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Abstract

The wave height at the head of a rectangular bay of uniform depth is in-
vestigated, when a packet of sinusoidal long waves is incident upon the bay
mouth. It is assumed that no energy is dissipated in the form of diverging waves
from the bay mouth, and the bay water possesses cddy viscosity. The bay head
is assumed to be composed of either a rigid or a non-rigid wall.

The wave height at the bay head may be expressed by two different solu-
tions, one is the mode solution and the other is the ray solution. The former
may be successfully used to investigate the water motion in the later part of a
marigram where few modes of free oscillation are predominant, and the latter is
very convenient in constructing a theoretical marigram from which the maxi-
mum water level can be estimated.

For the case of non-viscous wave motion with a rigid wall bay head,
response curves which represent the maximum wave height at the bay head as a
function of T[T, with a parameter s, are obtained, where 7" and T, are re-
spectively the period of incoming waves and the first mode eigen-period of the bay,
and m is the number of crests and troughs contained in the incident wave packet.
The response curves may be useful in estimating the wave height due to tunamis
at the bay head. For the case of a certain kind of non-rigid wall bay head, it can
be shown that the wave height is decreased at the bay head.

1 Introduction

Almost the whole eastern coasts of Japan were swept by the tunami which origi-
nated from the Chile Earthquake of May 24, 1960. The bays situated along the Sanriku
Coast in the northeastern region of Honshu, exhibited very much different response to
the invaded tunami from that at the time of near tunami originated off the Sanriku
Coast in 1933. In certain bays, the wave height at the bay head is much larger than
at the bay mouth, and vice versa in 1933. Also, the marigrams of the Chile tunami
show much more prolonged free oscillation of bays compared with those for the Sanriku
tunami in 1933. The reason for these facts may be sought in that a very distant
tunami, when compared with a near one, can send into the bays waves with much
longer periods and longer duration, and gives rise to turbulent motion to a less degree
in the bays.

The motion of water in a bay due to incident long waves has been studied by G.
NisaiMurA and K. Kanat (1934), G. N1sHIMURA, T. Tagkavama and K. Kawarl (1935),
R. TakanasH1 (1947), T. Rikitake and S. MURAUCHI (1947), and S. OGIwARA (1949).
All these authors have treated the case in which a shock-type wave or a sinusoidal
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wave train is incident upon the bay mouth. The works of NisHIMURA, TAKAYAMA and
Kax~al, and that of RikiTaAkE and MurauvcHl are concerned with a bay of variable
section, while others treat a rectangular bay. The effect of eddy viscosity is discussed
by OGIWARA in an approximate manner. Takamasui has showed the ray solution
which will be discussed also in our paper, and has suggested a method to cstimate the
coefficient of reflection of long waves at an actual bay head. K. Sezawa and K.
KANAI (1936) have investigated a problem of dissipation of energy in a bay caused by
the diverging waves from the bay.

1t may safely be said that, for a given bay, the motion of bay water in case of an
invasion of a tunami is primarily influenced by three factors ; the period and length of
the incident wave packet, and the eddy viscosity relevant to the motion of bay water.

In this paper, ignoring a complication due to shape and bottom topography of the
bay, the combined effect of the three factors above mentioned will be investigated by
solving the motion of bay water, when a packet of long waves composed of m crests
and troughs is incident upon the mouth of a bay with a rectangular shape and uniform
depth. From a practical point of view, the maximum wave height at the bay head
is exclusively investigated. Judging from the results of model experiment, the energy
dissipation due to the diverging waves from the bay mouth will be ignored. The
boundary condition at the bay head is assumed in two ways, one is the case in which
the coefficient of reflection is unity, and the other is the case where it is not.

2 Fundamental Equations and Boundary
Conditions

Consider a rectangular bay with length ¢ and
uniform depth /. The cartesian coordinates (x, y)
are taken, as shown in Fig. 1, such that the origin
lies at the bottom of the bay mouth, x-axis is di-
rected to the bay head, and y-axis vertically up-
wards.

Fig. 1. Rectangular bay with The equations of motion and the equation of
uniform depth.

continuity are

ou _ _ 1 9p

ol — p ox +ogiu, (1)
v __1 9p P
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where u and v are velocities respectively along x and y directions, p is the density, $ the
pressure, ¢ the acceleration due to gravity, and » may be considered to represent the
coefficient of eddy viscosity. IFrom (2), ignoring the vertical acceleration and the
term »y?y, we have

ap _ ﬁ (4)
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From (3), it follows that

.[o ox L )
where » represents the elevation of water surface from the undisturbed state, and
B Iudt . ©)

Substituting (4) into (1), and using (6), we have the equation for £,

o E o
o8 %o I Byt a.ta%* : (7

We take the following boundary conditions,

y=0: =0, (8)
y=h: g; —0, 9)
x=0: 5=f1), (10)
p=i: 219, )
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where f(t) is a given function of time. (8) indicates that there is no current at the
bottom, and (9) shows that the tangential shear at the surface is zero. (10) implies no
energy dissipation from the bay mouth, and (11) shows that the bay head becomes

always a loop for elevation.
Initial conditions are assumed as

t=0: T,J:—gn—:o'. (12)

Using (5), (6), and (12), we can write the Laplace transforms of (7) and (6)—(1

as follows ;

prE=g, [£ay sz,,:-‘ijf, (7)

y=0: £=0, (8)

—p B _ "

y=h: Zt=0, )

x=0: p=[(1, (107)

w=1: j 2L ay-o, (11%)

where for instance,

E:E’Ee'f”dt- (13)

3 Formal Solution

1)

A solution of (7') can be obtained by use of the method of separation of variables,

5

E= [A sin(vK x + B cos( VKx)][Csth/ /’y\+Dcosh(l/f’ ) ?EJ
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where (14)

1 _ [ sinn (v 2 (Y Py)— L] ;
<K = JD [C smh(]/Ty) + D cosh (P ﬂyzy) }5,—_] dy, (15)
and A,B,C and D are constants to be determined by the boundary conditions (8")—(11").
K is a constant of separation of variables and is ultimately dropped out from the ex-
pression for elevation.

(8")—(11") successively determine the constants as

D= p—lg, (16)
1 /P
C=— tanh( 7;-;], (17)
A= —gvEJ(H), (18)
B —gyvK[(t) tan (VK]) . (19)
From (14), (15), and (16)-(19), the transformed expression of (5) becomes
= —gVK[A4 cos (VK %) — B sin (VK 2)]
:j’ &9{1/_]?_(.2—&:5)} . (20)
cos (VKI)
The inverse transformation gives
< +ise ==
1 oy cos (VR (-2)}
R Por .[ e 4 C(L)S {;’ml at; @1

where Lhe integration is to be carried out in the complex plane as shown in Fig. 2.
The elevation at the bay head (x=!/) becomes
c+ico

y _ 1 I et 29
K j,,.-m cos (VK I} S

We assume that a packet of sinusoidal waves,
of which the number of crests and troughs is given
by m, and the period by 7" is incident upon the bay
iw mouth. Then we may write the function f(¢) as

=<7
®

0 <0
f)=\sinwt o0<t< M (2)
T @ »
~tw where @ is the circular frequency and 7 =27 /w.
The Laplace transfom of sine{, ¢=0 is given
by

(24)

rz efsinwtdt =

(0]
0 Pt ?

Fig. 2. Location of poles in and that of sinwt, =7 s given by
z-plane. S @
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eMsinetdt = (—1)"
mr/w
Then the Laplace transform of (23) is the difference between (24) and (25). (cf. N. W.
MacLacHLAN (1949) p. 129)

wg—mr;b_/m

BET (25)

Frmy w A 1\m g—mapfw -~ mamr
J PP+t [1 (1) ]] 2 o (26)
Thus we can write for the elevation at the bay head,
[ h cuo B =t=0,
Lo
= (27)
l n—" t> ”:;r :
where RN
1 @ e
= - — 28
o b I,,m Tt TR — (28)
+ico
= _( I)mjc - C’S[t eidis] d 29
K o i OF0*  cos (VKI) o (29)

We have two different types of solution for the elevation expressed by (27)-(29),
according as the method of integration in the complex plane. One is the mode sohition,
the other is the ray solution.

4 Mode Solution

As the integral in (29) is readily obtained from (28) by replacing { by t-m=z/m,
we will consider only (28).

(1) Riemann surface and singular points.
From (15)—(17), it follows that

e~ [/ Ton(y9) 1] g
lz

V:_é_[l/ ,’;‘ tanh (]/ jf}k) L };]1" . (31)

In the z-plane we make a branch cut from 0 to —oo along the negative real axis
as shown in Fig. 2, and putting

and

VEI=

]/jt h=w, (32)

v
we assume that the real part of w is positive in the upper sheet of the Riemann surface
in which the contour of integration is laid.

Since K is a single valued function of 4/ z as seen from (30), and cos (v/a/gK 1) is a
single valued function of K as seen from the series expansion
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cos (yEl)=1— - KB+ ._1.!__ Kels — ..., ,

the branch-cut-integral vanishes,

(2) Poles of the integrand.

There are poles z=-+iw, as shown in Fig. 2, which give the forced motion due to
the incident waves. DBeside these poles, we have other ones determined by the relation

cos(yv/ K1) =0, (33)

This relation ean be written as

e tanzhlw_ T =(n+g)m, m=0,1,2,...... (34)
w
or
Bawt +1— tamhe o (35)
where
Bu= e (36)
w,.=-.27,7:r=,‘{§i<n+—;)rr, T”='1/g}?(4421n+i)_' (37)

T, in (37) represents the period of free oscillation of n-th mode in the absence
of eddy viscosity. The equation (35) was first derived by A. DEFanT (1932), in his
study on the eigen-oscillation of water in a lake, and later investigated by K. HIDAKA
(1935) in his problem of lake seiche generated by wind.

If we put
w=E+17, (38)
it follows from (32) that
2= —7% [(*—E&*)—24E7]. (39)

By separating the real and imaginary parts of (35), we obtain the simultaneous equa-
tions

[(E P)R—4 £ — 42 (E2—y )} (cosh 2&+cos 2 )
+ 73]: [cosh 2F +cos2n— Smlglﬁ] =
(40)

[( -,,',z)s 4F22 4 4 E2(Ee— ] (coqh 2E+cos2 7})

(
[cosh25+cos2r; Si“ﬁ?’?];o.

For a given value of g8,, £ and » can be obtained by a trial and error method.
Remembering the condition ®e(w)> 0, we can write the roots of (35) for prescribed f,,
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w,=E,+17,, ) o

where S B 540, 1
Table 1 contains the results of our calcula- b,
tion of £ and » for some values of 3, (=g), toget- 2
her with those obtained by DEFANT and HIDAKA. e 1l
Fig. 3 shows the behaviour of £ and 5 for varied
p. from which we see that 5 is always larger
than £ for any value of g larger than 0.5370.

L= S

The positions in the z-plane of the roots of (33)
may be schematically shown in Fig. 2. =

e SR /| e h M BN
0 2 4 6 8 0 2 M4 6 1§ 20
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Fig. 3 The curve showing the relation-

(3) Residues at the poles

The sum of residues at the poles z=+7e 1S

ship between £ and ¢ for varied pg-
values, =0, 7=1.1122 correspond
to g=0.5370. The curve approches
to the dotted line n=¢+1/4 in-

obtained as definitely with decreasing g-value.
Table 1.
B £ 7 T/T P
* 0.5370 0.0 1.1122 oo o
*0.4732 0.2 1.1307 3.217 5497.9
* (,3376 0.4 1.1837 1.817 61.37
t0.2500 0.53442 1.23648 1.513 19.21
® 0.2132 0.6 1.2670 1.424 13.11
* 00,1284 0.8 1.8757 1.269 5.976
t o 0.0625 1.08662 1.56595 1.175 3.234
* 0,0615 1.0985 1.5708 1.174 3.200
% (.02440 1.4 1.8018 1.128 2.088
t0.015625 1.72059 2.08322 1.117 1.828
* 9.36%x10°3 .0 2.3362 1.106 1.636
t 3.0864 x10-3 2.72894 3.03519 1.087 1.398
* 2.68x10°9 2.8368 3.1418 1.083 1.379
t 9.7656 1074 3.73365 4.02704 1.0641 1.269
1 4.00%x10°4 4.73475 5.18855 1.0521 1.201
8.991 %108 7 7.264 1.0370 1.124
2.258 %105 10 10.260 1.0267 1.084
4.616 %108 15 15.256 1.0170 1.055
1.486 %1079 20 20.255 1.0128 1.041
2.985 x10~7 30 30.253 1.0084 1.027
9.523 % 10-8 40 40.252 1.0063 1.020
5.962 x10-# 45 45.252 1.0056 1.018
3.921 x10-8 50 50.252 1.0049 1.018
1.897 % 10-8 60 60.252 1.0042 1.113
1.026 %108 70 70.251 1.0036 1.011

*: computed by DEFanT. t: computed by HIDAKA

81’ wi g—imt

R, =

24 [cos (VK D]mio T [cos vVE D]im—iw

= m[ 25

where

-

(42)
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o= 2 ne™ (43)
The sum of residues at the poles

T } - {(7;:2”-—5”") = 2iE,mn}

z.¥

is obtained as follows ;

) :"i
Ri=—— 32 e 0]
2 n=0 [ {qm (er Z) (‘/K l) }a (Z%,*Huﬁ)
& eg”” ®
{sm WEI) £ WKI)} (5% +w?)
00 Tyt
— 20 Y (—1)"1 Re| — — 44
= [ { ;EW‘T"“L,, (ad+w?) |, (44)
where
d —_ _ %l ¢y tanhw,\"¥21./, tanhw,\ 2
{dz (1/1«:1)}% - 41/-5.3_};_(1 o _) [5\1 : w_) tanh w,,],
w, =1 = h
”
(45)
(4) Elevation at the bay head
From (42) and (44), %, in (28) becomes
iwt syt
=Im(-? +20 z (—1)"+1Re g max
(Coh M) (znz+(')3){ dtL (‘V’fl)} " Oétg—&)—.
z iy
(486)
From (28) and (29), we can write
iwl jwll —mw/w)
s Im(cgsM. =1 Im{ gcosiMﬁ}
o0 Znt
+ 20 3 (—1)"+1 Re| — ‘; 1= (—1ym g -mwnte )
n=0 2 2 /¢
(et ronf L WK,
o0 %t
=20 Y ()" Re| € o et L e A o
n=0 (znz + ){—— ('\/I& I)} i
fiog SOR (47)

(O]

If we put
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t T
= =, e ——
T Tn 0 To ’ (48)

where T, is the natural period of the first mode oscillation, the mode solution can be
written as follows :

¢ 27/ & 2 By L2 —bn2) — 2kl T "
It | ~coamr—+ 2 Nae TR 02 rs 5, (49)

m=
L) o )
Im Eu Nn{l—(—l)mg_’”“ﬂfrz] e—ﬂr,\/ﬁn{(nﬂz £n2) 255»’1):]7, —?;—“o < T, (50)
n—
where
M= ﬁ% [1 - talz:: w, }—m L W = 1y~ By i
0 w

N, = (=1)" 16,:‘" {1 ~ ta‘:;:w»z}'”“{w Bo tto? m,,a}"[s(l #ta—ﬁ:@'ﬁ)—tanh” w,,}“
(1)
When the motion of bay water is non-viscous, it can be seen that from (32), w
becomes infinitely large. It [ollows from (32) and (35) that

=ty
Prwt=—1, 1+ B utw,t = 1+ B, w,2w,) = 1—1,2 (52)

Thus, (49) to (51) are replaced by

s T ) 4 o I m *
__ﬂj_ + Zy W sin {27;(2:@ |—1)T}. Og"ﬁ“g"‘"ﬂ' (53)

T p=0 1—#,°

2 4, ﬂi _th)nz sin {27 @n 1) 7} —(— 1) sin {27 2n+1)(r — 7 w)} ],
;‘”’uo <, (54)
where
T (55)

Tﬂ
{49) and (53) which are applicable until the wave packet has entered the bay, is com-
posed of two parts, the one represents the forced oscillation due to the incident wave
packet, and the other, infinite modes of the free oscillation in the bay. Whereas, (50)
and (54), valid after the entrance of the wave packet, contain only the terms of free
oscillation.

(5) Damping of wave height and lengthening of natural period due to eddy viscosity.

It is found from (49) and (50) that, due to eddy viscosity, the forced oscillation
is decreased in amplitude, but unchanged in period, and that, the amplitude of free

* When m becomes infinitely large, (53) represents the elevation due to a periodic wave
train, and corresponds to the formula (56) in the paper by NismiMura and Kaxar (1934),
however, the factor @ must be multiplied to their formula.
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oscillation is decreased and the period of it is lengthened.
The period T',, of frec oscillation of each mode, when eddy viscosity is taken into
account, is given by (cf. DEFANT (1932) and Hipaka (1935)),

L, 1 T 1

= e == 56
T,. 2 En-‘rfn 'r/ ﬁ,, * Tn 2 ‘Eu ?.?y:"/ ﬁo ( )
and the logarithmic decrement becomes
= o n"j_:g,”,z 5
P l()brr(z,g,n%). (57)

For a wide range of values of §, the ratio T /T=1/2Eyy/f, and p are shown in
Table 1, in which are also contained some results by DerantT and Hipaxa. It is
to be noticed that the oscillation ceases to be periodic when g is larger than 0.5370,
which corresponds to £=0, »=1.1122. This indicates that, for a given values of T,
and £, there exists a certain upper limit for the coefficient of eddy viscosity in order
that the free oscillation remains periodic.

2?{=T

Fig. 4. The surface elevation at the hay
head is indicated by thick curves which
are obtained by superposing the forced
oscillation and the first three modes of
free oscillation. Amplitude of incident,
waves is unity, w#,=2, §=9.52x 108,
The upper figure corresponds to m—8§,
the lower to m=7.

—— ¢ the first mode free oscillation
forced oscillation

In constructing a theoretical marigram from the mode solution above obtained,
many modes are required to obtain a correct form of it, especially when #, is small.
When #, is rather large, however, the amplitudes of frec oscillations of higher modes
become comparatively small, so that few modes are enough to give an approximate
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form of a marigram. This sitnation is shown in Fig. 4, which indicates the marigram
constructed by superposing the forced oscillation and first three modes of the free oscil-
lation, when u,=2, #=9.52x10-%, m=7 and 8 These constants are taken from
the data of Ofunato Bay in the case of the Chile Tunami of 1960.

Although the mode solution is inadequate for constructing a precise theoretical
marigram, it is very useful to investigate the nature of free oscillation at the later
portion of the marigram in which a forced oscillation is no more found, and only few
modes of free oscillation are predominant.

To see the aspect near the initial motion, or to know the maximum height of water,
we must recourse to another kind of solution which will be obtained in the next section.

5 Ray Solution
From (28), (31) and (32), we can write

[ )

1 5 e m
= . R O 0=st< :
P J‘E_,.Qa 4+ o* coshds o = 7 2w (58]
where
-1/2
a=_o {1 tamhw 78, (59)
Vv gh w
Since
e 22 = (2n ]
— =9 _1)n prlt—(2nt1) 4] ,
cosh dz ,Eo( e (60)
which is uniformly convergent, it follows that
c+ico
| @ o[t (2 W
= _ — 1) [t (-"+l)¢]' O gl st U
"= n‘zo ,;( ,-oo) 2wt 4 A%, =i= 2w - (81)
¥y ¥
-.CAt .-c'
tw w
A
L
¥ -& & 0 x
~iw 4 i
(a) (%)

Fig. 5. Paths of integration. (a) t>0, (b) t<0

Now, the poles are z=-i{w. When Re [f—(2n-4-1)a]<0, the integral in (61) vanishes if
we take the contour as shown in Fig. 5, b. and when Re [{—(2n+1) a] >0, by taking the
contour in Fig. 5, a, the integral is given by 2z times the residues at 2 = + jw. If
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»=0, the conditions Re [t— (2n|1)a]=0 become [f— (2n+1)1/1/gh] =0, but when
» is not zero, these conditions are influenced by the factor 1/{0/:1 h.
If we consider the nature of damping in wave motion, we may put

tanh /@h) e
[a] s = v’éh-_ 1 — ——( A = V;T (p~ig), (62)

where the upper sign is to be used for z=iw, and the lower sign for z=—iw. By
squaring both hands of (62), we obtain

{?; } ‘/-,5-]/ irya /1/ A*FBT A (63)
where

A =2k (cosh2k+cos 2 k) —(sinh 2 x-+sin 2 k),

B=sin2x—sin2¢«, (64)
C =2k (cosh 2k +cos 2 &) ,
o aveS L
K—_VZLJH‘ (65)
We have the relation
l . l :
—(2 = [t—@n+1)——, i
@En+l)a={t—(2n+1) v,ghp}j:z(Zn—Fl) Font (66)
By residue calculation, we obtain
3 (1Y sin of o (21 lgulvEE _ (2n+1)i
m= X (~1)sinote Ht T/gvz*f’]' (67)

where H[t—(2n+1) pl/y/gh] is the Heavyside's unit step function defined by

2n+-1)

1 l >,(, ‘ s,
Hﬂ_ _.2”*1) pz I V gh (68)
[ o 1<ty
Vv gh
In a similar way, we obtain for ¢ > mw/e.
1 c4-ico ) .
o e i_ o N m ,—mrzfm \m i [ (Zn) ]
W g Jﬂ_'.m 2 eod [i (=1)™e ],E)( 1)n gt - 2ntilel gy

=

23 (1) e N /i [sin wtH ,.,@“W’.]
=i L \’/gh

P il mw  (2un+1)lp
(—1)™ sin dHLi Vi H
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Using 7 and u, defined by (48), it follows that
o B ) l
9 1y e " @atai2ug gip )HI: ?‘H-
ngl) ( ) ° ( Ho

o],
l 2n:0(f1)ra = 2,z+11q/zuu[bm(%t’57)g[ (2?&—}—1)4/1:]

=

L]

— (—1)m sin(z—”'r> H[-r L . —("“”"H)L:”, -”fu., L

(69)
Especially ‘when »=0, we obtain from (59) and (62),
&= \71 , p=1, ¢=0.
Thus we obtain
6 B 1 Tt F 2  (2r1) m
zngu( h bm(E‘T)H[T -4 J V=r= o o,
=
d = Qx ° i1
2 £, oy [sn( ) - ]
- (“ 1)"' sin ( 2“: ?‘)H[T - m 5 ity — {2_4_]) ]] _’;’_ Uy << T. (70)

(69) and (70) are the ray solutions which consist of the terms representing the
incident waves and waves reflected # times (n=1,2,3,....), at the bay mouth. The
ray solution is very convenient to construct a theoretical marigram, since it suffices to
draw successively the curves which represent the incident waves and reflected waves
both at the head and mouth of the bay once, twice, and so on.  This method has been
studied by R. Takanasui (1947), for the case of non-viscous wave motion. Although
the method is rather tedious to know the nature of free oscillation at later stages of
the record, it is very useful to estimate the maximum wave height which occurs at a
very earlier stage.

When the observed wave height at the bay head is less than that at the bay mouth,
it is possible by use of (69) to estimate the cocfficient of eddy viscosity in the transient
motion of the bay water. This will be described in another paper.

6 Response Curves of Bay to Tunamis

When »=0, some marigrams constructed by the use of (70) are shown in Fig. 6.
By rcading the maximum water level of these kinds of marigrams drawa for various
#p-and m-values, we can construct the response curves of the bay to invading tunamis,
as shown in Fig. 7, where the abscissa indicates w,=7/T,, the ordinate represents the
maximum wave height 7, at the bay head, and the parameter # means the number of
crests and troughs of the incident wave packet.

From Fig. 7, it can be seen that the wave height becomes larger with increasing
value of #, and tends to infinity at w,—1 when the wave packet tends to infinitely
long wave train. There exist peaks of »,, at u,=1/(2n-}-1), which correspond to
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b,-—}. el '-’-“}. a2

non N
E \V VvV U=

Fig. 6. a-1

—y

2 B

’F/\f‘\m

L4
0
:;l AL
-3
Fig. 6. a-3
s L=, M=y i’"[
1;},.-r\ i, W e W 0. O
A TN 4
-4
Fig. 6. b-1
¥
| L]
;
/
&
t:;“
N

Fig. 6. b-4

L =2 m-2

=2, wad

i
‘ /‘/:\ ?;’A .
| vV

Fig. 6. c-4

Fig. 6. Marigrams at bay head obtained by ray solution. Incident waves are shown by dotted
curves. uo=1/T,, v=t/1,. T, seiche period, T: period of incident waves, #: number of

crests and troughs.




BAY WATER MOTION DUE TO LONG WAVES 205

0 " . )
q s Z 3 q

— b= Uy
Tig. 7. Response curves.

T ; period of incident waves.

Ty: sciche period.

m : number of crests and Lroughs contained
in the incident wave packet.

the resonance period of respective modes, but the first mode shows the most conspicuous
peak for a prescribed value of m and, actually, the oscillation of the first mode is
often most predominant. Fig. 7 shows the response of only the first mode. It is to

be noticed that »,, becomes smaller, the larger the value of u,.

7 The Case of Non-Rigid Wall Bay Head

In the preceding analysis, we assumed the bay head to be a rigid wall. Tn this
section, we assume instead of (I1) that
x—1: °n _p 1
x=13 5% ko, (71)
where % is a constnat.
Then (I1) is to be replaced by

In the sequel, the formula WJth dashed munber will be used as the corresponding
one in scction 4.
We can write

_ 77l vEsin(yvKl) + kcos (vEK 1) '
e e T s

,—__I CIF, =F| 2 VE cos{VK (I— x)}—k sin{vK (I— x)}
= = VK cos (VEI) — ksin(vEK )

(20)
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1 c+s'5:’ | vE cos {vEK (I—x)}— ksin{v/K (I— %)} ,
2wt b [ VK cos(vEK l) — k sin(VK l) gy @

KT

c

(A) Mode Solation.

The elevation at the bay head becomes

oo
_ U [ Lup_ cosy L .
7?—27”-1 e_j cos(M+y)d"’ (22)
c—too
where
- tan"(]%-). (73)

If we again use the input function f{f) expressed by (23) and (27), the relation (27)
remains unchanged, and we obtain

c-ico

_ w e'cosy 28’

N o .[”iw Z+wt cos(M+y) diky e
c4ioo

- (f_llff o fUm M cosy 4, 29’

KER P i BT cos(Mer)_dh (29)

Since we can verify that the integrand of (28') is a single-valued function of v/ K,
the branch cut integral in the z-plane becomes again zero.

As
M

V= Y
the denominator would vanish if

zl tanh w -z ,
‘7{;{ ?1__[_7“" = l:l =+ 1k,

Comparing this with (34), we obtain from (37)

M==x1k or

raﬂ = 7_\*_/%]'5 R,

from which we have the relation

»2 I p®
b= wpis = ghin <0

Since (40) has no root if #,<0, it has been ascertained that k24-M? does not vanish.
Positions of the poles 4-¢w are not altered, but the poles associated with

cos (M+y)=10 (339

must be newly examined.
Putting +/z/» h=w, we denote by z,” and z, *, where the symbol * indicates the
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complex conjugate quantity, the roots of the equation

M-k—y=(n+_é_)7r ;

or
_#lz [, tanhw 72 Tk Vgh §,  tanhw V2] _ ¢ 1Y
Veh (1~ B0yt [ S8R fi- BDE I (a4 L),
(34)
The sum of the residues at the poles z=2-iw can be written as
= [ Cos J/m d :ou!
Bl Lcos(M\y),wc &
The sum of the residues at the poles z,°, z, * becomes,
Ry =20 X (—1)* RefG},
where n=<0
_ COS ¥, gt
B0 [ 4 ar ]
o Ld;z,(ztf+y)]:ﬂ, ,
il z, tanh w,’ | [ iz, tanh w, ]2
COSY, 0= — % (] — 2 W & R N TICW (] T W
y“n V/ g]‘!' [ Zﬂ',, I it { -‘/gk ( ﬁ;}"’ ’}
d ) _Tq_ -k il
[riz (M ?’)]3“' - [I - _z_g!_z.;_(l _ tanh “il)}a](“ I‘/E’T)
l “-‘/gk H’:"ﬂl
% il o _tzu}.l’l’ze;_,,J } a2 {5 . tcmh Wy ) tanh? w,,’}_
The elevation at the bay head is expressed hy (27], as in section 4. So that we
obtain
[ ; g LI
] _CO}"_},:'-‘_L _ plw! i _1\n+1 7C b:l/:ﬂ’ en -
Im[cog(M = i } *21;3: (—1) Re[z & ___{_d_ (o + )—} ],
dz Y
0_{[‘:{:_'”177" (46)
)
7, = .=
20 3 (—1)+ Re[ COs y; ”: ent _;] [1__(_1)'" e‘"‘“”'/“’},
ROl Lo
“H
m o
\ == &t (47")

The solutions above obtained are too complicated to write the factors of amplitude
decrease and phase change in the free and forced oscillations.  Also, the solutions are
formal ones, and, for a prescribed value of » /A2, there must be a certain restriction for
an allowable value of £, if (71) is to represent a physically possible condition at the bay
head. This ciraiimstances will be clearly shown in the next section which treats the
ray solution,
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When »=0, we obtain, by increasing w indefinitely,

and (34") becomes

iz

~ i vt [V (ny

i (34)
The roots of (34") can be written
2= ke,
where w,” 1s determined from
Leo,” ¥ kv’?}l / 1
4 " T t 1 i <Al — 3 "
Vogh dh { lw' } (?1_'—_2-)”
As
sy, 4on' fae [ Loy )2 =48 1 1
v =ya T ) e = e
J‘L . o _TJ . - . ’ zm,,' 2 —17
Las M2, Vb (1 Hoh )t
it follows that
y; = lo sin @' -
Ve e [ 0 Y cos[ t0 [tV g
5 ]/A g & ) COS[V, o tan - H
tow’ I
3 1 V gh ! k .y
- 1 #y - - = — B —=. _—— —— o t:
| 2wﬂ§u( ) (u".gi(nﬂ fk-; +( ltt!“"r 2 |>v,g}lr {I {kg__ Zf'jg' )g} SN e,,
¥ Vv gh ) Vigh
0=t=< R (46)
w
RIS &
i V eh I 3
iy O | S T i - SN . —~ e
71! 2 w .,EO ( ) , 22 /ks_i_(_ gﬂi‘l'_)a ['Vl g’,f {I rka _r_(_lg)’j_iz,)g E
f WV gh o Vigh /1
5 [sin e, #(—1)" sin m,,_(p .y t> M
L (¢ Ao

w (47°)
If »=0 and £=0, w,’ is to be replaced by w,=(Vgh/l)(n+1/2)x, and (46”) and
(477) take simpler forms

sin ogt . gig_h;’" 3 (1 slr;w,.i_ 0
COS(—m-——) n=0 D,"— ;

A

m e
<t ™7 (46)
21’%"_"?”%.552"{; [sinm,:r—(ﬁI)msincu,,.(z-;”%)], BE 5 b (47)

If we use = and #,, (46') and (47'"') become exactly the same as (53) and (54).
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(B) Ray Solution.

The expression which corresponds to (58) is obtained from (21°)

£4-fca
_ | .. N S :
T 9 ]-.: i, @4 w* [coshaz—Asinhaz] €, (873
where
- az
(%), ®
and
! tanhw |-/
=t by ARG .
¥ V’gk [ w l

By expanding the hyperbolic functions in power series, we obtain
e 1 B __2 § - — 1\ '/,1 AN — (2 0 41)az
coshaz—Asinhaz  (1-A) ,.Z_n( 1) k I:X) ¢ ¥

so that (58 ) becomes

1 5 (_1),,”( o (71+7h>”83[£-(2n+1)m]dz- (61')

1 c-toa
T gy (‘T?\,) n0d .é'zr#r-m-zj- 1—A

209

In a similar way as in section 5, (61’) can be evaluated by the residue calculation at

the poles 2= =47 w.
We obtain

_ SY 1) Fe @nantew/vak gy (2nc1)ip :
7, =2Im 3 (~1)" Fe me - B 1. (67)
where
B 1 | . W L o /-’ aim
r - l '_Adlip_ {-[,‘ A—:.ui} J ! Atm . k [‘\77 7} '
and
| X=-2 4
: Vagh "’
L X4 ¥, a2 (74)
Z Y = . (] ) j’ .
Vv gh
If we put

X+'2:Y - ?gjﬁ ' = _‘:fi;h' (P! 'F'qg)l'm ) = taﬂ_l'g ? U —é f é 'g_l (75)

it follows that

I - kv gh T
Ko, == i — py—1 — ‘f___i!)_,___._
T 4 ¥ Z 'I"? 27TV1;62W ] (76)
1 1 o
e el = it )

where
S=(1+22—2Z cos §)~uz,

s tanﬂ( —~Zsing ) ’ (78)

1—Zcosf
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and
1+, _ 14Ze40 :
I—ng, ~ T—Zeie — Re™ (79)
where R— 1+Z£+27£9ﬁ}m
I - 17‘ 7327 cosd
7 8 (80)
= Slﬂ
l;x:tan (\ 7 )
Since
F = § R» gilet+%m]
we obtian
s o= (2n1) Bqia) o/ (2n+ 1)1
ﬁz,z;o( )" SR7 e Stn[mf-yxi??;t)f.[Lt 7 p],
Pz j o BE (81)

[O]

In a similar way, we have

(—1)"SRve ﬂ””‘fr“’m"[qm (o t+r4n p) B[t — 22 DIPT

=2 2 Vv gh

n=0

i _mw  (Zn+1)ip mr
— () sin (b2t B[t =" e J] <1, (82)

By use of = and #,, it follows that

23 (—1)me < BotlleEu gRn 51n{2ﬂ7" [-r ""a (x + ’”H)]} H[ _ (2n+ l)p],

n=0 ity

0=7<

7, = ".g’ ) (83)

2 5 (41).,3—;('3"-}1}q/2uosR”[sin{2?{“+ e (Hﬂ-#)_i‘”[“ e
= #y L 2= 4]

—(—1)™ HIH{ZMT ['T-F B (Z—J—ﬂ,u):” If[?— ’guu _ (2n+1) P]]:

27 4

Gt < . (84)

We have assumed that % is written formally as (75). However, as will be made
clear in the following, there is a certain restriction for the value of £ in order that the
boundary condition (71) represents an allowable physical condition at an actual bay
head.

When £=0, we have seen that the amplitude of reflected waves is unity both at
the head and mouth of the bay, whearcas, the phase change in reflection are 0 and
7 at the head and mouth, respectively. But, in the case of k=0, as the bay head is
no longer a loop of vertical motion of water particle, we may suppose generally that
there occur changes in amplitude and phase.  Also, the waves to be measured at the
bay head must be affected by the given boundary condition,

As seen from (81) and (82), R and g indicate respectively the ratio of the amplitude
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of the reflected waves to that of the incident one, and the change of phase in the re-
flection at the bay head. S and x represents respectively the coefficient of reduction
of amplitude and the phase change, of receiving waves at the bay head. To give these
quantities physical significance, we must impose the condition

R<1, (85)
Since cos 20, >0, we obtain from the former of (85), the relation
k<0. (86)

It is possible to show that the relation S< 1 is automatically satisfied by (86).
Especially when p=0, it folllows from (62) that

g=0, p=1,
and from (76) that
4
0="7.

Correspondingly, (83) and (84) are to be replaced by

25 s 27 (e foemsal] e G102
o=sr< %Euu ; (88)
TJ‘ =
2”)::0 (—1)n S Rn, [sin[i:i l-r 2'”‘7;;(;(0 -7 F’O)ﬂ H[T (2ﬂ4_l_) P}
—(—1)"sin [%:1 {T = 2“; (%ot n}.to)}j I[[T o _?g— o — (2 MI IJPH i
3’5 Uy <7 . (89)
where
R,=1, Jap = tan™! (fol ) ) (89)
Sy=(1+Z2)12, gy —tan-i(—Z). (90)

8 Some Remarks

We have assumed that the energy of wave motion in the bay is dissipated only
by the turbulent motion of the bay water. The energy dissipation due to the diverging
waves from the bay mouth would be a possible mechanism ofr the decay of wave height.
But, the model experiments such as by Ociwara, S.T. NAKAMURA and OGIWARA
show that the bay mouth becomes approximately a node for vertical motion and a
loop for horizontal motion, of a water particle. From this, it may probably be that
the transfer of water particles is quite free at the bay mouth, and for a considerable
time interval from the begining of the record, the energy loss due to diverging waves
may be negligibly small.

The coefficient of reflection at an actual bay head is not determined from a model
experiment, since, in a usual model, the bay head is formed of an almost vertical cliff
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as a result of the difference in horizontal and vertical scales, which is required by the
law of similitude. However, because an observed cigenperiod of a bay coincides fairly
well with the calculated one basing on the assumption of vertical cliff, it scems that the
reflection coefficient is almost unity at least for waves with such a long period as
tunami. The reflection coefficient of waves with short period would be smaller
than unity.

The coefficient of eddy viscosity varies with the scale of motion of the bay water.
In case of invasion of tunamis into a bay, it will differ according as the motion is in a
transient or a stationary stage. The value for » in a stationary state can be obtained,
by use of the mode solution, from the curve of damped oscillation traced in a mari-
gram. While the value of » in a transient state, especially in the initial stage, can be
estimated from a decrease in wave height of the incident wave over the distance
between the mouth and head.

As stated in section 4, there is a critical value for », if the motion of bay water is to
be periodic, but, in case of intrusion of huge waves into a bay with a very compl icated
shape and bottom topography, it would occur that the height of the first wave is much
diminished owing to a highly turbulent motion, the value for » being often larger than
the critical one.

When f is negligibly small, the maximum water level at the bay head is deter-
mined from Fig. 7 as a function of #,, with m a parameter. Some examples for this
at the time of the Chilean tunami of 1960, and attempts to estimate the value of » in

certain cases will be described in another paper.

9 Summary

The motion of water in a rectangular bay with uniform depth, especially, the water
level at the bay head is investigated theoretically, when a packet of sinusoidal long
waves with period T is incident upon the bay mouth.

A brief introduction is given in section 1, and fundamental equations and formal
solution are obtained respectively in sections 2 and 3, basing on the assumption that
the bay head is composed of a rigid wall, and eddy viscosity is present in the water
motion.

The water level at the bay head is obtained in two different ways, one leads to the
mode solution, the other to the ray solution. These solutions are derived in sections 4
and 5. The mode solution which is composed of forced oscillation and free oscillations
of infinite numbers of mode is adequate to investigate the later part of a marigram.
The ray solution which is expressed by direct waves and an infinite numbers of ray
reflected both at the head and mouth of bay, is convenient to study the earlier stages
of the record, especially, to construct a theorctical marigram and to estimate the
maximum water level which occurs in the initial part of the record.

In section 6, the maximum water level at the bay head is obtained as a function
of u,=T/T,, taking as a parameter #, where T, is the eigen-period of the first mode free
oscillation, and  is the number of crests and troughs contained in the incident wave



BAY WATER MOTION DUE TO LONG WAVES 213

packet. At the resonant peroid T=T,, the maximum water level is 2m times the am-
plitude of the incident waves, and m times the water level at the coast near the bay
mouth, if the coast is assumed to be composed of a rigid wall. The results will be
useful for a project of preventing damage.

When the boundary condition at the bay head is assumed as 8g/ox=Fky, the
wave height is obtained in section 7. The mode solution is very complicated, but the
ray solution reveals clearly the effect of the assumed boundary condition. It is found
that & must be negative if the coefficient of reflection at the bay head is to be less than
unity. If £<0, the boundary condition assumed gives rise to a phase change and a
decrease in reflection coefficient, and a reduction of wave height at the bay head.
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