P,  P,  S2  P, 

                              Fig. 2. Minimum time paths.
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where 0 is the angle of incidence. The ray paths for these pulses are illustrated in 
Fig. 2. 

3. Numerical results 

   In the numerical computation we fix the values of  a1=1.5  km/sec,  p1=1.0,  p2=2.5 
and Poisson's ratio  6=0.25 and change the positions of source and receiver and seismic 
wave velocities in the solid medium, taking the actual case of explosions into considera-
tion. Figs. 3 and 4 show examples of numerical results in the case where source is 
located at 0.2 km above the interface and the receiver is on the surface at a horizontal 

distance of 20 km from the source, the shear wave velocity  N2 being taken as parameter. 
   The wave pattern in Figs. 3 and 4 may be interpreted as follows. The initial motion 

is due to the head wave  P,P, with the travel time of  ti,1p2 and is followed by a gradual 
recovery. The second big event is the refracted wave  P1S2 superposed by a big 

amplitude of pseudo Rayleigh wave PR . The third event is the direct pulse in liquid 
having an infinitely large amplitude, which is shown by a narrow gap in Figs. 3 and 4. 
The Stoneley wave comes after  P, with the arrival time of  ts, given by Strick and  Ginz-
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   Fig. 3. Horizontal displacements on the interface for some values of shear wave velocities .
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    Fig. 4. Vertical  displacernekis on  -,he  interface for some values of shear wave velocities. 
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 Fig. 5. Horizontal (U) and vertical  k  ,„-) amplitudes and ratio  <W/U) for  P1P2 wave as a function 
          of compressional wave velocity.
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  Fig. 6. Ratios of amplitudes of PR and P1P2  waves in horizontal and vertical components as 

          a function of shear wave velocity. 

barg (1956). In some cases, for example, when 3.0 km/sec,  tp1 is so close to  1st 

that these two waves are superimposed one over the other and they look like a single 

event. The separation of the two waves becomes evident in a lower range of  32. 
   The  horizontal and vertical amplitudes u and w of the head wave  PIP, are seen in 

Fig. 5 as a function of compressional wave velocity  a2, together with the ratio of  wilt. 

Both components decrease with increasing velocity, whereas the ratio is approximately 
independent of the velocity. The ratios of amplitudes of PR and  P1P2 in both horizontal 

and vertical components are given in Fig. 6 against the shear wave velocity  132 as 
abscissa. This figure indicates that both ratios increase with velocity in this case. 

   The variation in wave forms in the solid are given in Figs. 7 and 8, where  (32 is 
fixed at 3.0  km/sec and the distance of the receiver from the interface is taken as the 

parameter. Big differences of these wave forms from those on the interface are 
   (1) The first motion  P1P2 is followed by a small  jump  P1P2S2 of which the ray 

is seen in Fig. 2. 

   (2) The wave  P1S2 appearing before pseudo Rayleigh wave has an infinite amplitude 
shown by a break of line in Figs. 7 and 8. 

   (3) The wave  P1 has a finite amplitude and suddenly vanishes with increasing depth. 
   (4) The amplitudes of pseudo Rayleigh and Stoneley waves decrease rapidly with 

the increasing distance from interface. 
   The orbits of particle motion around  tp,„ at various depths are shown in Fig. 9, 

which indicates that the locus is elliptical retrograde near the interface like the free 
Rayleigh wave. The variation of amplitudes with depth of PR wave in both  com-

ponents are given in Fig. 10. The pattern is quite similar to that for the Rayleigh wave. 
If we take the time interval between peak and trough in the vertical component (Fig. 8) 

as a half period, the wave length is calculated to be 3.0km. Most of the energy of PR 
waves, therefore, is concluded to be confined within the depth of the order of one wave 
length. 
   Fig. 11 shows the variation of amplitude of the disturbance around  tst against depth
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 Fig. 7. Horizontal  dis.pL!cements at various depths d in solid. 

from the interface. The amplitude decreases exponentially with increasing depth 

as expected from the theory of propagation of Stoneley wave. 

4. Effect of position of source on the amplitude of PR wave 

   As an application of above theoretical discussion to a practical problem , we will 
consider the so-called shear wave generated by explosion . In recent explosion seismol-
ogy, shots in water and observation on land system is frequently adopted in Japan , as 

 well as in some other countries. One of the interesting results by this type of observa-
tion is that a big amplitude of wave is observed around the arrival time of S wave, when 
the  explosive is detonated at the bottom of water . This wave is commonly thought to 

 be a shear wave but the generation mechanism of a shear wave by explosion was not yet 
clearly explained. Steinhart and Meyer (1961) have pointed out an important feature 
that the amplitude of this shear wave is large in bottom explosion , while the wave
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          Fig. 9. Orbits of  paLtiele motion around  tp,„ at various depths  d in solid. 

amplitude diminishes when the shot is suspended at a distance from the bottom. 

   One of the possibilities is that the "shear wave" may be the pseudo Rayleigh wave. 

As stated before, the transit time of pseudo Rayleigh wave is very close to that of 

converted S wave from P in water and these two waves are usually superposed one over 

the other. The pseudo Rayleigh wave has commonly a large amplitude in comparison



          CONVERSION OF EXPLOSIVE SOUND INTO SEISMIC WAVES 41 

 AMPLITUDE 

                 0.0 0.5 10 1.5                             0
.0 

 U  w 

 — 0.5 

 1.0 

 Fig. 10. Variation of amplitude of PR  wave in horizontal (U) and vertical (W) components versus 
         depth. 
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 Fig. 11. Variation of amplitude of disturbance around  tst in horizontal (U) and vertical (W) 
          components versus depth. 

with initial motion. These results are compatible with the  observation.  If  the theory 
can explain the feature of decrease in amplitude in suspended explosion, therefore , the 
above idea would be valid. In order to examine the idea, the relation between the 

amplitude of pseudo Rayleigh wave and the distance of source from the interface 
is studied. We compute the wave forms on the interface for several source positions 

ranging from 0.2  N 0.001 km from the interface and measure the maximum amplitude of 

pseudo Rayleigh wave on the calculated seismograms. The result is given in Fig. 12 
for both horizontal and vertical components, the ratio of  PRIP,P2 being taken in 
ordinate for the convenience of comparison with actual observation . This figure 
shows obviously that the effect of source position is very small in the range of distance
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 Fig.12. Ratio of amplitudes of PR and  P1P2 waves in each component as a function of height of 
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from the interface considered. Therefore, the possibility of a pseudo Rayleigh wave 
being the observed big shear wave should be abandoned. 

   This small change in amplitude can be deduced purely mathematically, too. 
Putting z—_--0 in Eqs. (8) and (9), we have 

 (11  12t2  +  1  +  in.%)  . (13) 

If we denote then 

 d   —  —  i  alvu2 ± 1 
 t2 H  (x,  h,  u) (14) 

where 
 H  (x,h,  u)  x  u2+ 1  ihu. 

Solving with respect to u, we obtain 

 it  =  al                    x2+h2 j—  ixt2+ h1t22 —  x2  +  42 . (15)  a2 

As far as the motions before the arrival time of direct pulse P1 are concerned,  we may 
take the ranges 

 tp1p2 < t2 <  tp1 

 —iv<U<—/Xil/X2  +  h2 
                                            (16) 

 x  1/  1  —  v2  —  by  H  (x,h,u)  >  0  . 

For the disturbances expected to arrive at the time 

 t  =  (h  —l2  ±  lx)  a,  ,  v<1<xlV  x2+112 

the controling factor of amplitude is  11H(x,h,l) and the amplitude decrease at large 
epicentral distance is given by
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             /- --  (1 + -) for x>  hl                                               (17)           xv12 X v 1 12 11 —  12 

  This equation implies that the effect of the change in height of source on wave amplitude 
  is almost negligible. 

     After all, the generation of shear wave whose amplitude is large in bottom 
  explosion and small in suspended one is not expected in such a simple model of structure 

  as treated here. The mechanism of generation should be attributed to some other factors. 
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