REAFEEBUKNSFY

Tohoku University Repository

Normal Mode Waves 1In an Elastic Plate,??

0O Nakamura Kohei

000 Science reports of the Tohoku University. Ser.
5, Geophysics

O 12

O 2

O0oo 139-158

O00n 1960-12

URL http://hdl.handle.net/10097/44616




Normal Mode Waves in an Elastic Plate, IT

By KOHET NAKAMURA
Geophysical Institute, Faculty of Science, Tohokn University
(Received Sept. 15, 1960)

Abstract

The structure of the dispersion curves of the normal mode waves formed by
P and SV waves in an elastic homogeneous plate with the Poisson ratio 1/4, is
elucidated by examining minutely the characteristic equations, and by using
the dispersion curves of a hypothetical plate which transmits only a single bodily
wave. Inthe analysis, special emphasis is laid on the behaviours of the dispersion
curves at some particular incident angles of S, and those at the lattice” points
which are successfully used by Torstov and Uspix in their study of group velocity
of higher modes. The frequency which makes the group velocity equal to the
velocity of S, and the maximum group velocity in higher modes, together with its
corresponding frequency, are obtained as functions of mode number. A remark
is made on the '‘negative phase velocity'’ suggested by TorLsToy and Uspin. In
the larger part of the paper, the lowest modes II,= which have the Rayleigh wave
velocity at infinite frequency are exlcuded, as the behaviours of such modes are
well known.

1 Introduction

Various results have been published on the propagation of elastic waves in a plate
since the original contribution of Lord RavieicH (1889) and Sir Horace Lame (1917).
A comprehensive bibliography on the subject and the allied problems in cylindrical
bars is contained for example in the text book by M. EWING ef al. (1957).

We will summarize some important results obtained recently. It is suggested by
Y. SaT6 (1951) that M, and M, waves in a two-layered half space bear correspondence
respectively to the symmetric and anitsymmetric types of motion in a plate. A. N.
HoLpEN (1951) has given a rather complete analysis about the nature of the dispersion
curves of some modes of symmetric type. R.D. Fay and O.V. ForTIER (1951) have
made an extensive series of measurements on the transmission of sound through a steel
plate submerged in water. They have shown in their analysis that the velocity
equation can be derived from a consideration of the constructive interference of body
waves, which is the condition to be satisfied for the free stable waves to exist. T.
Torstoy and E. Uspin (1953), developing the method of FAy and FORTIER, have ex-
amined the velocity equations for various cases of layered media based on the interference
principle of wave guide propagation, without formulating the problems as boundary
value problems. They also have distinguished formally the M, and M, waves, but,
physical ground of the separation into M, and M, remains still obscure. R.R. AGGARWAR
and E.A.G. Snow (1954), and R.H. Lyo~ (1955) have found attenuated modes of
the solution, Lyon has investigated the amp]itude of symmetrical vibration near a
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driving area on a plate at which a periodic vertical force is applied. R.D. MiNDLIN ¢/
al. (1951), (1956) have carried out an extensive numerical work on the vibration of a
plate of finite or infinite area. Torstoy and Uspin (1956) have calculated the group
velocities of a plate for some modes, and found a new dispersive property of a plate
with the Poisson ratio 1/4, that is, the negative phase velocity. They also have shown
very interesting features of dispersion curves of extremely high modes by using the
lattice points introduced by Minprin. [J.W.C. SHERwooD (1958) has showed the
existence of complex eigenvalues and laid emphasis on the eigenmotions associated
with complex eigenvalues to interprete some results obtained by other writers, including
the negative phase velocity of Torstovy and Uspin. K. TaJiME (1958) has discussed
the behaviours of dispersion curves when the Posisson ratio 1s changed between 0 and
(.5, and obtained on the dispersion curves the parts where significant amplitudes are
to be expected for a compressional cylindrical source,

We have seen in the first paper that the normal mode waves formed by SH waves
in a plate are decomposed into the symmetric and antisymmetric parts. In this case,
the phase change in reflection at the boundaries is always zero. Because, in the normal
mode waves formed by P and SV, the two bodily waves are combined by the law of
reflection at the free surfaces such that the constructive interference is realized, the main
feature of the dispersion curves will be obtained by the aid of two sets of dispersion
curves of hypothetical plates which transmit respectively P and S alone. The plate
which supports only P is a liquid one, while the plate which transmits only S is an in-
compressible soild, the Poisson ratios of both plates being 0.5. In these plates, the
vertical or horizontal displacement remains unchanged in reflection at the free bound-
aries, Each plate has both the symmetric and antisymmetric modes, and the types
of modes are interchanged if the phase change is =, as in the case of a rigid boundary.
It can be seen, that from the reflection law at the free boundarices, at some particular
incident angles of S, the transformation of one body wave to the other is extraordi-
nary. Examination of the characteristic equations at such incident angles of S, if
combined with the conditions of constructive interference of the hypothetical plates
above mentioed, will give the general features of the dispersion curves. By such an
analysis, particular properties of dispersion curves will be obtained analytically, without
drawing whole curves.

2 Free Wave Solution

Consider a homogeneous isotropic plate with

uniform width 2H and infinitec area. We choose z
the rectangular coordinates (x, v, z), so that z-axis
is perpendicular to the plane surfaces of the plate, S };/ PIEERI
¥, y-axes lie in the median plane (see Fig. 1). ?iq 0 %
Let & be the displacement vector, A and . the At |
Koiiacsdesisiss

Lamé’s constants, and p the density. The equation
of motion is Fig. 1.
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,,,%?;3‘, = (A4 p) grad div @ + p div grad . (1)
If we put
& = grad @ + rot @, (2)
where @ has the componetns (0, ¥, 0), then ¢ becomes a solution of (1), provided
that @ and ) respectively satisfy the equations

1 o° 1 =2
o= 5 a0 "“”:?W\"E' i

where v, =V (A +2;)/p and v, =+ ,/p are velocities the of P and S waves.
If a simple harmonic motion with the time factor ¢! is assumed, (3) becomes

(Prt i) p=0, (r*+i)¥=0, )
where
h=2 and k=2 . (5)
y‘p, US

The components of displacement are written

v=0, i =2 + i

9z ox (6)

and the components of stress are given by

P,=p(2%192) p,—u(3%+22) p.=rdive+2u3?.

oy oz
(7)
Consider a set of potentials in the form of plane waves propagated in the xz-plane,
QDZ[AB_ ikz M +B€ikzM']e—ik:5inw ]
: it ' (8)
ﬂfz-[Ce :kzN+Dech:N]E-|‘kzsinw, '

where w represents, if it is real, the angle made by the z-axis and the wave-normal of
SV waves, and
m— "¢ , M= 12—sin=w , N=cosw. 9)
vy in
The time factor e’ will be suppressed hereafter.

Since the general motion of an infinite plate consists of two independent modes of
motion, symmetric and antisymmetric with respect to the median plane, it is con-
venient to decompose the set of potentials (8) into two parts.

The symmetric motion is represented by

r ,—ikxsinw
p,= E,cosa’ e’ ;
10
Y, =i F sin ' ¢ thxsine, } o
and the antisymmetric motion, by
=i E singte AN
Pa a (11)

11,“ = Fﬂ cos ﬁfg—ikxsinw‘
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where E,=B+4, E,=B+4, F,=D C, F,=D+C,
o =kzM, f'=kzN. (12)
Hereafter in this section, the two types of motion will be discussed separately.
(a) Symmetric motion.
Substituting (10) into the expressions of P,, and P.. in (7) yields
P, =ipk*[2sinwMsina’ E;+bsin g FJ] e~ kasinw, I (13)
P.=pk [ bcosa’E,+2sinw Ncos § Fle itrsow |

where
b=1-—2sin?w. (14)

The boundary conditions are that the boundary surfaces are free from stress. Two
conditions that P,, =0, at z=_H can be written from (13) in an identical form

(2sinwM sina) E, + (bsinf) F, =0, (15)

and the other two conditions that P,.=0 at z=-+H also become an identical form

(—bcosa) E; + (2sinwNcosf) F, =0, (16)
where
a=kHM, f=FkrHN. (17)
Elimination of E, and F, from (15) and (16) gives a characteristic equation
Z;=Gtanag+ Ktan =0, (18)
where
G=4sinfwMN, K=»5"=(1-2sin?w). (19)

The components of displacement arc obtained from (8), (10), (15) and (18)

#=—1iksinw cos a E; A,*,
20
w=—kMcos a E, B,*, } 20}
where
Ax—[C0sa . b cosﬁ’]
. cosa  2sin*w cosf ' -
B*ﬁj:sina'__ b sinﬂ’} &
: cos a ZMN cosfl’
(b) Antisymmetric motion
The components of stress are obtained from (7) and (11)
P, = pk* [2sinwM cos a'E, + bcos f' F,] etk sin® (22)

P.=ink*[—bsind'E, + 2sin*w N sin §'F,] e *** 5" %

Two pairs of boundary conditions P.,=0 at z==H, and P, =0 at z==H, yield re-
spectively the equations
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(2sinw M cosa) E, + (beos f) F, =0, } (23)
(—bsing) E, + (2sinw Nsinf) F,=0.

Eliminating F, and F,, we have a characteristic equation
Z,=Gtanfi + Ktana =0. (24)
The displacements are obtained from (6) and (11)

(25)

#, = ksinwcos a £, A.*
w, =1kMcosaE, B*, }

where

Lecosa b cos 3

[cosa’ 2sin*w cos f’ ] J

L cosa b cosffl°

A% [sina’ _ 2MN__51'11;5”:I ]
(26)

B*=

3 Characteristic Equations and Phase Velocity

The equations (18) and (24) define respectively the symmetric and antisymmetric
eigenmotions in a plate.
If we put

sinw =19 = %‘7 i (27)

then, ¢ represents the phase velocity. Putting also
kH=y, (28)

we can write (18) and (24) in terms of v and 3,

I'i=v*MNtana +a*tanff =0, 29
Iy=v"MNtanf + a*tana =0, } (@]

where
Zs=4rg. Za=4ra1 ﬂ=if’-—é—. (30)

The dispersive property of the phase velocity will be investigated by use of the y—v
diagram. In the sequel, it will be assumed that A=y or m=+/73 and hence that

M= }/;.1;'7”3’ U&<I

_g:
= _i I 1
= —if Bogr  VF g (31)
N= 1T, <1,
=—iy o —1 , Tl 2 IR

Then, (29) can be written explicitely as follows;

[:vn/I:;V%.:;tan@]/%‘:) + u“tan(y}/i'_ .Uz) —0, Oxv« %
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O s O A RN e

=1 [trz Vg,ﬂﬁ] ]/3;2 7% tanh(yr 22 __é ‘:‘ — a% tanh('yl/;?__-T)]
(32)

112]/1f1,2'/ 1 e tan( ]/lf,,z).paztan( ]/1 acy ) 0, v1“3

j
0, —=-xov<l,
V'3

0, 1<w,

s = 1[7;3}/1—-1;2]/@! tankyl/lh-ya) aﬁ’canh(‘yﬂvﬁ’ _lg)]= < v<1,
= 17| p? a1 ’ — L
1[ v l/vz_]sz —g tanh () '/1;3_]) at t‘lnhl\y} 2 — _3.)] ; 1<
(33)
From (29), we obtain the relations,
%I;S = Tﬁa:ltl}lNA [3 ata+4a(2v*—422+1) tan g—av? (8 22*—3) N? tan® al
ol _ —N _ay 2
5, 12 [a3(8u2 3) — 302 M2 tan? a:[, 34
3 1
%’; - 12uM=N2[”’ (8v*—3) N*+4a(20'—4v*+1) tana —aattan®a),
ol, _ —1 | a2 172 2 2 2]
W—'Tf!‘v“-ﬂ'[ 3v? M* + a® (8v*—3) tan al.
We also have
dv —l ars.a ars.a -
e ( 5y )/( v ) (3

In calculating (34), we note that, using (29), the factor tan # can be expressed by the
terms containing tan a.

4 Basic Notion about Dispersion in a Plate

Since the dispersion curves in two plates which transmit respectively only P and
only S, and the reflection law of the actual plate at free boundaries are considered
to be the basic matters for the analysis of the characteristic equations, a brief account
on these subjects will be given.

(I) Reflection at free boundary.

The reflection coefficients at a free surface of vertical dsiplacement in P-P and
P-S reflections, and those of horizontal displacement in S-P and S-S reflections are
shown in Fig. 2. The phase lag in total reflection S-S is shown in Fig. 8. In these
figures, w) is the incident angle of P, and is related to w by the SNELL’s law sin w,—
/3 sin w.

It is seen from these figures that P can exist without changing into S only at A
(v=0) and D(v=1/4/3), and S can exist without being transformed to P at 4, and
between D and F (v=1). At B (v=1/2), P and S are completely transformed to
S and P respectively. We also see that the phase change §, of vertical displacement
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Fig. 2. Coefficients of vertical displacement in P-P and Fig. 3. Phase lag in S-S total
P-S reflections and those of horizontal dis- reflection.

placement in S-S and S-P reflections. w),: in-
cident angle of P, w: incident angle of S, v =
sin @,

at A in P-P reflection is zero, and the phase change 8, of horizontal displacement in S-S
reflection is zero at 4, D and F, and = at £. It should be noticed that S wave at £
can be transmitted without changing into P.

(2) Dispersion curves in a plate which transmits only single body wave,
The characteristic equation of a liquid plate (A =2, . =0), can be easily obtained.
The dispersion curves P; of the symmetric modes for the case §,=0 (free foundary) and

those of the antisymmetirc modes for the case 8, == (rigid boundary) are identically
written as

P: cosa=0 or y]/,é__yﬂ — L. @ odd integer)  (36)

The dispersion curves of the antisymmetric and symmetric modes respectively for the
cases §,=0 and §,= arc also written in the same form;

P;: sina=10 or _!__— v': = lrz i l: even integer 37
7 g

In the case of a hypothetical plate (A =oo, g =) which tansmits only S, the dis-
persion curves S, of the symmetric modes for the case §,—0 (free boundary), and the
antisymmetric modes for the case §,== (rigid boundary) are written as

Sw: smf=0 or yy/T—v® =gm. (m: even) (38)
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and the dispersion curves of the antisymmetric and symmetric modes respectively for

the cases 8,=0 and &,=# become
Syt cosf=0  or pY1 9t = f’zf’:r . (m: odd). (39)

(38) and (39) have been studied in the SH-formed normal mode waves treated in the
first paper. ToLsTtoy and Uspix (1956), and TajimMe (1958) have used some of those
curves in their analyses. It is to be noticed that, the symmetric and antisymmetric
modes in each hypothetical plate are interchanged. In Fig. 4 are shown S,, and P,
respectively by dotted and broken curves.

[4-lg
L )
A %)
Lq -
e 1, %)
" L
1S
VT | SRS AR
o i
S
n
5 0.8F
£.. ........
D. 06+
CT:Z‘: TRETR
8- B
; %
0dr ; /'
L / ‘/'
; /
| T
I /|
; !
A—0 5
i 4 - T = wH/Y,
I A T o
-p3ak

Fig. 4. Dispersion curves of an elastic plate with the Poisson ratio 1/4.
I+, symmetric mode, IT,~: antisymmetric mode.
5> . [sin @=0 (I: even), antisymmetric mode of hypothetical liquid plate (A=A, p=0).
¢ {cos a=0 (/: odd), symmetric mode of ”
sin B=0 (m: even), symmetric mode of hypothetical incompressible solid plate.
: A=o00, p=
{cos B=0 (m: odd), antisyﬁu';;etfic mode of #
@ lattice points cos @ = cos g = 0.
(O lattice points sin @ —sin g = 0.
@®: points of double crossing.

Since the characteristic equations imply two facts, (1) the reflection law at the
surfaces, (2) the condition of constructive interference, we may infer some features of



NORMAL MODE WAVES IN AN ELASTIC PLATE (1I) 147

the dispersion curves from the results above obtained. First, we expect that, at v=0,
1/4/77 and 1, the dispersion curves osculate to one of the curves (36)-(39), and that, at
©=1/2, the curves pass through the points of intersection of certain curves of (36)—(39).
Secondly, since ! and m measure the wave numbers contained in the breadth of the
plates, the condition n=1/2 (I+m) (n: integer) will give a rough approximation of
the dispersion curves of the actual plate for the range 0<v< 1/4/73.

Now, returning to the characteristic equations (29), we will investigate the be-
haviours of the dispersion curve.

5 Some Particular Properties of Dispersion Curves of Phase Velocity

In solving the characteristic equation, it is preferable to seek the value of y for a
prescribed value of v, The values of v at the particular points 4,B,C,D,E and F, as
shown in Figs. 2 and 3 will be used to see the general features of the dispersion curves.
We are particularly interested in the real roots, and the symmetric and antisymmetric
modes will be denoted, after SATd (1951), respectively by I,* and I7,~.

(A) Real Root
(i) The case v>1.

Because of the non-periodic nature of the characteristic equations, v is a one-
valued function of . It is easily verified that the phase velocity of each mode ap-
proaches to the velocity of Rayleigh waves if y is increased indefinitely. At =0,
the symmetric mode IT,*+ has the phase velocity of plate waves, 1.633 v; (A=), and
the antisymmetric mode If,~ has the phase velocity ¢=0. These modes have been
calculated by SaTd rather completely.

(ii) The case v<1.

As seen from (32) and (33), it will be expected that the secular equations will de-
fine a many branched relations between y and ». But, on account of their
transcendental nature, the calculation of root is not straight-forward as in the case of
SH-formed normal mode waves. The results of our calculation are shown in Table 1,
which contains one to five modes of both types of motion, and the eigenvalues are also
shown in the y-v diagram in Fig. 4. In this figure, the particular points 4, B,....F
are represented by the same letters to the left of the vertical axis.

To understand the general features of Fig. 4, the following considerations will be
important.

(a) When v approaches to zero, I',=0 and I",—0 may be approximated respectively by
cos g = 0, sinff=0, (40)
and
sinag =0, cosff=0. (41)

This is very natural, since cos ¢=0 and sin =0 represent the characteristic
equations of symmetric type, respectively in the hypothetical liquid and solid plates,
while sin @=0 or cos f=0 corresponds to the antisymmetric modes in each plate.

When v=0, we have from (40),
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Table of eigenvalue

———————— e e e A
-+ + + +
s _3 1 2, I, ) L L

0.00 ( 2.72070 3.14153 6.28819 [ 8.16210 9.42478
0.02 2.71862 3.14503 6.28396 | 9.42770
0.04 ‘ 2.71319 3.15873 6.28629 | 8.17929 9.43653
0.06 2.70467 3.17944 6.29026 8.20144

0.08 2.60387 | 3.20739 6.29598 ‘ 8.23193 9.47277
0.10 2.68161 3.24192 6.30361 8.27097

0.12 2.66856 3.28252 .6.31336 | 8.31837 9.53659
0.14 2.65527 3.32885 6.32549 | 8.37386

0.16 2.64217 3.38073 6.34031 8.43715 9.63379
0.18 2.62959 3.43815 6.35819 | 8.50783

0.20 2.61776 3.50125 6.37956 8.58538 9.77381
0.22 2.60691 3.57022 6.40495 8.66919

0.24 2.59719 3.64539 6.43497 8.75858 9.47063
0.26 2.58878 3,72717 6.47039 §.85289

0.28 2.58183 3.81607 6.51214 8.95163 10.24260
0.30 2.57650 3.91267 6.56139 9.05452

0.32 2.57299 4.,01761 6.61961 9.16180 10.61002
0.34 2.57154 4.13159 6.68208 9.27422

0.38 2.57245 4.25535 8.77118 9.39320 11.08087
0.38 2.57615 4.38954 6.87031 9.52136

0.40 2.58319 4.53483 6.99049 9.66197 11.68679
0.42 2.59441 4.69163 7.13748 9.82035

0.44 2.61102 4,86020 7.31878 10.00448 12.38021
0.46 2.63498 5.04062 7.54357 10.22702

0.48 2.660855 5.23347 7.82190 10.50865 13.15163
0.50 2.72070 5.44140 8.16210 10.88280 13.60350
0.52 2.80054 5.67411 8.56734 11.39580 14.18232
0.54 2.93808 5.96509 9.04467 12.08208 15.02837
0.56 3.22193 .6.45992 9.,71668 12.98085 16.23603
0.58 4.00775 7.99743 11.95953 15.89383 19.80501
0.60 5.21287 Q.27955 13.230902 17.17462 21.10397
0.62 5.72034 9.75746 13.76648 17.77134 21,77553
0.64 8.00178 10.09862 14.18806 18.27677 22.36540
0.66 6.21786 10.40147 14.58333 18.76507 22.94681
0.88 6.41089 10.69588 14.98060 19.26529 23.54999
0.72 6.78711 11.31409 15.84105 20.36801

0.74 5.98631 11.65714 | 16.32791 20.99868 25.66946
0.76 7.20068 12.03455 16.86834 21.70213 26.53592
0.78 7.43642 12.45679 | 17.47707 22.49736 27.51765
0.80 7.70074 12.93678 18.17277 23.40874 28.64475
0.82 8.00279 13.49164 18.98045 24.46925 29.55806
0.84 8.35507 14.14513 19.93516 25,72519 31.51523
0.86 8.77557 14.93202 21.08845 27.24489 33.40133
0.88 9.29187 15.90612 22.52036 29.13461 35.74885
0.90 9.94044 | 17.15675 24.36406 31.57137 38.77867
0.92 10.83069 18.84662 26.86255 34.87849 42.89442
0.94 12.10641 21.31458 90.52275 39.73093 48.93910
0.98 14,21656 25.43654 36.65651 47,87648 59.09646
0.98 18.90295 34.69004 50.47714 66.26423 #2.05133
0.99 25,45635 47 72651 69.99666 92.26681 114.53700

5.4 I=1,35
}J - 1/ 3 772 3 =1,9,9, «+..
(42)
y:%n’. m=2,4,8, ...
and from (41),
I y=1/ﬂgé7;, 1—=12,4,86,.
(43)

| »= 2 e 8. B
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Table of eigenvalue (continued)

bl - L - . =
n n 7 n T
g -\\‘ 1 ‘ 2 ar 1 5
0.00 1.57080 4.71239 5.44140 7.85398 10.8528
0.02 471119 10.87621
0.04 1.57499 4.70805 5.46149 7.86007 10.86358
0.08 4.70312 10.85297
0.08 1.58758 4.60692 5.52033 7.88244 1084750
0.10 4.65008 10.84814
0.12 1.60911 4.68315 5.61456 7.91961 10.85523
0.14 4.67878 10.86889
0.16 1.54052 4.67137 5.74243 7.97521 1088922
0.18 4.66748
0.20 1.68242 4,66551 5.90179 8.05337 10.95050
0.22 4.66588
0.24 1,73715 4.66900 6.09205 8.16069 11.04120
0.26 4.67581
0.28 1.80699 4.68528 6.31644 8.30749 11.16563
0.30 4.60948
0.32 1.89544 4,71858 6.57218 8.51017 11.33181
0.34 4,74343
0.38 2.00756 4,77517 6.85823 8.79398 11.55479
0.38 4.81527
0.40 2.15060 4.86577 7.17125 9.19423 11.86457
0.44 2.33503 5.01088 7.51308 9.74825 12.32561
0.48 2.57501 5.25457 7.91175 1046752 13.07095
0.50 2.72070 5.44140 8.16210 10.88280 13.60350
0.52 2.88512 5.60846 8.48975 11.34912 14.24648
0.54 3.06718 6.05214 8.97411 15.00822
0.58 3.26205 6.50011 9.73687 12.95641 16.18588
0.58 3.46089 7.00404 10.64727 14.38785 18.13854
0.60 3.65208 7.43405 11.30910 15.22051 19.14308
0.62 3.83043 15.76986 19.77359
0.64 8.05803 12.14415 16.23250 20.32109
0.66 4.1359 8.31126 16.67421 20.85595
0.68 8.55363 12.83827 17.12298 21.40788
0.70 4.39816 8.79721 17.59543 21.99454
0.72 9,05077 13.57773 18.10469 22 63165
0.74 4.65154 9.32179 18.66333 23.33410
0.76 : 9.61767 14.45145 19.28525 24.11904
0.78 4.92742 9.94685 14.96693 19.98722 25.00750
0.80 10.31879 15.55478 20,79077 26.02675
0.82 5.250453 10.74724 | 16.23605 21.72485 27.21366
0.84 5.46091 11.25012 17.04015 22.83018 28.62021
0.86 5.689798 11.85380 18.01024 24. 16667 30.32311
0.88 5.98517 12.59900 19.21324 25.82749 32,44173
0.90 6.34603 13.55310 | 20.76041 27.96772 35.17503
0.92 5.82283 14.83865 22.85450 30.87052 38.85648
0.94 7.50236 16.71049 25.91867 35.12684 44.33501
0.98 8.60658 19.82655 | 31.04652 42.28650 53.48647
0.98 11.00940 2679650 42.58360 58.37069 74.15779
0.99 14.32128 36.59143 | 58.86159 81.13174 103.40180

The above relations enable us to define the mode number # according to the order
of increasing cut-off frequencies as shown in the table below.

mode H it I+ I+ i+ o+

1vV3, i
v *Q“? T 2 9 37

RS el




150 K. NAKAMURA

mode | 11,- EAEEES oI

— 3 5 ava )’
¥ | | V| gr |n e
L m | m= m=3 | =2 | m=5 =

We note that, when I7,,* and I~ are neither shear-cross modes, nor compressional-cross
modes, there holds the relation

1 -
n= (I+m). (45)

Since the slopes of the curves P; and S, are written as

adv i—e? dv L—=p?
(dy) T (dy/:.,,, yu o, (46)

we have, using (34) and (35),
dv BRT dv B

b = I ™ )

(b) When v approaches to E (v=1/v/2), the value of y satisfying ;=0 and I",=0
are given respectively by cos f=0 and sin g=0.

At v=—1._, we have for iI+,,

i3
w ~
y:v’?-z-nr, m=1,315 .... (48)
and for i,
y=vZgr, m=246 ... (49)

The slope at v=1/4/72 of both curves II,* are obtained from (35)

(e =20~ v 50)

As stated in the preceding section, cos f=0 and sin =0 are respectively the
symmetric and antisymmetric modes in an incompressible solid plate with rigid bound-
aries, The transition of I+ to cos f=0 and that of II,~ to sin f=0 is in accordance
with the fact that the phase lag in total reflection becomes = at E(v=1/2) in Fig. 2.
(c) When v approaches to D (v=1/4/3), the values of y satistying 77,=0 and 77,=0
are respectively given by sin f=0 and

v¥Ntanf= —a*y. (51)

When v=1/v'3, we have for I7,*,
=y 8. & —
=y & g% =586 (52)

and, for If,~
{3 : -
tan (V _%_y) — _.‘/_6—}; 5 (33)
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The roots of (53) are obtained as follows :

w| 1 | 2 | 8 | 4 | & (54)
y | 3.4347 | 6.9405 | 10.5366 | 14.2063 | 17.9271
The slopes at 1) become
dv _2v3
('dy )H'}; ) BT (59
dv _ 2By R
(d_y)n; =9y (1+ ). (56)

We note that 77,,+, and sin f=0 intersect at D, but the behaviour of IT,~ is some-
what irregular. This may be due to the fact that the coefficient of S-P reflection is
not unity as shown in Fig. 2.

(d) When 0<v<1/4/3, if we put in (29), the relation

sy =1 (57)
then, we have
tana +tan f=0. (58)
From (58), we can write
T R 1 Y [P r_
7[1/1—:) +]/_§-_y=:[ ww, #w=123.... (59)

The equation (57), when multiplied by the equation obtained from (57) by putting
the right hand side —1 instead of 1, gives the Rayleigh cubic, the roots of which are
v =1/4, (8Fyv3)/4. Of these, 1/4 and (3—+1/3)/4 satisfy (57), while the other root
(83+1/3)/4 gives the velocity of Rayleigh waves. Thus, we have from (57) and (59),
the points of intersection of I7,*+ and I7,-,

v=0.5

yﬂizin'x, w=1,23.... .

s ;;{i‘i = 0.56302

o '\/TTESVIJFVT_;““\/WE} n'w = 0.95430 n'r ,
W=1,23,.... (61)

The points defined by (60) and (61) are shown by small black circles in Fig. 4,
(55) is related to anomalous reflection, in which, for incident P and SV, only SV and P
are reflected respectively. The roots v=0.5 and 0.56302 correspond respectively to B
and C.

Since the relations cos @=cos #=0 and sin g=sin #=0 hoth satisfy (58), the curves
(59) pass through the points of intersection of 2, and S,,, provided that »’ =1/2(4-m),
and / and m are both even or odd. Remembering (45), we see that # is equal to » and
represents the mode number,
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We obtain from (34) and (35), the slopes at B

dv V3
(Ri)l‘l'JE - o nmIT A (62)
Vil Bnar:Ftl-bm(—z—)
and at C,
dy/u; #a = 1.82137 sin (0.267949 n z) -

Numerical values of (62) and (63) are:
at B, (v=0.5),

n1\2|3 + | s

(ﬂ)11+ 0.31927 | 0.091888  0.053667  0.045945

dy 0.040165 (64)

(g—;)n_ 0.12902 | 0.091888 | 0.071353 0.045945‘0.033879

at C, (v=0.5630),

n123‘4‘5

dv
(W)Ht 0.39663 | 0.22054 0.17035‘ 0.14679‘ 012647  (g3)

(g_;;)r 1.00094 | 0.39899 0.21319\ 0.13757’ 0.10315

(e) Even if (57) does not hold, con a=cos i=0 and sin a=sin §=0 always saitsly the
characteristic equations, so that the curves
tana +tanf=0 or

y[VW+|/_;__vﬂ]=mr, =128 (66)

pass through the crossing points of P; and S,,. In Fig. 4, (66) are drawn by chained
lines. These curves may be considered to represent the first approximation for I7,%.
The lattice points defined by

cosa=0, cosfi=0, (67)
and

sine=0, sinf=0, (68)
are represented in Fig. 4 respectively by large black and white circles. At lattice
points, the slopes of P; and S, are also given by (46). The slopes at the lattice points
(67) of the curves /I,* are obtained as

dv _ 3(1/3—w? d 3—8v%)(1—0v?
(Ti?)n*,; - 75;(:@3237 , (E%)ﬁ; = L_Sy(v_)_' (69)

and at potints defined by (68), the slopes of IT,* are interchanged.
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It can be shown that, at the lattice points (67), we have the relation

(g;ﬁj<m> {'!r}'/il (d”) g;i) (70)
and at the lattice points (68),
()™ (25 )t 225 )e: > (), ™)

where the equal sign holds only if v=0.5. Thus we have seen that the slope of IT,*
is less than that of JT,~ at (67), and vice versa at (68), and the slopes of both IT,* and

II,~ lie between those of S,, and #;. These situations are illustrated in Fig. 5. a, b,
(70) and (71) indicate that I7,* oscillate about the curve (66) as shown in Fig. 5,c. As
seen from (d), 17, intersect at the crossing point of v=0.5 and (66), while, if # is even,
the point of intersection become lattice points. The behaviour of H,* resulting
from the double intersection is shown in Fig. 5, ¢, and points of double intersection are
shown by double circles in Fig. 4. Equality of the slopes of IT,,* at such particular
points is indicated by the equal signs in (70) and (71).

[{sh) (6) (c)

Fig. 5. Behaviours of dispersion curves at lattice points.
(a) and (b) are the cases of a single intesection of II*, and II-,
(¢) is the case of a double mtersection of II*, and II-,.

(B) Lyox (1955) has discussed the imaginary roots in his problem of the symmetric
motion due to periodic forces exerted vertically at finite areas on the surface. He
has shown that for a prescribed frequency, there exists only a finite number of
imaginary roots. As mentioned in the first paper, imaginary roots give rise to waves
of exponentially damping, so that they can be discarded in so far as the motion at large
distances is concerned.

(C) Complex root

SHERWOOD (1958) has suggested the existence of infinite sct of complex roots for
a specified frequency. Since for any prescribed frequency there exists only a finite
number of real and imaginary roots, an arbitray motion in a plate would not be account-
ed for without the set of infinite numbers of complex root.
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In our problem, it suffices to note that complex roots are associated with standing
waves, It is possible to show that if ¥=a—ib isaroot of I";=0 or I',=0, then -a—b
becomes also a root of each equation.

Taking a pair of roots +=a—7b we can always write for the term containing x in (8)

grihxla—ib) L g-vhela—ib) = D g~*%* cos (a b x) . (72)
This shows the standing waves whose amplitude is attenuated exponentially along the
plate. Thus, complex roots are of no importance for us.
6 Group Velocity
The group velocity U is formally defined by

r—__de  _ ., d(y)
U=GEsmw) ~ * Ty * (73)
so that we can write
(8115,,)
) dv oy
s g8V 74
07y T T (Bl 4
ov

From (34) and (74), we obtain for IT,+,

v [3ua‘+ 4&(2 v‘—4v*+1:| tan @ — v* N2 (8 9*—3) a. tan ag]

U _ s
U [a a2(8v4~8v3+3) + 4vta <2v*ﬁ4va+l) tan a—v*(8v*—1) N2 g tan? a:l
(75)
and for I7,—,
U v [v%Sv’—S) N+ 4a (2 1i—4 v“rl) tan a—3 aa? tan? a:]
v [v“ (81}‘—1)}\” a+4va (\2 vi—4 i:2+]>tan o:—-(8 v — 8?1’4—3) ata tan? a:] )
(76)

The group velocity for some modes are shown in Fig. 4.
Some important features of the group velocity are as follows.
(a) When =0, we see from (75) and (76), that U=0 for both II,*.
(b) When v=l1, it is easily shown that the group velocity is equal to the velocity of
S for both IT,*.
(c) When v=1/y/7, it follows that
v__ 1
% V2
(d) It should be noticed that, at »=0.5, for even #, II,* have the identical group
velocity U=wv, at frequency y=+/3 /2nz But, for » odd, such a conspicuous nature is
not found.
(e) When v=1/v"3 we obtain from (55) and (74) that, for any value of », IT,* has
the same group velocity

=0.7071. (77)
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.ff o Jl’gi 1.5497 . _ (78)

II,~ has not such a simple relation,
(f) In the range 0< v < 1/y/3, as can be seen from the dispersion curves of phase
velocity, the dispersion curves of group velocity of the same mode number oscillate
about the curves

v v

v

T A VI— VI3

(79)

nw

VS Vi—e VI
This feature is clearly shown in the curves of ITy* calculated by TorLstoy and USDIN.
(¢) The maximum group velocity in higher modes approaches to the velocity of P.
This can be seen from Fig. 6, which schematically shows the behaviours of II,,* at the
lattice points with small / and large m, The maximum group velocity and the corres-
ponding frequency can be calculated. Putting =1, m=2n-1 in (36) and (38), we obtain

y= TVERGT) , 0
2nF—2n—1
=Y “Sum—1) - (81)

Substituting (80) and (81) into (69) and (74), we have

dﬁ?})) . 3
dy /vt T mmr—n+d)Venr—2n+1

(82)

U _ (n*—n+4)vV2Zn*—2n—1V6n(n—1)

2, (—n+4) (2n*—2n+1) +9n(n—1)"

If we put n—=49 in (83) we have, U /v, =1.729, so the group velocity is practically

equal to the velocity of P. These values are concordant with those calenlated by
Torstoy and UsDIN.

(83)

—

Fig. 6. Eigenvalues in higher modes,

7 A Remark on the Pahse and Group Velocities

From Fig. 4, we see that the phase velocitis for IT,* and /T,~ become the two-valued
function of y near the cut-off frequencies, and correspondingly, the group velocities
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become nagative. This situation is shown more clearly in Fig. 7 for the mode If,+. It is
possible to verify that the inflection point C of the curve v corresponds to the point B,
and the branch CA yields the negative part
BDA of the curve U /v,, while the other branch
CE corresponds to the positive part BE.

Torstoy and Uspin (1956) have found this il
fact. They, confining their attention to the “r
branch CA, have supposed that the phase . e3r
velocity must be negative as the group velo- 5 02
city is essentially to be positive. But, there 50
seems to be no reason why the group velocity 0

must be positive in that brach. If a source —oik
were a peculiar type such that only § wave gL
rays with a band of incident angles repre- P

sented by CB are produced, the energy _ . i . _

. Fig. 7. Enlarged figure of the dispersion
would be transmitted towards the source. curve of I+ in which negative
In a simple harmonic excitation of a point group velocity appears.
source usually assumed, we must always con-
sider, for a prescribed frequency denoted by G, the residue contributions from the two
poles corresponding to H and I. So that two group velocities denoted by D and [ are
to be considered. Detailed calculation shows that, in the frequency range B4, the
magnitude of the positive group velocity is larger than the absolute value of the nega-
tive group velocity. Also, from the amplitude calculation which will be described in
the next paper, it can be shown that the excited amplitude for the branch BF is
always larger than that for the branch BDA. From these facts, it can be verified that,
at large distances from the source, only diverging waves can exist, since, according to
Biot, the group velocity written formally by (73) represents the rate of cnergy transfer.

8 Summary

Dispersive property of an elastic plate with the Poisson ratio 1/4 is investigated
by use of y—v, y—U /v, diagrams, where y=wH fv;., v=v,/c and ¢ and U represent
respectively the phase and group velocities. The lowest modes IT,* are excluded in
most part of the discussion.

Since characteristic equations tepresent the conditions of constructive interference
of P and S waves which generate both P and S on reflection at the boundaries by the
definite law of reflection, the reflection law is examined at first,

At particular incident angles of S represented by 4,E, F, in Fig. 2, P-S, 5-P trans-
formations do not occur, and at anglescor responding to B and C in the same figure, P-S,
S-P transformations are perfect. It is shown that, at E, F, 4, the dispersion curves
coincide with those of liquid or incompressible solid plate, and the coincidence of
symmetric and antisymmetric nature of motion is also verified.

In the range 1/v/ 7§ >v>>0, the characteristic equations are satisfied whenever cosa
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—=cos f=0 and sin a=sin =0, so that the curves of IT,* intersect at the lattice points
defined by those relations. cos a=0 and cos =0 represent the dispersion curves
respectively of the symmetric and antisymmetric modes in a liquid plate, and sin a=0,
sin f=0 correspond to the symmetric and antisymmetric modes in an incompressible
solid plate. At lattice points cos g=cos f=0, I,* couples more strongly with the
symmetric mode in a liquid plate than with the antisymmetric mode in a solid plate,
while at lattice points sin a=sin =0, IT,+ couples more strongly with the symmetric
mode in a solid plate than with the antisymmetric mode in a liquid plate.

Besides lattice points, If,* intersect each other on the lines given by B and
C. The even modes of IT,* intersect twice at lattice points on the line v=1/2 in Fig.
4. At the frequencies of such twice intersection, {f,* (n: even) gives always the group
velocity equal to the velocity of S. At the incident angle 45° (E), whole modes give
the group velocity equal to 1/4/ 2%, In comparatively high modes, the maximum
group velocity becomes practically equal to the velocity of P. Such maximum group
velocity and the corresponding frequency are given by functions of mode number.

A brief account is given on the “negative phase velocity™.
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