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 Abstract 

            Generation of the transient elastic waves due to a surface linear force acting at 
     an inclination, is investigated theoretically. The spatial distribution of relative 

     amplitudes of the dilatational and distortional waves, and the effect of inclination of 
     the force on the particle motion of the surface are elucidated for all possible values of 
      Poisson's ratio. 

1. Introduction 

   The control of generation of the elastic waves is a very important problem in 

seismic exploration, and has been the  subject of several articles. To obtain a good 
signal-to-noise ratio, various methods are applied such as, for examples, pattern 
shooting or delayed detonation of the explosives. (PARR et. al., 1955, MUSGRAVE et. 

al.,  1958). An attempt to determine the underground structure in terms of  SH waves 
as well as P waves, has been made by the Seismic Exploration Group of Japan 

(KOBAYASHI,  1959). 
   It has been known that the energy radiated horizontally is the main source of the 

energy contributing to the background noise. The increase in the amount of energy 
emitted in the direction corresponding to the critical angle of incidence for a wave in 

a layered medium, may result in the improvement in signal-to-noise ratio. 
   In the present paper, the author intends to study primarily the surface linear force 

problem based on the exact solution attained by use of integral transform techniques, 
and elucidate the spatial distribution of relative amplitude of the dilatational and 
distortional waves generated in a semi-infinite elastic solid. The effect of the surface 
force on the generation of a seismic pulse with the  major portion of its energy con-

centrated in a range of angle of emergence, and that on the particle motion of the 
surface, will be discussed. As the Poisson's ratio  a of more than 0.45 are occasionally 
encountered in seismic exploration, the results for all possible values of  a may be of 

use for the practical purposes. 

2. Exact solution 

   Let us take  x—y axes on the surface of a semi-infinite elastic solid, and z-axis 

vertically downward into the solid (Fig. 1). The impulsive force is supposed to act 
uniformly along a line coincident with the y-axis, at an inclination  61 measured from a 

normal to the surface, the motion produced being independent of y. The strengths 
of the normal and tangential components of the force per unit length of the y-axis,
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                                          Fig. 1. 
are assumed to be 

 fN (x, cos 
                      (x) (t)S                                          (1) 

                ifr (x,bin0i- 
respectively, where  8(x) is the Dirac's delta function, and t the time. 

   The displacement components u and w produced by this force system are given by 

the vector sum of the components due to the normal and tangential forces with the 
strength  8(x)  S(t) per unit length of the y-axis, in such a way that 

                          =  uN cos  0+  uT  sin  0 

                w = w N cos 0+wTsin0(2) 

Subscripts N and T refer to the quantities for the normal and tangential forces 
respectively. 

   We define the Laplace and the complex Fourier transforms by 

 g  (x,  z,  p)  g  (x,  z,  t)  dt (3) 

and                  G, z, t) -V 2 7rfg (x, z, t) eitz dx (4) 
respectively. When we consider the force varying as a simple harmonic function of 
the time  ei.t instead of the delta function in (1), the derivation of the formal solutions 

for  uA,  uT,  wN and  72)7, is none other than that made in LAMB'S (1904) paper. The 
frequency  co in the steady state solutions may be regarded as a parameter of the 

complex Fourier transformation with respect to  t. And,  co is related to a parameter 

p of the Laplace transformation through the equation  co=ifi. Therefore, the solutions 
for the transient problem under consideration in the space of the Laplace transform 

with respect to  t, are derived immediately by the substitutions 

 p  --0  i  eiP'  -*  1,  eitx  e-itx,  2  7r  1/2  7t (5) 
in  LAMB'S  procedure.*) 

     *) The last two substitutions result from the LAMB'S definition of the Fourier transform 

                             G  =  g  (x)  e-itx dx 

 which is somewhat different from ours.



 2 [cosIm N (v) dv + sin61Reü T (V)C/7/1  Y 7-t 
0 

         T.7)  =  }  [cos  z  Re  f  W (v)  dv+  sin  Y  IMf  WT  (V)  dV] 
 0 where 

 UN  (V)  F  (v)  v  (2  v2+7n2)e-mi  v  a  b  e-Pe2 

 UT (v) F (v) = 2  v2 b  e-Pti—  (2  V2  +  M2) b  e-Pt2 

 W  N (v) F (v) = (2  V2  +  M2) a  e-Pti  —2  v2 a  e-Pt2 

 WT  (v) F (v)  —  —2  v  a b  e-Pii+v (2  V2  +  M2)  e-Pt2 

 F  (v)  (2  v2-0n2)2-4  V2  a  b 

 a  i/v2+  ,  b  i/v2+m,2 ;  Rea>0,  Reb>0 

 at„ =  a  z+i  vx,  at2—bz+ivx 

              m =  a/ 

the superimposed bar denotes the transformed quantity,  bc the Lame's 

 i8 the velocity of the distortional wave. 
   As the integration with respect to v and the Lapalce inverse  tra: 

the expressions in (7) can be performed by use of  CAGNIARD'S (1939) me 

expressions of the exact solutions for our problem are given as  follows  : 

 u  1  1/-2 (UN  cos0+UT sin  0) 
 7r 

                                            yur  W1 y2vrN cos W T sin 61) 

where 
              UN  IM  [v1  G1  (v H  (v1)  —  b (v1)  G2  (v2) H  (v2)] 

 UT  -= Re  [v1  G3  (v1) H  (v1)  —  b  (v2)  G1 (v2) H (v2)] 

 W = Re [a  (v1)  G1  (v1) H (v1)  —v2 G2  (v2) H  (7)2)] 

              WT [a (v1)  G3  (v1) H (v1)  —v2  Gi (v2) H (v2)] 

 G,  (v)  F  (v)  =  2  V2  +  M2 

 G2  (v)  F  (v)  =  2  v  a 

 G3 (v) F (v) = 2 v b 

              H  (v1,2) =Ra [cos 0 — i sin 0]                                    —R2/a2,132 
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   If we put 
 -=  j5v/a 

a being the velocity of the dilatational wave, we have 

(6)

(7)

(8)
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                 v,,,ak[cos 01/t2—R2/a2,132t sin 0] (12) 

                         R =  1/X2  z2 =  tan-1  x/z  . 

If we put  2-=-0°. (9) is the same as (1.46) in  NAGUMO'S (1960) paper. 

3. Dilatational and Distortional Waves*) 

   The amplitudes of the dilatational (P) and distortional (S) waves due to the im-
pulsive force prescribed for various values of 0 and  cr,  , will be studied at first. 

   Substituting t by the arrival times of P or S waves in  (12), we have 

 f sin  0  ,  m  sin  0  . (13) 

It can be easily seen, refering to (10), that the second term in (11) is extraneous for 
 pi or The The first term becomes infinite for  V, and  V2. Both infinities are of the 

order of  1/0, but the coefficient are not equal to each other. If in the first term 
in (11) we substitute  t=R/a+T, T being positive and small, it takes the form 

            H  (v l)  = COS 0 17  a 2RT(1+  RaT)//  1+ aT  2R (14) 

In a similar manner, we get 

              H (v2) cos° ma (1+131-W11+-3-T- 
           2RR2R (15) 

for  t=RIVT. In the limiting case where T tends to zero, 

 H (v2) hril  --Vm  (16)  H  (
vi) 

We should notice the fact that the infinity at  t=R83 is 1/m times the infinity at 

 R/a. The amplitudes are proportional to  R-1/  2. 
   Now let us define the amplitudes of P and S waves by those at the respective 

arrival times. For a detailed discussion on this definition, see Appendix. The 
amplitudes may be written as  follows  : 

 up A cos 0 sin  8 [cos  # (m2-2  sin2  0) +2  sin  0 sin  01/m2—sin2  0]/  F  p  (0) 
 (17) 
 us —A cos2  8 [2 cos  0 sin  01/1/m2— sin2  0—sin  0  sin  2  0]/VmFs  (0) 

 wp= A cos2  8 [cos  0 (m2-2 sin2  0)  —2 sin  t5' sin  01/m2_sin2  o]/F  p  A 
 (18) 
 ws— A sin  °cos°  [2 cos  0 sin  191/1/m2_ sin2  0—sin  0 cos 2  8]/1/m  FS  (0) 

where 
 Fp (0) = (m2-2 sin2 0)2+4  sin2 0 cos  8  i/m2—sin2 0 

                                          (19) 
 F (0)  = cos2 2 0+4 sin2  0  cos  1/1/m2—sin2  0 

     *) Approximate solution for the normal force problem was studed by MILLER and 
  PURSEY (1954) and HONDA,  NAKAMURA and TAKAGI (1956).  Three-dimensional problem for 
  the case of normal as well as tangential forces, is solved approximately by  HIRONO (1948,  49).
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 A=
 ii,   7r.

 liM  (1+ 
 T-^0

a,

 R )//- (1+
   When we denote the radial and transverse 

P waves by  5pr and  8p0, and those of S waves by

 a,  #  T  
 2R

(20)

components of the displacements 

 8„ and  8„ respectively (Fig. 2),

of 

we

have

 z 

Fig. 2.

 apo  —  Ss,  =  0 

 8pr = A  [cos  751  cos  0 (m2-2  sin2 0)  +sin  0 sin 2  01/m2—sin20]/Fp (0) (21) 

 Ss° = A Re  [—cos  0  sin  2  0-1/1/m2—sin2 0  +sin  0  cos 0  cos 2  0]/-1/ni  Fs  (0) (22) 

 If  the condition Re  a(v)  >0 in (8) is attended to,  1/1/m2—sin20--i1/sin20-1/m2• 
In the case sin  0>  1/m2 the S wave is subjected to a phase change 

               E  tarr-14  sin2 0 cos  e1/sin2  —  1/m2/cos2  2  0 

The phase shift results from the fact that in the region  0>sin--1  1/m2, the diffraction

 ya

 60

0'-  0°

Fig. 3.

 .10°

Phase change E

  0 
for various

Osa 
0.47.3- 
015 
 02,5-

angles of emergence.
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wave PS travels ahead of the S waves  (SHERWOOD, 1958). We define the amplitude 
of the S waves in such a case by 

       A[— cos 0 sin c sin 2 Oi/sin2 8 —1/m2   81 so +sin  0 cos c cos 0 cos 201/1/m—f(0)  (22') 

where 

             f (0)  =  Veos4 2  0+16 sin4 0 cos2  0  (sin2  0-1/m2) 

In Fig. 3, is plotted the attendant phase change  E as a function of 0 for some values 
of the Poisson's ratio  o-,  a being related to m through the equation 

 m  =1/2  (1—cr)/(1-2  a-)  • 

   As an unit of the amplitudes mentioned above, we take the amplitude of the P 

wave 
 8pN  (0  =  0)  =  A/m2 (23) 

at point on the z-axis, generated by the normal force. And, we will consider hereafter 
in this section, the normalized amplitudes defined by 

 [D  P  Dsl=  (1112  /  A)  [8pr,  s0]  • (24) 

3. 1 0=0°,  90° 

   The relative amplitudes of P and S waves,  DFN and  DsN, generated by a normal 
force, are given by putting  0=0° in (21) and (22). DFT and DST due to a tangential

 /0 

 ORN  0.2S' 
035 
 045

 u  a  
_fo°  a°  70' 

 61 
Fig. 4. Relative amplitude  DpN for various angles of emergence.
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             Fig. 7. Relative amplitude  DST for various angles of emergence. 

force are given by putting  79 =  90°. It is easily seen that DpN and  DST are the even 

functions of 0, and  DPT and  DSN the odd functions. We now consider the region of 

0 positive, or x positive. 

   In Figs. 4-7, are shown the variations of these relative amplitudes with 0, for 

some values of  a. In the limiting case where a tends to 0.5, or  In goes to infinity, we 

have the amplitude distributions as follows,

 DpN  =  cos 0 

 DpT  = sin  2  0/M 

 DSN  = 4  M3/2 sink  6 cos 0 sin 2  O/g 

 DST  =  M312  cos  0 cos3 2  0/g 

where g cos4  2  0+  16 sin6  0 cos2 0 

   The following conclusions are drawn from Figs. 4-7 

 DpA  : Pattern of the distribution is not very much  diffel

(25)

 elusions are drawn from Figs. 4-7 and the expressions in  (25). 
distribution is not very much different for different values of the
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Poisson's ratio  ci, at least in the range from 0.25 to 0.5. Hence  DpN may be considered 
as a function of 0 only, for any value of  a- that will be encountered in seismic explora-

tion. The amplitude varies as cos 0 in the limiting case where  a tends to 0.5. 
 DIDT:, Pattern of the distribution is modified remarkably with the variation of  a. 

As  o- tends to 0.5, the amplitude decreases as  m-1 and varies with 0 as sin 20. There 
is such a range of  0- that  DPT exceeds unity. In Fig. 8 and 9, are shown the maximum 

amplitude  DPT (OPT) and the angle  OPT respectively, as a function of  cr. 
 DsN  :  DsN vanishes for  00=sin-1  1/m2, and is largest for  OsN slightly larger than  00. 

The maximum amplitude  DsN  (OsN) increases with increasing Poission's ratio.  DsN 

(OsN) and  OsA are plotted in Fig. 8 and 9, respectively. The values of  OsN range from 
34°.2 to  45.°0. There is another maximum of  DsN at an angle, say  O'sN, slightly less 
than  00. The amplitude of the subsidery maximum for  O'sN slightly less than  00, 

decreases with  6. 
 DST  :  DsT vanishes for 0=45° and the phase inversion takes place for the 

emergence beyond 45°. These behaviors of the S waves are independent of the 

amount of the Poisson's ratio, as will be seen from (22'). The amplitude becomes the 
maximum for an angle, say  BST.  ST. For the range of a- from zero to about 0.3,  OsT is 

nearly equal to  00. The difference between the angles increases with  ci, and in the 
limiting case where a- tends to 0.5,  OsT is larger than  00 by 19.°7. The maximum 
amplitude  DsT  (OsT) and  OsT are also plotted in Fig. 8. and 9 respectively. The

 /S

/0

 '5

 0L 
 0

 Fig,

 0/  02 03  0.4 

8. Maximum amplitudes of 

 D  pN and  DsN•

05

 DST,

80

60

 0

 20'6. 
  0 0.1 0.2 0.3  04  as 

 O Fig. 9. Angles of emergence for which 

       DST,  DSN and  DpT take max-

         imum value.
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energy radiated as the S waves into the region  0>45° is negligible compared with one 

in the region  0>  45°. Generally speaking, the energy radiated horizontally is the 

main source of the energy contributing to the background noise. Therefore the 

increase in the amount of energy directed downward in a layered medium, results in the 

improvement of signal-to-noise ratio. 

   Amplitude ratio of P to S waves for any of the force systems increases with  a in 

general tendency. Throughout the present paper, we take no account of energy dis-
sipation which accompanies vibrations in solid media. However the tendency at
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least for  0- 's of practical interest seems to be suggestive for the possibility of generation 
of the S waves with a considerable amount of the energy, even if  0- tends to  1/2. 

3. 2 Arbitrary  0 

   We now proceed to study the variation of  Dp and  Ds with  0 as well as 0. As the 
variation is now asymmetrical about to z-axis, we must be concerned with the range 
of 0 from  —90° to  90°.  Dp and  Ds are given by (21) and (22), taking into account
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the normalization (24), and are shown in Figs. 10 and 11 respectively, for  o-=0.25, 
0.45, as a function of  O. 

   The general conclusions for all possible values of the Poisson's ratio  or are drawn 

as follows. 
 Dp  : With increasing  6,  0,,a, for which the amplitude takes maximum increases, 

and the maximum amplitude decreases.  Omax is plotted as a function of  0 in Fig. 12, 
for some values of  o-. Dotted line shows the case in which  //mai is equal to  0. We 
may not expect, for the presence of a free surface in our medium that the direction 

of force acting agrees with  0,,,ax. The deviation of  Omax  (z) curves from the dotted 
line increases with  0, and becomes more remarkably  for larger value of  a. 

 Dp vanishes for negative, and the phase inversion takes place for the emergence 
beyond 0—.  O—(0) curves are also shown in Fig. 12. The amplitude of the P waves in 
the absence of the free surface, vanishes for  0=0-90°. (LAMB, p. 8). The broken line 

in Fig. 12 shows such a case. The deviation of  O-(0) curves from the broken line is 

more sensitive to  0- than that of the  8,,,ax  (V) curves from the dotted line. 
 Ds : Pattern of the spatial distribution is rather sensitive to the variation of the 

inclination of the force as well as that of the Poisson's ratio. A large number of 
maximum and minimum in the amplitude variation makes the detection of the latter 

phase generated by such a S wave, somewhat infeasible as the case may be. 
   There are the values of inclination of the force, for which the amplitude of S waves 

are rather uniform. For the case  0- =0.25, it takes about 20°. For these values of 

 0- and  0, the amplitude of S waves is more than three times that of P waves, for all 
values of  8 negative. Furthermore the amplitude of initial motion of surface becomes 

minimum, as will be seen in the next section. 
   The uniformity of amplitude variation of P or S waves and the larger amplitude 

of a wave than that of another, facilitate the interpretation of the latter phases which 

are due to the incidence of the initial P or S waves on the interface in a layered medium. 

(c. 1. Appendix). 

4. Initial Motion of the Surface of the Elastic Solid.*) 

   For the practical purposes, it may be worth while, in some cases, to reduce the 

amplitude of an initial motion propagated along the surface of an elastic solid. We 
now study the effect of the inclination of the force considered in the preceding sections, 

on the initial motion of the surface of the solid. 
   Putting z=0, or 0=90° in (9), we have the exact solutions for the surface motions 

as follows,

   *) If we perform the numerical calculation of the exact solutions in (10), we will see that 

the sudden commencement of displacement for z40, or 04 90°, is followed by a gradual recovery, 
or by an ocsillatory motion as the case may be. In the limiting case where z tends to zero, the 
infinite jerk at the onset vanishes, and the motion begins with finite displacement corresponding 
to the ocsillatory motion stated above.



100 K. EMURA

  uQ= 2  aX[cosR e (I)(2 V2 +M2) —2 a]b) /F (v)+  m2 sin0/ mbIF (v)1 

                         

. _ 

 wo = .1/ 2   a X[m2 cos.0/ m a IF (v) —sin0Re v (2 V2 +M2-2 a b) / F (v)1      r7Z' 

where  v=—iat/x, t>x/a. 
   The horizontal and the vertical components of the displacements 

are denoted by  u,-; and  w,-;  , and those for x negative by  u6- and  wiT  respec-
are shown for times before the arrival of the phase propagated with the 
wave, in Fig. 13, the displacements being measured in units of  1/2/7r  a1 

in  0 results in the increase in the maximum amplitude of initial motions

(26)

 Ilacements for x positive 

 wiT respectively. These 

d with the velocity of S 
of  1/2/7r  a/px. Increase 

al motions for x positive,

  , 

a>

 U0

 ,  r 

0

 ci=  025

 e -

 -177
0

•  i 

 I

 Lr\ 

 /0  //  /2

Fig. 13. Exact solutions for the 

(b)  0=0.45. Thin lines

 05  -

c!/A 

initial

,-..^^•

i

d  =045

/0  2()

motions of 

thick lines  :

surface. (a)  (r=0.25.

and also a slight modification of the wave form. On the other hand, the wave form 

of the initial motions for x negative is sensitive extremely to the variation of  61. The 

period of the motions increase apparently with increasing Possion's ratio, as would be 
expected. 

   There is an inclination of the force, say  z9_, beyond which the application of the 

force yields the inversion of the sense of a component of the initial motion. In other 

 words, the particle velocity of the component of motion at the onset, vanishes for



        ELASTIC WAVES GENERATED BY A DIRECTIONAL SOURCE (I) 101 

Substituting  1=x/a, or  v=1, and  0=0° and  90°, we have the ratios of vertical to 
horizontal amplitude of the initial motions due to the normal and tangential forces, as 
follows, 

 Rp =  (-WON( W07'=-(27)*)  uoN)t-xia=UoT)crt=zliv 1/1  —2  a  • 
As the expressions for  uoN is equivalent to that for  -WOT, we have 

 W(TN=Rptt(TN=—RpwiTT=—Rp2u,TT  for  t  Ix'  /a (28) 

   Considering at first the horizontal amplitude, the equation 

 u,-;  iv  cos  751_+14,,,, sin  z5+_= 0 (29) 

which must be satisfied by  ?9_, is rewritten as 

 Rp cos  0_—sin  =  0 (30) 

by use of (28). The latter equation can be applied also for the vertical amplitude, as 
is easily seen from  (28). We under-

stand therefore that the particle 

velocities of both components of 
the motion at t=x/a vanishes for 

   Now  z2_ is given by the relation 

 = cos'-- 1  
 1/1+Rp2(31) 

and shown in Fig. 14 together 

with  Rp as a function of  cr. For 
 6=0.25,  =19.'5 and  Rp=0.3535. 

5. Rayleigh Wave 

   We will study the Rayleigh 
waves propagated along the surface 

of an elastic solid, which are gen-
erated by the force system similar 

to that provided in section 2, except 

the time variation of it. In the 
integrals for  z  =0 in (7), the zero 

of  F(v)  =0 corresponding to the 
velocity of the Rayleigh waves, is 

on the distorted path of integra-

29-._

 30°

 RP

 F(v)=0 corresponding to the  V  0  01  0.2  03 04 0.5- 
Aocity of the Rayleigh waves, is  C) 

 i the distorted path of integra-                                                           Fig. 14. 19-- and Rp. 

   ii The ratio may be defined also in terms of the maximum amplitudes of the components 
of the initial motion. Generally speaking, (Max. of  woN/Max. of  UON), for the case is smaller 
than  Ri, defined above, e.g. by about 5% for  cr=0.25. In seismic  exploration, the geophones 
used are of the velocity type for the most part. It seems to be significant, therefore, to con-
sider the ratio at the onset of the motion, such as defined by (27).
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tion, and the integrands become infinite at the zero. For the problem under con-
sideration, it seems to be suitable to concern with a residue at the pole. 

   Now, we suppose that the force such as stated above, varies with time as 

                        A  f  (t)
t2c+0  ;  c,  A>  0 (32) 

In order to obtain the displacement solutions for Rayleigh waves generated by such 

a force, we perform the operation 

                 1  Refdcoff(X)e-iwAdX (33) 
                              7r 

to the displacement solutions for steady state propagation of the waves, the latter 

being given as

 1  u
NR--  v  eiw(t-xicR)  WNR  -L  KA  ei.(t-x/cR) 

                1  

             UTI?"=---t HT  eiw(t-x/CR)  WTR—  1   Kieio_x/cR) 
                                               it 

where 
       HN (2  R2-1)3/R D  (R)  , KN  = 2 (2  R2—  1)2  1/R2—  1/m2/D (R) 

       HT = 2  (2'R2-1)2  i/R2—  1  /D  (R)  ,  KT =  HN 

 D  (R) =  16  R  {1—(6-4/m2)  R2+6  (1-1/M2)  R41 

 R  =  'VCR 

subscripts N and T refer to the quantities for the normal and tangen 
spectively,  CO is the frequency, and cR the velocity of Rayleigh wave. 
1904).*) 
   Performation of the operation (33) yields the transient solutions for 
as follows. 

   UR  = —A  [H.N cos  0 cos  (tan-17)  —HT sin  0 sin  (tan-17-)]/e  p,  1/1+  v2 

 WR -= A [HT cos  0 sin  (tan-1  T)  +  T sin cos  (tan-1  7)1/c  a  1/1 + v2 

                                t—x/CR  

                                   T where 
In Fig. 15, are shown the wave form and particle motion for the wave  f( 

 0-  =0.25 and some values of  0, the displacements being measured in unit 
   Increase in  0 results the reduction of the amplitude and also the m 

the wave  form, as if the wave undergoes a phase change. Whereas the  pz. 
is elliptical retrograde, being regardless of the variation of  0. As cos 
sin  (tan-17) in (36) are even and odd functions of x respectively, the locus 

     *) For the convenience of numerical computation, the transfer has been  I] 
 expressions.

(34)

(35)

tangential forces re-

wave. (cf. LAMB, 

 ms for our problem,

shown the wave form and particle motion for the wave  for x positive, 
 me values of  0, the displacements being measured in units of  A  HN/cp,. 

 0 results the reduction of the amplitude and also the modification of 
as if the wave undergoes a phase change. Whereas the particle motion 

rograde, being regardless of the variation of  0. As cos  (tan-1 T) and 

(36) are even and odd functions of x respectively, the locus of the particle 

3 convenience of numerical computation, the transfer has been made in some
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        Fig. 15. Particle motions for Rayleigh waves and the loci, at the surface. 

motion for x negative must be symmetrical about the origin. The variation of  0 

yields the displacement of center of the ellipse and no change in the ratio of the major 
 to the minor axes. 

   It is easily seen from (26) that the variation of the Poisson's ratio affects the 

ratios HT/HN and KN/HN alone, and not the wave form or the locus of the particle 
motion. Therefore the results stated above for  cr  =0.25 are applicable altogether to 

 lny case of the value of cr. In Fig. 16, are shown the ratios  HT/HN and  KN/HN as 
well as HN,  HT and  KN as a function of  a-, for the benefit of reference. 

 6. Conclusions 

   The transient elastic waves in a semi-infinite elastic solid, generated by a surface 
Linear force acting at an inclination, are investigated theoretically for all possible values 

 of the Poisson's ratio. The results are related to a practical problem, that of the 
improvement in signal-to-noise ratio in seismic exploration. 

   The general conclusions from the present investigation are drawn as follows  : 
   1. Increase in the inclination  0 of the force results the increase in the angle 0 of 

emergence, for which the amplitude of P waves has the maximum value, and results also
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KN/HN HT/HN as functions of Poisson's ratio.

in the decrease in the maximum amplitude. The angle 0 is smaller than the inclina-

tion of force for any value of the Poisson's ratio  cr. The  difference increases with 

increasing  c, 

   2. Amplitude of P waves passes through zero at an angle of emergence, and the 

phase inversion takes place for the emergence beyond this angle. 

   3. Pattern of the amplitude variation for S waves is rather sensitive to the varia-

tion of the inclination of force as well as that of the Poisson's ratio . A large number 
of maximum and minimum in the amplitude variation makes the detection of the latter 

phases on a seismogram, somewhat infeaseble as the case may be. There are the range 
of inclination of the force, for which the amplitudes of S waves are rather uniform

, 
e.g. about 20 degrees for the case  cr  =0.25. 

   4. Ratio of the amplitudes of P to S waves for any of the force systems , increases 
with increasing Poisson's ratio. Throughout the present paper we take no account 

of energy dissipation. However the tendency at least for cr's of practical interest seems 

to be suggestive for the possibility of generation of the S waves with a considerable
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amount of energy, even if  o- tends to 1/2. 
   5. The inclination of the force, for which the particle velocity of the surface 

motion vanishes at the onset, increases with  6, It takes about 20 degrees for  cr  =0.25. 
   6. Particle motion for Rayleigh waves at the surface is elliptical retrograde 

regardless of the values of the inclination as well as of the Poisson's ratio . Increase in 
the inclination yeilds, to the displacement of the center of the locus and no change in 
the ratio of the  major to the minor axes of the ellipse. 
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                            Appendix 

   The reason why we define the  ampltidues of P and S waves by (21), (22) and (22'), 
will  be elucidated as follows  : 

   According to the exact solution for the problem on the two-dimentional propagation 

of elastic waves in two semi-infinite media in contact, the displacement of refracted 
waves due to an initial pulse, the time variaiton in the pulse being similar to H(v) in 

(14), must be given by 

              A  = D  (0)  f (0,  00;  R)  Im G  (0)  ,  > (1) 

where  D(0) expresses the amplitude of the initial pulse radiated in the direction which 

makes an angle  0 with a normal to the interface, and is none other than that defined 
by  (24).  f(0,  0,); R) denotes the distance  factor,  0,, the critical angle of incidence , and 

 G(0) the coefficient of reflection  (EMURA, 1960). For the initial pulse without the

f 

 ,

 A

)7_1'
                            Fig. A. Refracted wave  P1P2P1 

directive properties,  D(0) must be unity. If we consider, for example, a refracted 
wave P1P2P1 as is shown in Fig. A, the angle 0 is connected with time by the relation 

                                                 -I-z                           1—hcos 0 ± —x                                           (2) 
           a a' 

   Basing on the ray theoretical interpretation, it is seen that the amplitude of 
 P1P2131 at the time  ti after onset depends on the amplitude of initial pulse at the time 

 t=h/a cos  0, when the pulse strikes the interface with an angle  Oi, and not on the 
amplitude of the residual displacement following the sudden  jerk of the pulse. In other
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words, the wave form of a refracted wave must be determined by the initial amplitude 
of the pulses striking the interface. 

   If D(0) is assumed to be unity, the wave form of a refracted wave will be given, 
in general, by Im G(0) alone. When we consider the directive property in the initial 

pulse, the wave form of the refracted or critically reflected waves must be rather com-
plicated, as the case may be. For example, the amplitude of S waves due to a surface 
tangential force passes through zero for  0=45°, and the phase inversion takes place 
for the emergence beyond  45°.  If  the critical angle of incidence for such a initial S 
wave is about 45°, the amplitude of the refracted waves generated may be so small 
that it is impossible to identify the waves on a seismogram. And, the detection of the 
reflected waves may be troublesome, on account of the inversion of sense of the 

motion as well as the complicated variation of the wave form with distance along the 
interface. 

   These are the interesting problem encountered in seismic exploration and will be 
the subjects of subsequent publications.
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