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Abstract

Dependence of eddy diffusivity on the time-distribution and spatial dimension of
cluster is clarified by the statistical theory of diffusion.

The theory of diffusion has been developed by use of the following assumptions:
Local time-space correlation of velocity is formulated, as a product of the Lagrangian
correlation coefficient and local energy. The local energy in time-space is expressed
by an interpolation formula.

Diffusion chart to be used in estimating diffusivity from the time-space dimen-
sions of cluster and data of wind fluctuation is constructed. The relation between
diffusivity and scale of phenomenon is discussed.

1. Introduction

Turbulent transfer can be approached by the two methods; the mixing length
method and the Lagrangian method. Diffusivity in the inhomogeneous turbulence
such as shear flow is usually investigated by means ol the concept of mixing length,
because the application of the Lagrangian method to inhomogeneous turbulence
seems to be more difficult. Since a pioneering work by MoxIN and OBUKHOV (1954), the
transfer theory in the diabatic atmosphere has been investigated by use of the concept
of mixing length by many workers as Kazansky and Monin (1956), ELLisoN (1957),
Busivcer (1959), Riper (1959), Yamamoro (1959), PaNorsky, BLACKADAR, and
McVEHIL (1960), Tavrior (1960), Yamamoro and SHIMANUKI (1960), NEUMANN (1961),
Panorsky (1961), PriestLEy (1961), SELLERs (1962), Svono and Hamuro (1962),
Yoxovyama (1962), DriMMEL (1963), TAKEUCHI and Yorovama (1963), SWINBANK
(1964) and McVEHIL (1964). Some results of the above works show that the vertical
diffusivity K. is proportional to height above the ground in neutral conditions, and its
2-nd order derivative with regard to height is negative at stable, and positive at unstable
conditions. The behaviors of horizontal diffusivity K, were investigated empirically by
Yamamoro and SHIMANUKI (1964) to be proportional to height, with a constant of
proportionality depending on stability. However, it is not clarified by these theories
that the diffusivity depends on the scale of phenomenon. The dependence of diffusivity
on the scale of phenomenon is very large in the atmosphere, which can be explained by
the Lagrangian method.

Lagrangian theory of turbulent diffusion was originated by Tavior (1921). He
showed that the diffusivity K is
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fc(qzzj;R(T)dT, 1)

where { is the floating time from the source, and R(r) is the Lagrangian velocity
product mean value (usually, called as the Lagrangian velocity correlation function) with
lag time . From this equation, it is found that diffusivity is a function of the floating
time ¢, which is not involved in the mixing-length theory. When the dimension of
source is finite, Eq. (1) must be modified, as shown in BrRiEr (1950), Ocura (1952, 1957,
1959), SuiMaNUKI (1961) and SmitH and Hay (1961, 1963). In this case, the value of
K(t) largely differs from (1). Recently, the author (SHIMANUKI, 1965) developed a
statistical theory of time-space dimensions of clusters of particles, and derived universal
equations of diffusion applicable to the discussion in the present paper. The theory is
concerned with the diffusivity of particles free from gravity, which is applicable to
viscosity and conductivity, with some corrections. The description in section 2 is an
outline of the cited paper.

2. Equation of diffusion

Let us consider the one-dimensional problem, in which the independent variables
are the displacement (v-component) and time. The turbulent field is assumed to be
homogeneous and stationary. The mean value of a physical property A(f) over all
the particles at a floating time ¢ from source is denoted as (A(#)). The deviation of
velocity ©(f) from the mean velocity over a cluster is

e() = V(O — V(@) @)
and the displacement v(f) from the center of mass is
YOy =Y @® <Y (). (3)
Assuming that the partial correlation between y(0) and o(f) is zero referred to

2(0), we have

C i = K. 2@ v (B
(MO v (1)) =K, WO (4)
where
Ky = (y(0)v(0)) . (5)

The detailed discussion of the above assumption will be found in the cited paper. By
use of (4), the equation of diffusion becomes

d = d s F o TN s 7
L Gom =4 O -y oD + 25050
sl o o aw o @ 0RES
_2‘[“.‘1 Bv ) de + 2K, sty 6)

The second term of the right side of (6) is a correction term, which may be some-
times neglected.  Introducing diffusivity K defined by
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we have
S 0w )

(v (0)%) -

where K(0) is initial diffusivity.

Now let us consider the local correlation (v(f)v(t')) involved in the right hand
side of (8). Consider two particles in fluid indicated by subscripts 1 and 2, respectively.
Relative velocity v(f) about the center of mass is

1
vy (1) = 5 {Vl ) —V, (t)] =—1,() . (9)
The operation { ) in this case denotes taking the mean over two particles. From
(9), local correlation becomes

o (t)o () = _:12_ LA ACLAGIE (10)

Assuming that the partial correlation between V,(t) and V,(¥') is zero referred to V()
as made by BRIER (1950), we have

T T Vi) Valt) - Vo) Va (£)
/ Fall) = L2 8 e L S :
Vi) Ve () V. (11)
Therefore, Eq. (10) becomes
(v () v () = Vg I’ () (v ()2 . (12)

Let us consider that Eq. (12) is valid for a cluster composed of more than two particles.
The right side of (12) is a product of the Lagrangian velocity correlation and local
energy in the cluster with time-space dimension. In the above discussion, ¢ and ¢
Is commutative, so that (12) is replaced by the mean value of two.

The local energy computed from the sample over the finite observational interval
T is

@ty — -1 J'I(TVE)D[FEJJEEZE(T), (13)
12 Jo

where D(E) is the structure function defined by
DE =V —-VE—p)e. (14)

The local energy E(T) increases monotonically with 7 from E(0)=0 to E(=)=172/2.
In order to obtain the local energy in two-dimensional time-space involved in (12), we
shall introduce the time-space standard deviation S{f) with time unit, given by

S ) =5, (0 + S, (* (15)
where
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S, ()% = ?—:2—<y[t)2>, (16)

and
S (H2=S,(02 = (%, (17)

where # is the constant of proportionality with the dimension of velocity, and £, is
released time at source. When (y(#)2) is small, (15) becomes S(t)~(4* V%, and in the
case of diffusion from an instantaneous source, becomes S(f) =(y()*1/2/u. If TAYLOR'S
hypothesis for time- and spatial correlations is valid, the constant « can be replaced by
the mean velacity U/. The property S(#) in these cases stands for the dimension of
cluster.  In the case where {y(f)*) and {{ are both finite, we shall consider that
(15) gives an interpolation formula, and 25(f) can be used in place of T in (13).
Using the property S(¢), we have

D (T
W) — [E@S®H) + E@S{t—) {1 - D((m)—)}, (18)

from (12} and (13), where r=#-1". Consequently, (8) becomes

1

Ky =[{E@s®)+E@se—){1i- 24 % ae

D (o) )

+

KO f Eesolg D0 (19)

5 1 E(25(0) D (o)

Since S; 1s independent of £, the derivative of Sy* is equal to that of §* from (15).
Therefore, the relation between the diffusivity K and the time-space dimension S
follows from (7) as

o

L3
S =S+ 75 f K (8)dt. (20)
0

Egs. (19) and (20) will give us the informations ol diffusion.

3. Numerical analysis of the equations

The structure function D(7) involved in (19) is the Lagrangian one, and that
involved in (13) is the Eulerian one, so that we must know these structure functions.
Let us adopt Hav-PasQuirL’s hypothesis of the relation between the Lagrangian and
Eulerian correlations (Havy and PasquirLr, 1957, 1959). It is assumed that the
Lagrangian and Eulerian structure functions have similar shapes but different scales
(ratio f§: 1, being taken as f=4). Therefore, the Lagrangian structure function Dy (7)
is

Dy (t) = Dg (r[p) . (21)
where Dg(f) is the Eulerian structure function. The Eulerian structure function Dx(7)
should be determined by observations, which may be expressed approximately as
follows by use of the five parameters =,, w, p, ¢ and /;
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Dy (T)—_Ttﬂ{ﬂ :—0) for < ?o_ )
= w? I\/’:? .::;) ] for E,'— zT=<h ';;- : (22)
= w2 Ji? for & Tﬁ— i

It should be noted that the parameter w differs from (2%)V/2.  Although the use of more

than five parameters enables us to express the observed results more precisely, we use

the five parameters in order to avoid the complexity of mathematical expressions.
Introducing the non-dimensional properties denoted by subscript 1 and defined by

t _ 7 _ BT _ B _ SO _ |

o om Iy om o Sy "

E(T) De(tlf)  Ule - ,
E @y~ D) — 2 (23
K@ s

K@~

we have non-dimensional equations written as

¢

: ‘ D, (r))
Ko = [ (B@S0) + E@Si -} {1 - p! O fdm
0
K;(0) { E, (25;(t) {4 _ D, (t)
Fog N B 2s, 0) e Dl(w)} &
I
E(@)= grx Ju (Ty— 1) Dy (W) d 7y, (25)
f
SR =Sy (0 + i | Ky ) diy, (26)
(1]
and
Dy (rq) = 7f for =1,
— 7, for 1<7 <h, (27)
=}’ for h=rm.

The non-dimensional equations (24) and (26) can be solved numerically by use of an
electronic computer. The values of the floating time ¢, where the values of K, and S,
are computed may be chosen as,

4,
2.04,
3.04,
5.04,
104,

1.24,
2.24,
3.44,
6.04,
124,

1.44,
2.44,
3.84,
7.04,
144,

1.64,
2.64,
4.24,
8.04,

1.84,
2.84,
4.64,
9.04,
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where A is an arbitrary small value (e.g. 0.0001). The computations will be carried out
along the following line: The first approximation of &,(A) is evaluated by (24) using
51(0) in place of S;(A).  The first approximation of 5;(A) is evaluated by (26), using the
evaluated value of K,(A). Next, K (A) is corrected by computing (24) by use of the
evaluated values of S5,(3), and S,(2) is also corrected. Sequently, K,(1.23), 5,(1.24),
K (14A), S;(1.44).... are computed. Integration of (24) is carried out to the smaller
value of £, and /, because the integrand is zero for 7;=/%. The integrand of (24) is
computed at 50 points between = =0 and £, (or &), and summed up, where the value of
5, in each point is obtained by the linear interpolation of the values of known S;* at
the nearest points.

In order to execute the computation, the values of p, ¢, &, c;. S;(0) and K,(0)
must be given, corresponding to each case of diffusion. Properties p, ¢, and % are
defined by (22). The Eulerian structure function is drawn by use of data obtained
from observations, which approximated by three straight lines in log-log graph, from
which the values of p, ¢ and & are estimated. Properties ¢;, S;(0) and K,(0) are
defined by (23). Time-space factor ¢, is

32 w?
="z (28)

where U is mean velocity, and w defined by (22) can be estimated from the graph of
structure function. Initial time-space dimension S;(0) is

4 ((y (O)) -+ U3 (gh)1

S, (0) = U

(29)
where {y(0)2)172 is spatial standard deviation at source, (£2)V/* is standard deviation of
releasing time, and 7, defined by (22} can be estimated from the graph of structure
function. Imitial diffusivity &,(0) is

K (0)

9
Ty W

K, (0) = , (30)

where K(0) is K defined by (5).

4. Behavior of diffusivity

With regard to diffusion from the source of which the dimension S;(0) is small, the
solutions near the source can be obtained analytically in the case of K (0)=0. (See
SHIMANUKI, 1965). The Eulerian structure function for inertial subrange is given by
the power form as

D7) = A 723, (31)
Near the source where the increment of the time-space dimension S,(f,) is small com-
pared with S,(0), the relations among K, (4,), S,(#,) and ¢, are
62 Ky = 0.357 S, (0)2 (c,'/21,) (32)
— 0.8455, ()" [S, () — S, (0)2]12. (33)
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If the time-space dimension S;(0) of the source is very small and the increment of
S51(6)/5:(0) from unity is significant near the source, the solutions become

¢ V2 K, = 0.0800 (c,1/2,)2 (34)
1
— 0.897 5, (1)1, (35)

These resulls are consistent with the power law derived from dimensional analysis.
(See BatcueLor and TowNseEND, 1956).

The solutions for the other cases can be found by the numerical method as shown
in the preceding section. The results giving the relations among Ky, S, and # are illus-
trated in Fig. 1 [or p=2/8, g=1/3, h=1000, ¢;=1 and K,(0)--0. In the left part indicated
by a letter A of Fig. 1 is shown the relation between the non-dimensional diffusivity K,
and the non-dimensional floating time #,. In the right part indicated by a letter B is
shown the relation between K, and the non-dimensional space dimension S,;, or the
spatial standard deviation of the particles, which are illustrated by full and broken lines.
The full lines correspond to the case of §,,(0)=0, or of the point source, and the
broken lines to the case of S,;(0)=0, or of the instantaneous source. The indicated
parameter is S,(0), which is equal to S, (0) for the full lines, and to S,,(0) for the broken
lines.

Seme behaviors of diffusion are found in Fig. 1 which are written as follows:
1) Fig. 1A, The diffusivity K,(4) is proportional to the floating time ¢, at small ¢,
and to £,* at moderate ¢, in the case of small values of S;(0), as shown in (32) and (34);
and saturates at large ¢, provided that D(r) does. The dependence of the diffusivity

NON-DIMENSIONAL FLOATING TIME,t,

» s -

b} 10 10
[od

| 0 " et i S

Ky

NON-DIMENSIONAL DIFFUSIVITY,

NON-DIMENSIONAL S.D.. Sn

Fig. 1. Diffusivity versus floating time (figure A), and diffusivity versus spatial standard
deviation (figure B), under the conditions of p—2/3, ¢—1/3, A=1000, ¢ =1 and
K, (0)=0. Initial time-space dimension S;(0) is taken as a parameter. Lull and
broken lines in the figure B3 arc solutions for point and instantaneous sources,
respectively.  Figure A involves all types of sources.
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K, on the source dimension S,(0) is significant at small ¢,. 2) Fig. 1B. In the problem
of the point source (full lines), when the diffusion proceeds, the spatial dimension
Sy(ty) grows to exceed the time dimension S,(4,), and the behavior approaches to
that of the instantaneous source (broken lines). Therefore, the [ull and broken lines
approach to each other as the spatial standard deviation Sy, increases. The main
parts of the full lines show that the diffusivity K, is proportional to the spatial standard
deviation S,,, as derived from (33). In the confluent parts of the full and the broken
lines, the diffusivity K, is proportional to the 4/3 power of S,;, as shown in (35), except
for large S,,, which corresponds to the 4/3 power law originated by RicHARDSON (1926).

Parts A and B of Fig. 1 correspond to each other.  When we want to find the float-
ing time {, in figure B, we can know it [rom the corresponding point at the same values
of K, and the other parameters in figure A. For the general types of source except the
point and the instantaneous sources, Sy (0) and S,,(0) are both significant. In such the
case figure A and the broken lines in figure B are useful, provided that S,; be read as S,.
The value of S,; in this case can be calculated by use of (15).

5. Diffusion chart

Fig. 1(B) shows the relation between the eddy diffusivity and the size of cluster.
We have two groups of curves in Fig. 1 (B), full lines for S,;(0)=0 and broken lines for
Sn(0)=0. For the case of S,,(0)4-0 and S,;(0)==0, we can draw the curves to be K;=0
at S, (f) =Sy (0) and to be coincident with full lines at S, (,)>5,,(0). The full lines are
valid for Sy,(0)==0, provided that S,,(;):>25,,(0). Let us consider diffusion under the
condition of Sy,(£,)>25,,(0), where S, is the spatial dimension of cluster. Therefore,
we are concerned with the full lines in Fig. 1(B).

From the following inequalities

S (0)2 = 5, (0)2 < Sy (0)2 + Syq (£)*, (36)
we have

Sy (02 = Sy (1)* for S, () > S, (), (37)
and

81 [0)¥ < 25;; (#)* for Sy ()2 < 8,4 (4)2. (38)

Since the diffusivity K, is nearly independent of §,(0) under the condition of S,(0)%<
285,,(t,)? as shown in Fig. 1(B), we can consider that §,(0) in Fig. 1(B) can be replaced hy
Snhlty). Consequently, we can find the eddy diffusivity from the values of S,; and S,
as a point corresponding to the value of S, in abscissa, on the full line for 5,(0)=5,(#)
in Fig. 1 (B), where S,; and S,; are given bv

4+ ;
Sy () = T U (y OBV, (39)

and

-
Si (b)) = To - (iR (40)
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Fig. 3. Diffusion chart for i=100.

and 2(v(1)212 and 2{4,%Y® may be considered to be the spatial and time-scale of
phenomena, respectively.

However, as Tfig. 1 does not cover many conditions of parameters, more generally
illustrated figure is necessary, Diffusion charts (Figs. 2 and 3) will be available for this
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object. Figs. 2 and 3 are drawn to be accurate for S;(0)=se and 0 under the condition
of ¢,=1. For other values of S,(0), some errors from the solution of our equations are
found, which are estimated to be about 10 per cent in the mean value. Correction
by ¢; is made based on the equations (32)~ (35). We shall adopt the relation p=2/3
from the universal equilibrium theory. Fig. 2 is given for h=1000, and Fig. 3 for
h—100. Parameters g, S;(0), ¢, and # must be given for each problem.

We can obtain the diffusion properties from Fig. 2, by the following way, which is
explained in Fig. 4, for an example of ¢=0.1, 5,(0)=10, ¢,=0.3 and i=1000. The
meanings of these parameters are stated in section 3, Points AB, ++--+- H in Fig. 4

| eo/ H 03
o Bt i _a\f;_ o
C

0.l Ol 0.l 0.1
- i
'A E/ D

8@ F osﬁ f’

60

Fig. 4. Diffusion chart for /=1000, — for explanation.

are plotted in the following order.
H: Intersection of lines S,=10 and ¢,=0.3.
G: Intersection of lines S;=10 and ¢,=0.3.
Intersection of the vertical line through H and the curve ¢=0.1.
Intersection of the horizontal line through D and the vertical line through G.
Intersection of the horizontal line through D and the curve g=0.1.

MmO

Intersection of the line ¢;=0.8 and the vertical line through B, where £ is read
to be 60.

E: Intersection ol the line £,—60 (read at ) and the line ¢,=0.3.

A:  Intersection of the vertical line through E and the horizontal line through D.
Next, curves are drawn in the left hands of A and C, taking the constant differences of
K, between that of curves ¢—0.1; and in the right hands of B and C, along the curves
g—0.1. The curves drawn throngh A and C in the left hands and curves through
B and D in the right hands show the approximate solution of Eqs. (24) and (26), of
which the independent variables f; and S,; are read on the line ¢,=0.3.

The conditions in the above example are equivalent to taking as

T 23 8 o Xrcaypril
Dy (7) _( 10 ) % 10 cm® sec for == 10sec,
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; 01
= k 11;, ) »* 10* em® sec™2 for 10sec = += 10" sec,
=2 X 10 cm? sec™® for 10%sec < T,

U= 10msec?,
and
(8,212 = 100 sec .

N

From these values, we have 7,—=40 sec, w=1m sec™ and ¢,=0.32 from (22) and (28),
and S5;(0)=S5,(4)=10 {rom (40). From the curve obtained in Fig. 4, we have, for

instance,
K =9 or K =36 x 10°cm?sec?
for S, () =10 or (y(@*Y*=1000m,
K;=12 or K =48 x 10t cm? sec™!
for S,(t)=1 or (y({#H)>¥2=100m,
K,=0,15 or K - 6.0x 10" cm?sec!

for S,(t) =01 or (y@*H2=10m,
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