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 Abstract 

     The wave height at the head of a rectangular bay of uniform depth is in-
vestigated, when a packet of sinusoidal long waves is incident upon the bay 
mouth. It is assumed that no energy is dissipated in the form of diverging waves 
from the bay mouth, and the bay water possesses eddy viscosity. The bay head 
is assumed to be composed of either a rigid or a  non-rigid wall. 

     The wave height at the bay head may be expressed by two different solu-
tions, one is the mode solution and the other is the ray solution. The former 
may be successfully used to investigate the water motion in the later part of a 
marigram where few modes of free oscillation are predominant, and the latter is 
very convenient in  constructing a theoretical marigram from which the maxi-
mum water level can be estimated. 

      For the case of non-viscous wave motion with a rigid wall  bay head, 
response curves which represent the maximum wave height at the bay head as a 
function of  T  ITo, with a parameter m, are obtained, where T and  T, are re-
spectively the period of incoming waves and the first mode eigen-period of the bay, 
and m is the number of crests and troughs contained in the incident wave packet. 
The response curves may be useful in estimating the wave height due to tunamis 
at the bay head. For the case of a certain kind of non-rigid wall bay head, it can 
be shown that the wave height is decreased at the bay head.

1 Introduction 

   Almost the whole eastern coasts of Japan were swept by the tunami which origi-
nated from the Chile Earthquake of May 24, 1960. The bays situated along the Sanriku 
Coast in the northeastern region of Honshu, exhibited very much different response to 
the invaded tunami from that at the time of near tunami originated off the Sanriku 

Coast in 1933. In certain bays, the wave height at the bay head is much larger than 
at the bay mouth, and vice versa in 1933. Also, the marigrams of the Chile tunami 

show much more prolonged free oscillation of bays compared with those for the Sanriku 

tunami in 1933. The reason for these facts may be sought in that a very distant 
 tunami, when compared with a near one, can send into the bays waves with much 

longer periods and longer duration, and gives rise to turbulent motion to a less degree 

in the bays. 
   The motion of water in a bay due to incident long waves has been studied by G. 

NISHIMURA and K.  KANAI (1934), G. NISHIMURA, T. TAKAYAMA and K. KANAI (1935), 
R.  TAKAHASHI (1947), T. RIKITAKE and S. MURAUCHI (1947), and S. OGIWARA (1949). 

 All these authors have treated the case in which a shock-type wave or a sinusoidal
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wave train is incident upon the bay mouth. The works of  NISHIMURA, TAKAYAMA and 

KANAI, and that of RIKITAKE and MURAUCHI are concerned with a bay of variable 
section, while others treat a rectangular bay. The effect of eddy viscosity is discussed 
by OGIWARA in an approximate manner. TAKAHASHI has showed the ray solution 

which will be discussed also in our paper, and has suggested a method to estimate the 
coefficient of reflection of long waves at an actual bay head. K. SEZAWA and K. 

KANAI (1936) have investigated a problem of dissipation of energy in a bay caused by 
the diverging waves from the bay. 

   It may safely be said that, for a given bay, the motion of bay water in case of an 

invasion of a tunami is primarily influenced by three  factors  ; the period and length of 
the incident wave packet, and the eddy viscosity relevant to the motion of bay water. 

   In this paper, ignoring a complication due to shape and bottom topography of the 
bay, the combined effect of the three factors above mentioned will be investigated by 
solving the motion of bay water, when a packet of long waves composed of  m crests 

and troughs is incident upon the mouth of a bay with a rectangular shape and uniform 
depth. From a practical point of view, the maximum wave height at the bay head 
is exclusively investigated. Judging from the results of model experiment, the energy 

dissipation due to the diverging waves from the bay mouth will be ignored. The 

boundary condition at the bay head is assumed in two ways, one is the case in which 
the  coefficient of reflection is unity, and the other is the case where it is not.

Fig. 1. Rectangular bay with 

   uniform depth.

2 Fundamental 

  Conditions

where u and v are  velocities respectively

pressure, g the  acceleration due 
 coefficient of eddy  viscosity. 

term  vv2v, we have

Equations and Boundary

             Consider a rectangular bay with length 1 and 

         uniform depth h. The cartesian coordinates (x, y) 
 V are taken, as shown in Fig. 1, such that the origin 

         lies at the bottom of the bay mouth, x-axis is  di-
   h = 

          rected to the bay head, and y-axis vertically up-

             wards. 
with The equations of motion and the equation of 

          continuity are 

 au   p        ^S7 211 (1) 
  at P  ax 

         pa   aV  aIy)^pv2vg,  (2)  at— 
 av 
    ax   + a0, (3)         y 

 ties respectively along x  and  y directions, p is the density,  b the 

 on due to gravity, and  7) may be considered to represent the 
 )sity. From (2), ignoring the vertical acceleration and the

 ap  ng 
 ax

 ay  

 ax  '
(4)
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From (3), it follows  that 

                6E 
0 a xdy, (5) 

where  n represents the elevation of water surface from the undisturbed state, and 

 =judt. (6) 
Substituting (4) into (1), and using (6), we have the equation for e, 

                          a2 rh 
             312gax2 d v atay. . (7) 

   We take the following boundary conditions, 

 y  =  0  :  u  =  0  , (8) 
                              au 

 y  =  h:ay —  0, (9) 

 x  0:  =  f(t)  , (10) 

 x=1: ax -  0  , (11) 
                                   where f(t) is a given function of time. (8) indicates that there is no current at the 

bottom, and (9) shows that the  tangential shear at the surface is zero. (10) implies no 
energy dissipation from the bay mouth, and  (11) shows that the bay head becomes 

always a  loop for elevation. 
   Initial conditions are assumed as 

 

t  =0: 77= at —0. (12) 
   Using (5), (6), and (12), we can write the Laplace transforms of (7) and (6)-(11) 
as follows  ; 

                P2I ga2redy + p2va2e(7')                 ax.0a2 

 y  =  0  :  6  =  0  , (8') 

                        ae                y = h:
ay= 0 , (9') 

 x  =  0:  77  =j(t)  , (10') 

 x  =  1: fh x.a26dy = 0 , (11') 
                           a where for instance, 

             0e-Pt d(13) 

3 Formal Solution 

   A solution of (7') can be obtained by use of the method of separation of variables, 

 e [A  sin  ( i/K  x  +B  cos  (-V  K  x)1  CC sinh  (-1/  + D cosh  (j  v  y)  —  -A]  ,
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where (14) 

        gKf o[C sinh (-11  P y) + D cosh (-11 y)-2_1dy ,(15) 
                               P and  A  ,B,C and D are constants to be determined by the boundary conditions  (8')-(11'). 

K is a constant of separation of variables and is ultimately dropped out from the ex-

pression for elevation. 

 (8')-(11') successively determine the constants as

 D  = 

 2 

                    C  2tanh (-1_1h), 
                  A  =  gi/TC  f  (t) 

 B  =  gi/R  f  (0  tan  (via  . 
From (14), (15), and (16)-(19), the transformed expression of (5) 

        = dy 
                 0 x 

 -  g-V7K  [A cos  (i/K  x) - B sin  (-VK-  x)1 

 cos  -(1/TC  (/-  x))-  
                    cos  (-VIC  1) 

The inverse transformation gives 
 c-Fico 

                  1 ezt  cos [i/K (1-x))d  z          =• 

                2 itcos-1 _1/K1)- 
where the integration is to be carried out in the complex plane as  si 

   The elevation at the bay head  (x=1) becomes 

                              1 fc±i.  -  ez.

 

S  zn

 • a

• , 
 Z,

 C

 iu)

Fig. 2. Location 

 z-plane.

 0

 -1w

of poles in

becomes

(16) 

(17) 

(18) 

(19)

(20)

      (21) 

hown in Fig. 2.

 ezt  72/  = 2
71(cosficvic  d  z  . (22) 

   We assume that a packet of sinusoidal waves, 
of which the number of crests and troughs is given 
by m, and the period by T is incident upon the bay 

mouth. Then we may write the function  f(t) as 
      0  t  <  0 

 f  (t)  0  <  t  <   m  (23) 
 CO  , 

 where  co is the circular frequency and T 2  7r/w. 
     The Laplace transfom of sin  co t,  t  >0 is given 
 by 

       Je-Pi sint dt       o p  2  +(24) 

 and that of sin  co  t  ,  t  >   "171' , is given by
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                                                      mpp. 

           fg.,e-Pi sincot dt = (-1)"1 (25)                                     (fi2+602) 

                        m Then the Laplace transform of (23) is the difference between (24) and (25).  (cf. N.  W. 
MACLACHLAN (1949) p. 129) 

 I  — [1 (, t> m It                                            (26)  p2+026 .) 

Thus we can write for the elevation at the bay head, 

 m   >  t  >  0
, 
 771 = (27) 

 m7t   771-772  t  > 

where  1  e"  
                  2 7t i c - iooz2 +02 cos  (i/K  I)d z , (28) 

 L m c+i-ezu_ moo](0= (-1).    z  . (29)               '7a
27t i  z2  +02  cos  (i/K  1) 

   We have two different types of solution for the elevation expressed by (27)-(29), 
according as the method of integration in the complex  plane. One is the mode solution, 
the other is the ray solution. 

4 Mode Solution 

   As the integral in (29) is readily obtained from (28) by replacing  t by  t-mn  /w, 
we will consider only (28). 

(1) Riemann surface and singular points. 
   From (15)-(17), it follows that 

                 rj 
 gK a z2LE 

 "   tanh(/z —                                            (30) 

and 

 K  1      z     —
(31)                     gP  tanh(-1/_Lh)11T12 

   In the z-plane we make a branch cut from 0 to  —  co along the negative real axis 
as shown in Fig. 2, and putting 

          z   h  w (32) 
 v • 

we assume that the real part of w is positive in the upper sheet of the Riemann surface 
in which the contour of integration is laid. 

   Since K is a single valued function of  -V  z as seen from (30), and cos  (-1/  a  IgK 1) is  a 
single valued function of K as seen from the series expansion
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 cos (,/K 11) = 1  — K12 +   411 K214 —   

the branch-cut-integral vanishes. 

(2) Poles of the integrand. 

    There are poles  z=i-i60, as shown in Fig. 2, which give the forced motion due to 
the incident waves. Beside these poles, we have other ones determined by the relation 

 cos  (i/K  I) =  0  . (33) 

This relation can be written as 

          [tan (n + I2) 7r ,  n  0,  1,  2,   (34)          whwIT/2 
or 

                 fInw1 +  1  — tanh w— 0  , (35) 

where 

            13.  =7,2    , n2h4 (36) 

 con-Vgh, (n  4_1Tn 4/           T
,,2Igh (2n +1)•(37) 

      in (37) represents the period of free oscillation of n—th mode in the absence 
of eddy viscosity. The equation (35) was first derived by A. DEFANT (1932), in his 
study on the eigen-oscillation of water in a lake, and later investigated by K. HIDAKA 

(1935) in his problem of lake seiche gmerated by wind. 
   If we put 

 + (38) 
it follows from (32) that 

                z [(7722                                      —E)-2      n2(39) 

By separating the real and imaginary parts of (35), we obtain the simultaneous equa-
tions

 [(2__722)2 4  2  n2 4  772  (3'2  772)1 (cosh 2  +cos 2  7?) 
               + 1                        18[cosh 2 E + cos 2—  sinh 2 E= 0 , 

                                          n 

 [(  2_772)2_ 4  722+ 4 E2(E2,72`1                               ) (cosh 2  +cos 2  72) 

                                      2 

                    + Pn[cosh2E+cos277—                                             sin'7'=0.71-I 
   For a given value of  13„, and  n can be obtained by a trial  and 
Remembering the condition  Re(w)> 0, we can write the roots of (35) fen

(40)

 nd error method. 

for prescribed  f3„,
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 71n 

                      (41) 
where  fl,71n>  0  . 

   Table 1 contains the results of our calcula-

tion of and  77 for some values of  fi  (=  16), toget-

her with those obtained by DEFANT and  HIDAKA. 
Fig. 3 shows the behaviour of  E and  ri for varied 

 $, from which we see that  ri is always larger 
than  E for any value of  /3  larger than 0.5370. 
The positions in the z-plane of the roots of (33) 

may be schematically shown in Fig. 2. 

(3) Residues at the poles 

   The sum of residues at the poles  z=±ico is 

obtained as 

                                    Table 1.

 20 

 18 

 16 

 14 

 12 

 4,...  10 

 I  6 

 4 

  2 

  0

Fig.

 

7  =

 o 2  4 6  8  10  12  /4  /6  l4 20 

3 The curve showing the relation-
ship between and  n for varied  ft-
values.  77=1.1122 correspond 
to  0=0.5370. The curve approches 
to the dotted line  n  4.-1-1/4 in-
definitely with decreasing  /3-value.

* 

* 

* 

 t 

* 

* 

 t 

* 

* 

 t 

* 

 t 

* 

 t 

 r

0.5370 
0.4732 
0.3376 
 0.2500 
 0.2132 

0.1284 
 0.0625 
 0.0615 
 0.02440 
 0.015625 

 9.36x10-3 
3.0864 x  10-3 

 2.68  x  10-3 
9.7656  x10-4 
4.00x10-4 

8.991  x10-5 
 2.258  x10-6 
 4.616  x10-6 
 1.486  x10-6 
 2.985  x10-7 

9.523  x10-8 
 5.962  x10-8 

3.921  x10-8 
 1.897  x  10-8 

 1.026x10-8 

  *  :  comp' .

x S

0.0 
0.2 
0.4 
0.53442 
0.6 

0.8 
 1.08662 
 1.0935 
1.4 
 1.72059 

2.0 
 2.72894 
2.8368 
 3.73365 
 4.73475 

7 
10 
15 
20 
30 

40 
45 
50 
60 
70

    1.1122 
 1.1307 
 1.1837 
 1.23648 
    1.2670 

    1.3757 
    1.56595 
 1.5708 
    1.8916 
 2.08322 

    2.3362 
    3.03519 
 3.1416 
    4.02704 
 5.18855 

    7.264 
   10.260 

   15.256 
 20.255 
   30.253 

 40.252 
 45.252 
 50.252 
 60.252 
   70.251 

computed by

T/T

3.217 
1.817 
1.513 
1.424 

1.269 
1.175 
1.174 
1.128 
1.117 

1.106 
1.087 
1.083 
 1.0641 
 1.0521 

 1.0370 
 1.0267 
 1.0170 
 1.0126 
 1.0084 

 1.0063 
1.0056 
 1.0049 
 1.0042 
1.0036

computed

 R, =

by DEFANT.  t  : 

 etiwt  --  +

HIDAKA

 e-iw'

    0. 
 5497.9 

 61.37 
 19.21 
  13.11 

  5.976 
  3.234 
  3.200 
 2.086 
  1.828 

 1.636 
  1.398 
  1.379 
  1.269 
  1.201 

  1.124 
  1.084 
  1.055 
  1.041 

 1.027 
 1.020 
   1.018 
  1.016 
  1.013 
   1.011

 2  i [cos  (i/K  I)] 

 eiwt  -  I 
 cos  M  '

 z=ito
-2 i [cos  V  K  1)]

(42)

where

     10  M=   tanh  v  r„,
 ww  }-1  /  2
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The sum

is

of residues

      ww ---- /  (--) 
 p at the poles 

 zn,  1 ii 
  zn*l ^h2

K

(I)

7)
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   7r/4 i 
h e

obtained as 

 R,  =

 follows  ; 

 n=o
 {sin[

 e2ni

{(7i2,„-2,) -T  2i„77„1

 co  

 (z2„+6)2)

(43)

 (VK  1)

         +   

 {sin 

 =  2  0)  E  (-1)"+1  Re  — 
                        n=0 

where 

                il (ta 
 1 ddz(-171C1)}z„=4-1/gh-0—— 

 w. —V  z,,,,,h . 

(4) Elevation at the bay head 
  From (42) and (44),  771 in (28) 1 

771—Im(cosMei'l)+26)cip(-1)n-FlI  n=0

d

 dz
 (i/K 

 Zn 

 en*

 (i/K1)  dz (irk 1)}zn,* 
 eznt

 (zn*2  +  ()2)

 1
 ddz  (1/171)1z,  (Z42  +  6)2) 

 tanh   V-3/2[5(1—tanh wn                      tanh2 wiJJn 
ze)„Wn

becomes

 (_1)n+1Re
 eZni

 (z„2  +0)  I d 

dz  (-V  K  1)  ii IZy2

(44)

(45)

From (28) and (29), we can write 

  771-2 eiwt(-1r/m{ 
              cos M

+  20  E 
 n=0

 03 

 =  2  co  E 
 .-0

 (-1)"+1  Re[
 eicurt—mniftdi 

cos M 

 eznt 

 (-V—K1) d z 

 t

 Izn

 0<t<  m7r 

   (46)

—  1)"-F1  Re

 (z  n2  +  (02)1 
 e'n

 { 1  —  (—  l)n  e  -moznA,  }

(zn2+,2){  ddz 
 t>   m  I  

 co

 (-  /  Kl)},n f 1—  (  —)n  e-m7rzn/  fr) 1 ,

(47)

If we put
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       t T                T 
To " To , 

where  T, is the natural period of the first mode oscillation, the mode 

written as follows :

 77/ = 

where 

M — 

N. =
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        T —Tt , T                                      (48) 

is the natural period of the first mode oscillation, the mode solution can be 
follows : 

Im  6                             n
n-0  ,2.t.r/u2                 ENe-2'"-tit;[("2-t,,,,2)-2titfinn]ri0 < < MU(49 

      COS /Y/                         —2°') 

 Im E {1— (-1)m e-"0/2  e-2'''43°  [("2-i42) 2 i61"1 7MU< T,(50) 
n=02°

 m _  7r  I  1 _  tanwu,h   2  uo  1w.  }-112 , w.,,  _ u0-1/20-1i4 er14 i 
 1 Ain =  (1,„ 16 u, 11tanh w1-312„ {1+13°u02wn4}-115(1 _  tanh w,l)_    / 7rIw7,itanh2w,,}-1.                                                                               Wn 

                                           (51) 
    When the motion of bay water is non-viscous, it can  be seen that from (32), w 

becomes infinitely large. It follows from (32) and (35) that 

 zn = ±  i  cos,  , 

 /3,, w4 = — 1 , 1  +  /3,142  wr,4  =  1+  /3n  ft,„2  wn4 „.,_____  1  un2  . (52) 

   Thus, (49) to (51) are replaced by 

               2n'   sin( T  Uo) 1                    4°° (—)n•       Icos ( n')n"n=01—u,i2                  +  u,E  sint2 it-(2n+1), 2T107 --M.,S, uo,(53)* 
             2 uo     nz = ' 

        4 '''' 1)"  Li 
 uoE         7-1'tt=01—un  t2  It  (2  n  +1)  71 —( — lr sin  127r  (2  n+  1)  (T  —m u0)}]                              2'   n2s 

 2 u, <I', (54) 
where 

 T  
 Tn•(55)  Un  — 

 (49) and (53) which are applicable until the wave packet has entered the bay, is com-

posed of two parts, the one represents the forced oscillation due to the incident wave 
packet, and the other, infinite modes of the free oscillation in the bay. Whereas, (50) 
and (54), valid after the entrance of the wave packet, contain only the terms of free 

 oscillation. 

(5) Damping of wave height and lengthening of natural period due to eddy viscosity. 

   It is found from (49) and (50) that, due to eddy viscosity, the forced oscillation 
is decreased in amplitude, but unchanged in period, and that, the amplitude of free 

    * When m becomes infinitely large, (53) represents the elevation due to a periodic wave 
  train, and corresponds to the formula (56) in the paper by  NisHimuRA and  KANAI (1934), 

  however, the factor  7r must be multiplied to their formula.
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oscillation is decreased and the  period of it is  lengthened. 
    The period  Tr, of free oscillation of each mode, when eddy viscosity is taken into 

account, is given by (cf. DEFANT (1932) and HIDAKA (1935)), 

     1  1         or(56) 
 T, 2 &mil/p, To 2 fl-,70/160' 

and the logarithmic decrement becomes 

                        p = log 7r (22_fl2)                                            (57) 

    For a wide range of values of  [I, the ratio  T  /T-112y7i/  18, and p are shown in 
Table 1, in which are also contained some results by DEFANT and  HIDAKA. It is 
to be noticed that the oscillation ceases to be periodic when  fi is larger than 0.5370, 
which corresponds to  E=0,  =  1  .  1  1  2  2  . This indicates that, for a given values of 
and h, there exists a certain upper limit for the coefficient of eddy viscosity in order 
that the free oscillation remains periodic.

I

-0 .5

-/ .5 

 20

!~~~~

 u  =  7

Fig. 4. The surface elevation at the bay 

head is indicated by thick curves  which 

are obtained by superposing the forced 

oscillation and the first three modes of 

free oscillation. Amplitude of incident 

 waves is unity,  uo-2,  11-9.52  x 10-8. 

The upper figure corresponds to  m-8, 

the lower to  m-7.    

: the first mode free oscillation 

       forced  oscillation

 Z 

 2.  5

 -o

   In constructing a theoretical marigram from the mode solution above obtained , 
many modes are required to obtain a correct form of it, especially when  u, is  small. 

When  it, is rather large, however, the amplitudes of free oscillations of higher modes 

become comparatively small, so that few modes are enough to give an approximate
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form of a marigram. This situation is shown in Fig. 4, which indicates the marigram 

constructed by superposing the forced oscillation and first three modes of the free oscil-
lation, when  uo  =2,  fl  —  9.52x  10-8,  m=7 and 8. These constants are taken  from 
the data of Ofunato Bay in the case of the Chile Tunami of 196D. 

   Although the mode solution is inadequate for constructing a precise theoretical 
marigram, it is very useful to investigate the nature of free oscillation at the later 

portion of the  marigram in which a forced oscillation is no more found, and only few 
modes of free oscillation are predominant. 

   To see the aspect near the initial motion, or to know the maximum height of water, 

we must recourse to another kind of solution which will be obtained in the next section.

5 Ray Solution 

  From (28), (31) and

 1  
 2  7t  i

(32), we

where

 Jc

can write

ezt

 —

 Z2  +(02  cosh  d

  I  1  — 1/ gh

d z ,

 tanh  w 

 0<t<  m  
 .4  co  3

 w

 1/2

 (58)

(59)

Since

which

                    ezt  
               cosh  d  z 

is uniformly convergent, it 

         1 c°  E  f  (-1)4 
 n=0  c  joo

— 2  (-1)n  e"--(2n+1)6] 

follows that 

  ez[t (2n÷1) 
Z2 +CO2`g]dz,0 <t� M7t                               .  2  co

(60)

(61)

 y  y

LfL

 -11u

 0  x

1.10

 c

0  x

        (a)  (b) 

                   Fig. 5. Paths of integration. (a)  t>0, (b)  t<0 

Now, the poles are  z=±ico. When Re  Ft  —  (2n4-1)  cd  <0, the integral in (61) vanishes if 

we take the contour as shown in Fig. 5, b. and when Re  [t—  (2n+1)  a]  >  0, by taking the 
contour in Fig. 5, a, the integral is given by  2,ri times the residues at z =  ico. If
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 P=0, the conditions Re  [t—  (2  n+  1) a] 0  become  [t—  (2n+  1)1/.  /  gh] 0, but when 

 v is not zero, these conditions are influenced by the factor  i/&  /v h. 
    If we consider the nature of damping in wave motion, we may put 

 tanh(0  h)  -1" 

                                      1  

      Eal   1  J)Vgh- (PT-ig)(62)        gh
h 

where the upper sign is to be used for and the lower sign for  z=—iro. By 
squaring both hands of (62), we obtain 

            P
qiy21/ c                     A2±w ,/                            v-1/ A2 +B2-±A(63) 

where

              A =  2  IC (cosh 2 K+ cos  2  K)  —  (sinh  2  IC+  sin  2  IC)  ,  B= sin 2  K  —sin 2  K,  I  (64) 
              C  =  2  K  (cosh  2K  +cos  2  K)  , 

                                           (65)                      K 2 v 

   We have the relation 

                                        1           t— (2 n +1) a= It— (2 n 1) --17i (2 n + 1) 
h—q(66)      gh 

By residue calculation, we obtain 

 E (—ionsin cote(2n+1)/q'ivghH t — (2n+ 1) ipl                                         ()                                                     67 
 i/gh 

where  H[t—(2n+1)  pl/1/gh] is the Heavyside's unit step function defined by 

            H [t_(2n+1)p.1 
 t(211+ 1),)/ 

                                   gh                                           (68) 
              gh 0  t,(2n+ ly 

                                   gh 

In a similar way, we obtain for  t  >  M700. 

     1  

 E  (-1)4  ez  Fi  (2  n+1)  <  dz  Th-  772  2  7riJ
c-2.2-Ho2 L 

        = 2  E  (-1)n  e-  (2  n+1)1P)/,/gT [sin ,                             sin cot Hr t(271+ 1)1P - 
   n=0Lgh  _ 

                                     — (2 n+ 1) 1p 11                            — (-1)m sinof .11-[tM 7r  
                              CO  i/gh
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Using  T and u0 defined by (48), it follows that 

   12 E ( — 1)n e-71(2n4-1)912u0  sin  (  2 71' T)H[,-,  n=0  u0 711= I co      2 E ( 1)n e-g (2 n+l)q/2uisin( 27l'T) H.- 
 n=0u0 - 

 — (— l)m sin ( 2747: T) H [1-

Especially  ,when

Thus we

   (69) and (70) are the ray solutions wl 
incident waves and waves reflected n times 
ray  solution is very convenient to construct 

draw  successively the curves which  represt 
both at  the head and mouth of the bay onc , 

studied by R. TAKAHASHI (1947), for th 
the  method is rather tedious to know th  no 
the  record, it is very useful to estimat the 

very  earlier stage. 
 Whe the observed wave h ight at the  b 

it is  possible by use of (69) to estimat the  c, 

motion  o the bay wat r.  This will  be                     described__  

  ResponseCurvesofBaytoTunamis 

   Whenv, some marigrams constructed by the use of (70) are shown in Fig. 6. 
By reading the maximum water level of these kinds of marigrams drawilfor various 

no-and  m-values, we can construct the response curves of the bay to invading tunamis, 
as shown in Fig. 7, where the abscissa indicates  uo=T  /To, the ordinate represents the 

maximum wave height 71,,,at the bay head, and the parameter  m means the number of 
crests and troughs of the incident wave packet. 

   From Fig. 7, it can be seen that the wave height becomes larger with increasing 

value of  m, and tends to infinity at  uo=1 when the wave packet tends to infinitely 
long wave train. There exist peaks of  7in, at  uo=1/(2n+  1), which correspond to

 E l)n  e-  7r  (2  n+l)q/2  uo sin                   2 T) H[T — (2n+ 1)pli 
        tt40  <  T  < 

                                   o Ee— 
         "(2 n+1)q/2 uo[sin 

=s)27(HT —                   U0(2 n+1)1)  

          2]  (-1)m  sin(  T)Hm LT  — uo_ (2n+1)P 11  U0  <  T  •        u
o4j,2 

                                     (69) 
 fy  ,when  v=0, we obtain from (59) and (62), 

 1  a— , p  =  1,  q—  0.glx  

obtain 

2E(-1)"sin ( 2T) H-T (2n  +  1)  10 T <—1112to 
 n=0  tto42 

2  E  (_1)„ [sin(  27r 7.) H[T (2n+  1)  
 n=0  UO 4 

    (_ irisin 27rH [7mu_ ___(2n41)11rn                                       (70)         Uo94J,2ii° <  T 

and(70)aretheraysolutionswhich consist of the terms representing the 

wavesandwavesreflectedntimes(n=-1,  2,  3,  ....), at the bay mouth. The 
 ionisveryconvenienttoconstructa theoretical marigram, since it suffices to 

 :cessivelythecurveswhich represent the incident waves and reflected waves 

 lieheadandmouthofthebayonc,twice, and so on. This method has been 
,yR.TAKAHASHI(1947),forth case of non-viscous wave motion . Although 

 Lodisrathertedioustoknowth nature of free oscillation at later stages of 

 d,itisveryusefultoestimatthemaximum wave height which occurs at a 
 ierstage. 

 ntheobservedwavehightatthe  ay head is less than that at the bay mouth, 

 blebyuseof(69)toestimatthe coefficient of eddy viscosity in the transient 
 thebaywatr.  Thiswill  be  described in another paper. 

mse Curves of Bay to Tunamis
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the resonance period of respective modes, but the first mode shows the most conspicuous 

peak for a prescribed value of m and, actually, the oscillation of the first mode is 
often most predominant. Fig. 7 shows the response of only the first mode. It is to 

be noticed that  7)„, becomes smaller, the larger the value of u0.

7 The Case of Non-Rigid Wall Bay Head 

   In the preceding analysis, we assumed  the bay head to be a rigid wall. In this 

section, we assume  instead of (11) that 

 a  
                                       x        x a 

          x=l:— k, (71) 

where  k is a constnat. 

Then (11') is to be replaced by 

 foax2dyT  j VX  d (72) 
   In the sequel, the formula with dashed number will be used as the corresponding 

one in section 4. 

   We can write 

          B  ILK r  i/K sin  (i/K 1) +  k  cos (-1/K I)                                                  (19') 
 1/K cos (y/ K 1) —  k sin (1/ K 1) 

               r a  e—[-v-k  cos{i/K (1—  x)}  —  k sinWIT(1— x)}  

                           0 

                  ax31i/K cos (/K l) — k sin (-%/K 1) 

                                                  (20')
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                         cd-ti             f ezti [  i/K cos {1/K (1— x)} — k sin{i/K (/— x)}  ld z (21')  i 2  ni J
c-- 1/K  cos  (-1/K  1) — k  sin (1/K  /) 

(A) Mode Solution. 

    The elevation at the bay head becomes 

 c+ioo 
           n1 fe„ cos y(22')                       27rJcos(M+y)dz, 

where 

 y  =  tan-1(m). (73) 
If we again use the input function f(t) expressed by (23) and (27), the relation (27) 

remains unchanged, and we obtain 

 1  cofc-Fico  ez'  cos  y      711— d z(28')                        2 7-r i --i00z2+6'2  cos  (M+  y), 

                     (-1)74 fc+ iooe2 (1t"/W) COSy d z(29')  772—
2 7r i  Jz2 +(1)2  cos  (M+  y) 

   Since we can verify that the integrand of (28') is a single-valued function of  1/K, 
the branch cut integral in the z-plane becomes again zero. 

   As 
 cos  y  —  . _, 

                                 k2 + M2 

the denominator would vanish if 

 M  =  -  k or z.1r tanhw—11w112^= i  k .                      ghL 

Comparing this with (34), we obtain from (37) 

                        g                     con2k2 , 

from which we have the relation 

 V2  

                      13n—(0,2 h4gritk2< 

Since (40) has no root if  13„<0, it has been ascertained that  k2-}-M2 does not vanish. 

   Positions of the poles  ±1w are not altered, but the poles associated with 

              cos  (M  +  y) 0  (33') 

must be newly examined. 

   Putting  i/z/v  h=w, we denote by and  z„'*, where the symbol * indicates the
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complex  COD] ugate quantity, the roots

 M  +y

of the 

 =  (n

equation 

 1 I n.,

 Or

 itz 
 ^g  h

 tanh  w

 }-1/2  +  tan-1 ik  V  gh 

 z

 {1  -
 tanh

 zv

 -111  w  11/21
 +  2

    The sum of the residues at the poles  z-----±iro can be written as 

                                           cos yi„, eio„. .  R1 —  I  m cos  UV  +y)i„, 

   The sum of the residues at the poles  z„,',  z„ * becomes, 

 R2  2(0  E  (_1)n+1  Re  {G}  , 
where  71-0 

 cos y2„,  e'n''    G =   
 z„,'  2  +0)2  d  12n  LCli(31±Y) 

                     tanh {k2+  Zn' (1tanh w„'11-1/2     cosy,
n,—z"/      ghwtah 

                      6  7V„' 

   [dZ(111 Y)-1,„'1—            ,k2  ilz„'  (1 tanh wn't2  ( 4 -Vgh  ) 
                       -1/ gh w

n'11 

 X  — tanh  -3/2 {5 (1 tanh, wn')tanh2wn'}. 
 w„ 7-e) 

   The elevation at the bay head is expressed by (27), as in section 4. So 
obtain

771 ----

 The solutions above  o 

 decrease and phase  chang 

formal ones, and, for a  prl 

an  allowable value of k, if 

head. This circumstance 

ray solution.

 )7T 
(34')

that we

 iml cosyi„,   evol+l2,,,i (  1)„+1 Re cos  yzn,  eznri    cos(iVI + y)i„, n=0 zn.2 ±,02rd(M +r)1 1,                                      Id zizn' 

 o<t  c " . (46') 
 (0 

 cos yen,e'  i {1— (— 1)                                                    n't 

 210(-1)   E"+1 Re r    n,---(21"1e-"zni/w },               I_(zn,2+ („d z2).dof_i_ y)}             ''
z„, 

 M  7r    <  t. (47') 
 (0 

 e solutions above  obtained are too complicated to write the factors of amplitude 

 and phase  change in the free and forced oscillations. Also, the solutions are 
ones, and, for a  prescribed value of  7,  /h2, there must be a certain restriction for 

 vable value of k, if (71) is to represent a physically possible condition at the bay 
This circumstances will be clearly shown in the next section which treats the
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    When  v=0, we obtain, by increasing w indefinitely, 

 NI_  i  1  z  
 i/  gh  ' 

and (34') becomes 

 1 i ki
i/zgh1_(n +_21_.)7T .(34")  ±  tan-11                   —

gh 

The roots of  (34') can be written 

 zn  = ±  I  con'  , 

where  co„' is determined from 

 16'n + tan-1 / kV0_1_(n +_1)z. 
 gh1(0'i\21 

As 

                   I c0,,',,,,1 con' )21-112  cos y zn,  — ' 1 1                   v  _ghIn--t-(gh_  zn'  2  +w2  ----  CO2  —con  '  2  ' 

 {  —dd2  (M+  V)IZ/i'  ="  —  1/  igliC  --  1  —  k  {k2  +(gi'  )2  -1-  ' 
it follows that 

777w_ sin  (0t_ I _1/ghj/k2-1-(1/1=7la—)2cos[1/i_gwiz_  ± tan-Ilk-I/gill]     b1 CO 

       I On' --1 
 1-Vgh  1 1sin on' t ,  k  2I 

 

1 2 (0 E (-1)"1-  t;2 —1--7--a-  n=0 Wn,,Vk 2 ±  ((on 1k2  +  (Wn' )/ 
 Wgh1-Vgh 

 0<t<  "r   ,  (46")  

1  co,,'  -1 

 76  —  2 coE (-1)n±1 2 1- -- 1/g—h 27  1—1  —  - k  n-0Conco22+1( 1ft)n'  gh  k  2 
i/                              (1 ''''12  )2 1 }]                VghI- gh  -I 

 X [sin7r           con  1(  —  1)m sin io„(t —  mc: )1,t > m(47")                                                     (0 • 

   If  v=0 and  k  =0,  on' is to be replaced by  ro,i=  (I/  gh  I1)(n  +  1/2)7r, and (46") and 

(47") take simpler forms 

 sin  (0  t  

     cos( 1 6) -) 
          V gh2-1/ gh ri)'''(1),,+,  sin  (0„  t             +l , n-01.0n2 —w2 ,0<t-9n7l.(46) 

                                                               (0 ,  7/121/ gh0i'(-1)n+1                     ,[sin (0„t—(-1)"'sin (0„(t — m71.)1,m71' > t. (47'")     1 n-O On2-6)-CO CO 

If we use  T and  uo,  (46m) and  (47'") become exactly the same as (53) and (54).
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(B) Ray Solution. 

   The expression which corresponds to (58) is obtained from (21') 

                                 c i+ .0 

      r.!               e'  
          nI d z(58')  1 2ni J z2+0[cosh a z-X sinh  az]' 

                                                ,_ic.0 

where 

 X  =  leg-y)  , (59) 
and 

                        a  -   1 _  11  tanh  w1-1/2 .                   1/ gh1w1 

By expanding the hyperbolic functions in power series, we obtain 

  1  9 x._,c° i1\n(  1-1-Xyte- (2rt-Fi)otz ,             cosh az-X sinh az (1- X) „0‘'I1—X) 

so that (58 ) becomes 
 cd-i.            1  1  

,_ i),,0                                           1+xY'erti- (2n+1)`'l dz . (61')  721-  7r  i (1-X)n=ofek icci(z2 +.2) ( i_x ) 
In a similar way as in section 5, (61') can be evaluated by the residue calculation at 

the poles z----  Jzi  (0. 

   We obtain 

            722 in,1 i (__iyi Fe(2n-F1) i qu,/,,,/,ilir 4 (2 n + 1)1131                                                  (67')   1_iiL -Vgh 
 n-0 

where 

 F  - 1  i+xi- 1" ei, , ,t,,,,_ kl( a  i  co  1 -Xi,,,  1-Xi„, ,  1 ) 
and 

                      X - g, 
               i  a 0) _xliy ,(-L)_  gh                                            (74)           1  I y _ ( 0 p .  -i/gh 

If we put 

 X  -1-iY  -  r  ei°  , r =6°_(2 ±9,9112,0=tan-1P-, 0 0ri2'(75) 
       i/gh'q 

it follows that 

                    Xi,,,= Ze-i°,Z = kr-i-ki/gh T              -  (76)                                            2
n1/ p24_q2  , 

       1 1                                                   — ---= Sei'(77)                    1--Xi,„ 1-Ze-i° ' 
where 

 S= (1-1-Z2-2 Z cos 0)-1/2, 

   / 

                  x  = tan-1(1--ZZscions08) '(78)
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and 

 1+Ze-i°                                                   = Reit' 
 1  -Ze-i°' 

where (R = 1+Z2+2Z cosi) 11/2 
 1+Z2-2Z  cos  0  ' 

                       = tan-1(  Z sin 0  
 1-Z2 

Since 

                              F S  Rn  e"E't+X±nii] 

we obtian 

 )71  =  2 E ( )n SR" e-(2"4-1)1q'l '/4 sin  n=0(COt+ x+ n it) H  [t -(2n+ 1)  r  _' 

 0<t<  

In a similar way, we have 

 ni=2 E  (— On SR"e- (2'1+1) lqw[Vih [sin ((Di+ X+ nft) Ht(2n +  1)1p   n=0  -  V  VI 

 irsin(.g+x+nitt)H[t  912  7t  (2n+1)/V1  M  7r  < 
 (0  gh  • 

By use of T and  uo, it follows that

 171=

(79)

(80)

(81)

(82)

 clear in the following, there is a certain restriction for the value of k in order that the 

 boundary condition (71) represents an allowable physical condition at an actual bay 
head. 
   When  k=-0, we have seen that the amplitude of reflected waves is unity both at 

the head and mouth of the bay, wheareas, the phase change in reflection are 0 and 
 7t at the head and mouth, respectively. But, in the case of  1?0, as the bay head is 

no longer a loop of vertical motion of water particle, we may suppose generally that 
there occur changes in amplitude and phase. Also, the waves to be measured at the 

bay head must  be affected by the given boundary condition. 
   As seen from (81) and (82), R and  it indicate respectively the ratio of the amplitude

 2  E  (—l)ne                Tr(2 n+1) q/2 up SR"1                      sin /-2.'-T +—14G (X +7111)11 HIT — (2/1+1) pl , 
   n =0  uo  _ 2 7t4 

                                               - 

                                           0-..7----In_no, (83)                                       2 

 25E (— 1)n e'(2 n+ 1) g/2 up s_tc-,Thn[                        sin{27r.'T+2741-(x-I- n/.1)'11[7-—  (2n  +  1)  fil nuo_7t  4 

       (-1)1nsin{22T-[T+2 7-t-                                   U0                no(x + n 1,41H [T _muo _(2n+1) p 1.1,            _12i 

 2Up  <  T. (84) 

We have assumed that k is written formally as (75). However, as will be made  
• in the following , there is a certain restriction for the value of k in order that the 

 idary condition (71) represents an allowable physical condition at an actual bay
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of the reflected waves to that of the incident one, and the change of  phwE 
flection at the bay head. S and x represents respectively the coefficient 
of amplitude and the phase change, of receiving waves at the bay head. T 

quantities physical significance, we must impose the condition 

 R  <  1  . 

Since  cos  B>0,  r>0, we obtain from the former of (85), the relation 

 k  <  0  . 

   It is possible to show that the relation  S<1 is automatically satisfied 

   Especially when  v-0, it  follows from (62) that 

 q=  0  ,  p  =1, 
and from (76) that 

 B=  "  2 

Correspondingly, (83) and (84) are to be replaced by

 11

2  E t(-1). SoRnsinr 271".7 - 
n—oLuo 2  7-c

 co 

2  E 
 n  =  0

( i)nsoRno [
— ( — 1)m

!no  [sin [ 

sin [2z 
     u0

 2  7r 

 uo IT -
 uo 

 2 

 140 (x _ 
271'"

 ige of phase in the re-

coefficient of reduction

 IT

To give these

         [(2n+1)fi '40(xo+It/10)1]HT— 4 
 0  <  T  <1;ito 

  (Xo  Fnito)} (2%1-)pl 

            m (X°1-nitu)i_iHLT-2-14°—(2 u+l)p4 

 274„,T 

         2Z    =tan-1z2 1),

(85)

 (86) 

by (86).

(88)

 I]
                          MI It

o<(89)                        2 
where 

                                  2                    R
o =  1  ,tan-1 (                       Z2Z1) (89) 

 So  =  (1+Z2)--1/2  ,  zo  tan-1(—Z) . (90) 

8 Some Remarks 

   We have assumed that the energy of wave motion in the bay is dissipated  only 
by the turbulent motion of the bay water. The energy dissipation due to the diverging 

waves from the bay mouth would be a possible mechanism ofr the decay of wave height. 
But, the model experiments such as by OGIWARA, S. T. NAKAMURA and OGIWARA 
show that the bay mouth becomes approximately a node for vertical motion and a 

loop for horizontal motion, of a water particle. From this, it may probably be that 
the transfer of water particles is quite free at the bay mouth, and for a considerable 

time interval from the begining of the record, the energy loss due to diverging waves 
may be negligibly small. 

   The coefficient of reflection at an  actual bay head is not determined from a model 
experiment, since, in a  usual model, the bay head is formed of an almost vertical cliff
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 as a result of the difference in horizontal and vertical scales, which is required by the 
 law of similitude. However, because an observed eigenperiod of a bay coincides fairly 

 well with the calculated one basing on the assumption of vertical cliff, it seems that the 
 reflection coefficient is almost unity at least for waves with such a long period as 
 tunami. The reflection coefficient of waves with short period would be smaller 

 than unity. 
    The coefficient of eddy viscosity varies with the scale of motion of the bay water. 

 In case of invasion of tunamis into a bay, it will differ according as the motion is in a 

transient or a stationary stage. The value for  v in a stationary state can be obtained, 
by use of the mode solution, from the curve of damped oscillation traced in a  mari-

gram. While the value of  p in a transient state, especially in the initial stage, can be 
estimated from a decrease in wave height of the incident wave over the distance 

between the mouth and head. 
    As stated in section 4, there is a critical value for v, if the motion of bay water is to 

be periodic, but, in case of intrusion of huge waves into a bay with a very compl icated 

shape and bottom topography, it would occur that the height of the first wave is much 
diminished owing to a highly turbulent motion, the value for v being often larger than 

the critical one. 

    When  /9 is negligibly small, the maximum water level at the bay head is deter-
mined from Fig. 7 as a function of  uo, with m a parameter. Some examples for this 
at the time of the Chilean tunami of 1960, and attempts to estimate the value of  71 in 
certain cases will be described in another paper. 

9 Summary 

    The motion of water in a rectangular bay with uniform depth, especially, the water 

level at the bay head is investigated theoretically, when a packet of sinusoidal long 
waves with period T is incident upon the bay mouth. 

   A brief introduction is given in section 1, and fundamental equations and formal 

solution are obtained respectively in sections 2 and 3, basing on the assumption that 
the bay head is composed of a rigid wall, and eddy viscosity is present in the water 

motion. 
   The water level at the bay head is obtained in two different ways, one leads to the 

mode solution, the other to the ray solution. These solutions are derived in sections 4 
and 5. The mode solution which is composed of forced oscillation and free oscillations 

of infinite numbers of mode is adequate to investigate the later part of a marigram. 
The ray solution which is expressed by direct waves and an infinite numbers of ray 
reflected both at the head and mouth of bay, is convenient to study the earlier stages 

of the record, especially, to construct a theoretical marigram and to estimate the 
maximum water level which occurs in the initial part of the record. 

   In section 6, the maximum water level at the bay head is obtained as a function 
of  u0=T  ITo, taking as a parameter m, where  To is the  eigen-period of the first mode free 

 oscillation, and m is the number of crests and troughs contained in the incident wave
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packet. At the resonant  peroid  T=To, the maximum water level is  2m times the am-

plitude of the incident waves, and m times the water level at the coast near the bay 
mouth, if the coast is assumed to be composed of a rigid wall. The results will be 

useful for a project of preventing damage. 
   When the boundary condition at the bay head is assumed as  arilax=kri, the 

wave height is obtained in section 7. The mode solution is very complicated, but the 
ray solution reveals clearly the effect of the assumed boundary condition. It is found 
that k must be negative if the coefficient of reflection at the bay head is to be less than 

unity. If  k  <0, the boundary condition assumed gives rise to a phase change and a 
decrease in reflection coefficient, and a reduction of wave height at the bay head. 
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