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 Abstract 

             This paper presents a two-dimensional small perturbation approach to the 
       problem of waves produced in a shearing air stream flowing over a ridge. The 
       fundamental solution for a constant wind shear is calculated by Fourier trans-

       formation. The second boundary condition for the solutions is determined in a 
        rigorous manner. 

             While there are some points of correspondence between these results and 
       the single or two-layer's solution, there is a considerable degree of difference. 

       The amplitude of the non-wave disturbance decreases with height and decays like 
 x-1. The lee-wave is composed of an infinite number of harmonic waves and several 

       waves predominate over others on account of the resonance between the width of the 
       mountain and the character of the air stream. In an extreme case the lee-wave 

       cannot be appreciated on account of the interference of these wave components. 
       Larger barriers cause an over-development of the waves, which have closed circu-

       lation or negative horizontal velocity. 

1 Introduction 

   From a meteorological viewpoint, considerable interest is attached to the airflow 
over mountains. For this reason numerous studies have been carried out on this 

problem. The solution of meteorological equations is particulary difficult, because 
the behaviour of the atmosphere can be described almost completely only by five 
equations with five variables. 

   In the first place, the difficulty arises from that the many variables have been 

diminished by considering the two-dimensional motion, i.e. an infinite mountain range 

parallel to the y-axis which is crossed at right angle by air moving in the positive x-
direction. Secondly, the method of approximation with simplified models has been 
applied. LYRA (1943)  and QUENEY (1947) have studied from the viewpoint of the per-
turbation theory. The underlying assumptions then  are  : The motion is  stationary  ; 
the wind velocity u is considered as independent of  height  ; the static stability is 

constant with height, so that the incompressible stratified model atmopshere can be 
 used  ; and if the mountains are low and their slopes gentle, the perturbation theory 

may be applied. These studies have made it possible to explain several features of 
the motion. 

   In general the flow from the surface to the stratosphere has a considerable shear 
of velocity with height. In the westerlies, for example, the flow is roughly in the 

same direction at all leveles but several times faster aloft than near the surface.
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Therefore these models may not be useful even if the solution is obtained for con-
siderable amplitude. 

   SCORER (1949) has proposed as an approximate atmospheric model a simple two-
layer model to calculate the streamlines as an air current, whose velocity varies with 

height. His example is one in which the atmosphere is divided into two layers in each 

of which Scorer's parameter  /2 has a constant but different value. In this model 
almost regular stational sine waves (lee-waves) form on the lee side of mountain ranges. 

   Multi-layer models with several different values of  /2 could in theory be set up and 

examined in a similar fashion. However, the mathematical treatment would become 
inordinately complex and no new general principle could emerge. CORBY and WALLING-
TON (1956), applying the two-layer or  three-layer model illustrate the effect of mountain 
and stability on the lee-wave amplitude. In order to examine the effects of the upper 
boundary and high-level conditions, CORBY and SAWYER (1958) studied the four-layer 

model, where the two lower layers representing the troposphere are surmounted by 
two higher layers representing the stratosphere. WALLINGTON and PORTNAL (1958) 

have computed the wavelength and amplitude of lee-waves in a 17—layer modely by 
a high-speed computer and compared them with those of the observed lee-waves. 

   There is really no evidence to support such multi-layer assumption and it appears 
to be desirable, for this and other reasons, to extend the theory to the model with 

continuous wind velocity.  It. is the purpose of this paper to present the results of 
this investigation. 

2 Fundamental equation 

   The frictionless stationary flow in two-dimensional motion (in the X, Z plane, 
X-axis being along the general  direction of the current and Z-axis being directed 

upward) has been given by the perturbation method, and the differential equation of 
vertical displacement obtained for small perturbation takes the form 

 2 d         (-1,-6 Rggiq(1) 
           \ dZoi aza 

where  18 is the static stability in the form  8=1/0.a0laz; 0 the potential  temperature  ; 

c, the velocity of  sound  ;  u undisturbed horizontal wind  speed  ; and g, the gravity. If 
 Zo is the height of a streamline far upstream and Z is the height at a considering point, 

the vertical displacement is defined by  r =  Z  —Zo. According to LONG (1953) the 
the linear equation (1) is valid even when the amplitude is considerably large under a 
special  condition  : the ratio  gp/c2< 1 and  4 is constant. If  4 varies continously 
with height, the equations for waves are no longer linear when the amplitude is large. 

In this paper we concern with  u which is not constant, thus we are obliged to apply (1) 
as a first approximation. 

    In order to discuss a model airstream, some simplifications are assumed. 
    i SCORER neglected the second and third factors of  laz in (1) on the grounds 

that its effect is small and quantitative only, then,  
1  d   >+and fl +0 (2) 

 d  Z c2
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   ii The static stability is consant through the whole atmosphere 

velocity  tit is a linear function of Z, 

 ic=.4(L  + 
 Accordingly (1) becomes 

                  a,2 yr+a2yr+lay0±/2_1yr0 
 ax2  az2z a z 

where  3F, x, z are non-dimensional variables, given by 

 L  +  Z  =  Lz  ,  X  =  Lx  , and  ‘-=  L  . 

and where 

 12 (g3—)" (= 1) 
                         242z=1 L2 A2Ri

and the wind 

 (3) 

 (4) 

 (5) 

 (6)
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 Ri is the Richardson number. 

   If the solution of (5) is the  form, 

              K(k  z)ez'x (7) 

the simplified equation for K  (k, z) is 

     d2 1 d 
                         d z2 

             K(k,z) + z  d  zK(k,z) +12z4—  k2) K(k,  z)0 . (8) 
The solution may be 

 K(k, z) =  Z  m(i k z) (9) 

where  m2=1/4—i2 and  Z  „, is a cylinder function. 

   We now consider the flow when a disturbance at infinity is diminished, the only 

solution of (8) may be given by 

 K(k, z)  K  m(k z) (10) 

where  K  „i(x) is the modified Bessel function of the third kind. 

   The function  Km(x) has the following properties : 1  Km(x) is real if x is real 

positive and m is real or pure imaginary, 2,  K  m(x) tends to zero if x increases without 
limit but remains real. 3, also K-function has an important  property  : it has zeros. If 
m is pure imaginary  K  „i(x) has an infinite number of simple zeros which are real and 

positive, and  x-0 is the limiting point of zeros.  Km(x) has no complex zeros and has 
no zeros on the negative real  axis.  (1) K-function for pure imaginary m is shown in 
Fig. 1. Since in the stable atmosphere the Richardson number is positive, the value 

of m is pure imaginary or real and positive less than 1/4. Then  Km(x) has zeros only 

when m is pure imaginary (or when  R,  <4). The zero of  Km(x) refers to lee-waves, 
and it will be seen in the following section. 

3 Flow over an isolated hill 

   The simplified equation in non-dimensional unit used here is summarized as 

follows  : 

           a2 a2 2 a /2_1.   +
z2(12)             axaz2z a Z 

and one of its solutions is given by 

 Z-112K,(k z)  ei" 

By the principle of superpositions, the new solution can be constructed. If the bottom 

 (1) DYSON (1960) has proved that the confluent hypergeometric function  W  k,m(x) has no 
complex zeros when the index k is real while m is pure imaginary, and under these conditions, 
there is an infinite number of positive real zeros with a point of accumulation at zero. Using 

 the-fact 

                                            7r                Km(x)  =2 wo, m(x)  2  x )1(11) 
we can obtain the above properties for zero of Km(x) when  m is pure imaginary.
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topography is given in a non-dimensional unit, 

 H(x) =  
f (Hk cos  k  x  + Lk sin k x) d k (13) 

the displacement of the stream lines along the ridge is given by 

 (x  ,  z  =  1  +  H)  =  (11  k  cos  k  x + Lk sin  k  x)  d  k (14) 

A simple boundary form, after QUENEY (1947), may be taken by 

                      H(x)hb2                b2
+x2 (15) 

where Lh is the mountain height and Lb is the half-width. Using the Fourier trans-
formation we have 

                         =  z--1/2R 
0hb' Ki                                 Kit((k)) e—b'k+jet'dk (16) 

                                        here 

 E = -1 +H'b' 1
+Hand x' = -1+H 

If h is infinitesimal (16) may be written 

                                      KO2.)bk•              z) z-1/2hb se-Ax dk (17)  
0  Kii(k) 

The simplified equation corresponding to (17) is applied by many writers. 

   If a ridge inclines at angle  6 to the wind direction x-axis, (16) may be used with 
some modification, which becomes 

                                              e-k b'A-i(x' cos 5—Y' sin 8) dk  (18)  (x,  y,  z)z--112 hb,Kii(Ek)                           K
ii(k) 

                        As far as the displacement of streamlines is concerned,

V~

0  R

 C, 

Fig. 2. Contours in the 
         complex k-plane. 

and 

 =  We now assume from Di

 *r'i(2'residuesatthe poi 

practical  experience that the  disturb

the airflow over a long ridge presents an essentially two-

dimensional problem. For this reason we shall examine 

only the airflow across a long ridge perpendicular to the 
wind. 

   Integration (16) can be evaluated by deforming the 

contour in the complex plane of k, noting that the inte-

grand has no poles off the axes (see Fig. 2). Using 
instead of (16) a new integral 

            =  Kil(e  k)kbk                   e-+1 k (19)  K
iikk) 
 we have 

         +  7r.  i  (I residues at the poles) 
                       for  x  >  0 

                          (20) 
i (2' residues at the  poles) for  x  <  0  

.xperience that the  disturbance of the flow must decrease
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to zero upstream and we therefore annul the waves upstream by adding the term of 
residues on both sides of the mountain, according to CORBY and SAWYER (1958). Then, 

 + + 2  7r  i  (X residues at the poles) for  x  > 0 
and (21) 

 —  *1+ for x  <  0 

The second term in each case  (11,71 or  q,-;) tends to zero as R tends to infinity on 
account of the exponential term. 

   The first term is written by 

 i .100Hi12(ek) e_ikb-kx dx  (x  > 0) (22)                       0 Hila(k) 
or 

 =  —  i  -11"1(e  k)  eikb+"  dx (x  <  0) (23) 
 0  Hill(k) 

The solution (16) is symmetric to x, so that  ih and  *1 are symmetric. It is sufficient 

to consider only  Ovi. 
   In this case an asymptotic representation is obtained as  follows  : For a large 

value of 1, the asymptotic expansion is applied. 

 (2x)1/2(12+22)-1/4  exp j2  (12+22)1/2 

                                                      7r                            —II sinh- 11 /
2i—7r                                     } + 0 (x-2) (24) 

                                   1 then 

 Hill(ke)  (1 +.62k2/-2'\exp it(1 +   12-1/4 evo)1/2            Hill(k)1+k21-2) 

                         k2)112+log( 6 +k2/12 
                                           (25)                             /2 1-1-1/1+e2k2/i2 )1.1 

(25) is a good approximation formula even when k is small. 
   Let us calculate (23), by applying (25) and the principle of the stationary phase. 

We consider the integral 

                (e2k22\\-1/4                             eikb+kxexpLi 10e2k2"3-/ 2 
     01 +k2/12) +12) 

 (ik2'\1/2log(eI +1/1 +k2 /12   Ai                                              dk                           -r2)+
1/ 1 ± e2k2112 

 00  (  1+E2k2112 rip 
eik,÷,  eil  (1')  dk (26)  .10  1+0/12 ) 

When  I  ibd-xj is small, we may expect, according to the principle of interference, that 

an approximate value of the integral will be determined from a consideration of the 
integral in the neighbourhood of zero. Zero is a value of the k which makes the phase 
of  ef(k) stationary. 

   This relation will be obtained when  I  ib-1-x is small. When x is large, the part of 
the integral outside the range  8 of the value of k is negligible owing to the exponen-

tial term  ekx, (x>0). The approximation is adequate when 1 is large and only then it
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will meet the practical purposes. 

    On considering the principle of the stationary phase, we have 

 •41,1'  rk) eik b+kx dk 
                 jii(k) 

                ieikb+kxEicr Jii-Fm(k) 1-0 kr} d  k (27) 
             J 0IT, jii(k) 2 / 

according to the formula of Bessel functions (ERDELYI 1953, p. 66). Applying the 
approximation 

        Ejil+m(k) ( 1—e2 k)mI'(1 + 11) (  e2,1 k2Y1 12e2 1 k) 
   .-o2 

We see that 
         i eil e  2  —  1  (28)  -1,  il; 1+11;               [(x+ib)2+ e2-1]1/2 (2 (x+ib)2  +  e2  —1 

according to WATSON (1952, § 13.2, (3)), where F (a,  fl  ;  y  ; z) is the hypergeometric 

function. 
   By using the approximation of the hypergeometric function (28) can be expressed 
as 

                      i ell     —(29) 

                   [(xb)2  1"2                                   1+z/ 

Particularly when  E2  —1 is small, we can rewrite this in a simpler  form 

       le" 
         ib 

       x2 + 62[b  cos  (I  log  6) — x  sin  (I  log  e)  +ifxcos  (1  log  e)b sin(flog e)} 
                                          (30) 

These representations are useful for  e<2 or 1> 1, but for  e>2 and small x these 
formula become invalid and another approximation will be required. 

   When s2 is small, the hypergeometric function may be given by 

     F(L, 9  • a+16+1   . 1—s2) 
      22 ' 2 

 n-112  a+fi+1                  2  
F (  a 1 . s2         r(a+21)P                   r(2-1)2'  2'  2' 

 2  7r11  2  r  a±fl+1                          2  
sF(a+113+1  • 3  

               C2Jr(1)2' 2  ' 2' 
By the aid of this formula, we obtain the result 

 iEtil211 (x-Fi 1)     11,1Ili70112 _ (31) 
             {(x+i b)2+62-1}112-((x +b)2 +62 —111/2 

This is  more suitable if we are concerned with the neighbourhood of the ridge and with
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the upper layer,  I  x  ib  12 <  e2  —  1. 

   As a result of the symmetric property we see that, 

 0?  {1 e) =  OZ  ilk'  (—  x  e)) (32) 

   This "non-wave" term represents a local disturbance, dying out rapidly on both 
sides of the mountain. 

   Next, we shall evaluate the residues at the poles (wave term), The pole occurs at 
the zero of  K  ii(k) as a simple pole. The number of poles is infinite, then we have 

                        Kii(e km) -kb-Fikx         I residues  — Eemm(33)                         nt=0( d Kii(k) 
                             dkA-km 

where 
 ko>  k1>  •  •  •  • 

   In order to examine the residue of the pole for a large value of n,  Kii(k) can be 
approximated as  follows  : The modified Bessel function  K  ii(k) becomes 

 Kii(k)= sin.7r h  1  Ttc'sin (y—  I  log k ) for 0  <  k <1 
where 

 F(1  +i  I) 

When  e is small, the pole is  given by 

 y  —  1  log   2  7r,  2  n'  ,  •  •  •  • (34) 

This result shows that the ratio  10,„+,1k,„ is nearly equal to  e-10( and that the value of 
residue tends to zero in proportion to the value of the pole when n increases. 

   When  /  is small and when we stop at the n-th term in (33), the error becomes very 

small. When a better approximation is required or 1 is large, it is necessary to sum up 
to the considerable terms. In this case the wave term may be split into two terms, 

 u-1  1 
 =  E  +  E  + 

 m  =0  m=

                —  Kii(k„,e)                              E exp — 7r + i x') e —p'} (35) 
                (  d Kit(k)  m=0 

 d  k  1k-ky. 

Substituting  e-mi  17'  -  0  ,  E2 is transformed into an integral form, and we obtain, 

 Kii(e  k„)   1  i—e"'  x')kt'   (36) 
 dKif(k)  7r  (b'  i  x')  kµ                        dk  )k =k1. 

Especially when I  (b' x)  k„,1  � 1 , (36) becomes 

 =  0 (37) 

   Solution (33) represents down-stream waves, whose amplitudes do not decrease 

and which are called lee-waves.
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   By using (19), (22), (28), (29), (30), (33) and  (36)  the final results are shown  as 

 (x  ,  z)  (91—h  b'  E-'12+i  r(x'  +  112  + +Ifor  x  <  0 (38) 

        (x, z)  =31—h b' e-1124-i[(x' +i b')2 + +i 
 A-1 Kii(k„,e)                   — 2 7r hb' E  e km'  sin  k,„  x' 

 m-o  d  
 d  k  k—km 

                 + 2 h b' e-10  1-6(-bt+ix1411 .  e) for x> 0                          (12' x') k,, ( dl I 1 ii(k)  
 d  k  k=kp, 

                                           (39) 
When  6  1 

                 b 
 (x, z)  = 112(xh2+b2)  fb cos (1  log  6) — x sin (1 log  6)} x  <  0 

And when  !  x'  +i  b'  <  E2-1 

               61,1-112b') 11      (x, z)5i(x'±i bi) 2 + E2—[(i 1 7r)1/2  [(x'  ±i b')2 + 62—111/2x  <0 

4 Indeterminacy of solution 

   The solution for the airflow over mountains is given by the summation of terms, 
 1,fr1 and the residues. The first term describes the flow in the neighbourhood of the 

mountain, the other describes the lee-waves, and is absent when x <0. It is remark-

able that these terms are obtained from (10). In general the solution of (8) is given by 

 K  (k  ,  z)  =  A  Z  „,(1)(i  k  z)  +  BZ,,(2)(ik  z) (40) 

where A and B are arbitrary functions of k and Z-function are independent Bessel 

functions. We can determine the constants by the two boundary conditions; the 

ground boundary condition that is called a second (upper) boundary condition. As-
suming, as a second boundary condition, the disturbance vanishing for high altitude, 

(10) can be unique. 
   There has been some discussion (SCORER 1958, a, b, CORBY and SAWYER 1958, b, 

PALM 1958) on how to determine the unique solution. The outline is as  follows  : The 

simplified differential equation for (8) may be given by 

                  d2K(k,z)  , g                             k2).K(k , z) = 0 (41) 
                     dz2 

and if g  fl/f42-102 is independent of z, and if 120>k2, (41) has a solution 

             K  (k, z)  = C  ei" D (42) 

where 

                               1,2102k2 

 Both  constants C and D are indeterminate for  z=oo and so there is some difficulty
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about the upper boundary condition. For a Fourier component cos  k, SCORER (1958. 

a, b) proposed the solution in the form 

 cos  jc  z  cos  k  x (43) 

This comes from his opinion, "All waves are excluded which are not directly attri-

butable to the mountain. Clearly any wave motion, however arbitrary in from, 
which is zero at the ground can be added to any wave motion for a given  mountain, 
but in order to obtain a practical solution these waves must be ignored unless a second 

boundary condition such as a rigid lid requires their presence. In the absence of a 

special second condition waves corresponding to no disturbance at the ground should 
be excluded for the same reason that lee-waves on the upstream side of the mountain 
are excluded." 

    Then the flow over the ridge is 

 h  b2  
                      ±b2 cos  ioz (+ lee waves) (44) 

    Different writers have disagreed with him in the choice of a second boundary con-

dition. QUENEY (1947) overcomes the difficulty by assuming a small amount of fric-
tion, originally used by RAYLEIGH (LAMB 1945), and obtains the solution of (41), 

                   K  (k, z)  — cos (k x +  a z) (45) 

and the flow over the ridge is 

 =  
b2±b2x2(b cos 1, z — x sin 10 z)  (+lee waves) (46) 

The principal advantage of this friction is that it does not in fluence the boundary 
conditions, but it is an artifice. 

    It has been proposed to treat this problem as an initial value problem, (see 

WURTELE 1953 and PALM 1953). The waves are created during some initial interval 
and approach a stationary form. It is found that the solutions are in agreement with 

(46). This indeterminacy may be eliminated by various other methods. CORBY 
and SAWYER (1958 a) assume that the atmosphere has a rigid lid on top, and then let 
the height of the lid become infinite. The radiation condition may be applied 

 (ELIASSEN and PALM 1954). These results are identical with (46). 
    It is not the object of this paper to discuss this problem in detail, but let us con-

sider this problem in our model, which has a shearing wind velocity. Make 1 large, 

(30) becomes 

 e—bk+ikx-Filloge  dk (x  <  0) (47) 

 0 and (32) becomes 

                   (4(.0e—bk+ ikx —Wog d  k  (x  >  0) 

 0 Replacing the summation by integration, (35) reduces to 

 —ife(-b+ix)ksin  (1 log e) d ke(-b+sin (1 log  e) (48) 
    0  b--ix
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Substituting in (22) 

 be$1-'12  _  _  _  x  <0 
 b—i  x 

    b—ixe(-b 
          h-I-1/2 h  h  6-112  sin (1 log  C) + 27r i Ed}  x> 0                                                   -Fix

x)kp, 

                                          (49) 

(49) may be rewritter 

                hh26-1 
             h2+x2/ 2 b cos  (1  log  e) —  x  sin  (1  log  0)- (+ lee waves) (50) 

Especially when b is large, the last term tends to zero. 

   Assuming  e  1, this limit corresponds to (46), because log  C-'7E-1. In this model 
the solution is equivalent to (46). 

   The above result is based on the assumption that "all lee-waves occur only on the 
lee side of the mountain". Mathematically, there is no reason for having waves only 
on the lee side. However, from physical considerations it is easily seen that the definite 

lee-waves created by the mountain must always be behind the mountain. This as-
sumption, originally used by KELVIN (LAMB 1945) in studying the surface wave, was 

applied by CORBY and SAWYER (1958 a). But when b is too large, as shown in (50), the 
wave term has no longer a wave form, even though the formal Fourier component of 

lee-waves can occur. In such a case the above assumption seems to be a more assump-
tion whose plausibility cannot be confirmed either mathematically or physically. 

   This result shows that this is another method leading to the conclusion (46). But 
it does not mean that  SCORER's assertion is incorrect. I suppose that if the effect of 

friction is discounted very long lee-waves can occur on both sides with non-wave form. 
Actually we substitute (48) in (21), then we have, 

 hh2  6-1/  2 
                     +  cos  (1  log  e) + wave term 

the first term is equivalent to the non-wave solution found by SCORER. If we assume 
that only definite lee-waves occur on the lee side, the solution is represented by (44), 
which means that in the non-viscous fluid the flow is represented by a symmetric non-wave 

term and lee-waves on the lee side. But in the atmosphere, which is viscous fluid, the 
airflow is probably represented by an asymmetric function, because the air flow is not 

symmetric to x on account of Reynold's stress being asymmetric to x. It may be 

possible to decide a solution by substraction or addition of a wave term with a factor 
of some value. We cannot decide on a plausible solution. In this paper we obtain 

solutions (38) and (39) based on the assumption that an infinite train of waves which is 
represented by residues at the poles appears only on the lee side of the mountain. 

   It is noted that, if the wave term is represented by (50), the train of lee-waves does 
not occur on the lee side with a definite form. This means that for a certain value of 

b Fourier components of lee-waves interfere with each other and the resultant wave 

has no more a wave form, The condition of occurrence of a definite lee-wave is given
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by 

 e(-b-1-ix)kp,  sin  (I  log  e) +0  b—i  x 

or empirically by 

                 o10   <b  <              k ko 

The second condition  1/14>b is necessary, because for a large value 1,  (ko> 1) and for a 
very small b, we have 

 hb  e-kmb  hb 0 

Concluding we can show that the lee-waves occur only when b has an adequate value 
in according to the atmospheric character as long as h is constant. 

   We shall compare (49) with LYRA'S (1943) solution. His solution for a "point 
mountain" is essentially the same as this solution with b =0 , hb=const.  (=IVI  br) and 

 e— 1. Roughly to estimate the lee-waves, we assume that all poles are represented 
by (34). This assumption is valid for a small eigen value but when  1?,, is large this 
representation becomes useless. For example  1=10 , the largest zero is 6.6, whereas 
the value  calculated. by (34) is 5.8. But (34) may be applied as far as the qualitative 

feature is concerned. The wave term is approximated by 

 2  M  (E  —  1)   1  (1 cosk
o  x)  7r 

This is an equivalent formula to LYRA'S but with a different form which is caused by a 
different ground shape and an unsuitable approximation method. 

   In addition, we shall touch the dependence of lee-wave amplitude on ridge width. 
 CORBY and WALLINGTON (1956) have investigated the variations of the amplitude of 

the two-layer waves, and they show that if b is increased with h constant or if  b and h 
are increased in the same proportion, the amplitude reaches a sharp maximum and then 
falls off rapidly. Thus the width is the important parameter of the ridge as far as the 
wave amplitude is concerned. According to CORBY and WALLINGTON  b=k--1 is the value 
which excites the largest amplitude lee-wave and it is often like "resonance". The 
occurrence of definite lee-waves is related to the resonance and these phenomena will 
be examined with examples in a later section. 

5 Solution for finite height of the mountain 

   For simplicity we shall consider this for large b and 1, in which case flow is given by 
(49). We are interested in the disturbance near the ridge, x<b, where (49) reduces to 

             =  thz-1/2+1 (51) 

For the finite mountain height h, the horizontal velocity u rapidly fluctuates with height 

especially near the ridge. This may be shown analytically as  follows  : 

                    395_ac5 azo_,T,(1_an    ,t = (52) 
                   azo aza g
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where  ch is the stream function and  zo is the height of streamline  y5  —const far upstream. 
From (51) and (52) we have

u oz j1 +  h  z-31  2(12 + -141:Y/2 sin (Ilog E + z1)}
where

      1   tan  ---- 
 2/

The wind velocity is maximum nearly at 1 log  e  +4=70 and if  lh> 1, the horizontal 
velocity is zero at some level which is determined by

        iy.12 h z-312 (12 +T sin (1 log  e+4) =  —1 (53)

Above this level that flow may be opposite to the main stream. 

   If h is finite and 1 is large, the flow near the surface has very high velocity and 

therefore very high shears. It is to be expected that this will lead to a breakdown into 
turbulence so that the solution, if it does exist, may be unstable. Stronger instability 

(overturning instability, after LONG 1955) may occur near the level where the flow has 
a negative velocity, and this means the existence of rotor-closed circulation. Although 
a rotor exists in a stable atmosphere, any disturbance will lead to some sort of mixing 
within the rotor until all the atmosphere has the same potential temperature. Static 
instability is produced in the rotor so that steady motion could not persist. In other 
words this theory can safely be applied only for small values of mountain height. 

   Criterion of overturning instability (after LONG 1955) is derived

min  [1  + h  z-312 (12 +-41)112 sin (1 log  c—A)  <0 (54)

Therefore we shall have more interest in only small h which is given by

                                                 egi'141  h  < (55) 

We note that the lower the Richardson number, the smaller the mountain height must 

be which will avoid overturning instability. 

   Next we shall investigate for finite b, in which case the solution is not given by a 
simple form. The problem of obtaining the information similar to the above is one of 
laborious computation. In many calculations the closed circulation near the mountain 

appears for large 1 and h. It must be remembered that only smaller values of h will 
eliminate these cells. Besides the rotor near the mountain, strong rotors often appear 
near the ground in the remote distance of the mountain lee side. 

   In this section we examine well developed lee-waves or rotors. In general there 

are an infinite number of lee wave lengths, and the ratio of wave length between ajoint 
lee-waves is approximately  e-vi  especially for large wave lengths. When 1 is large and 

b finite, the composed lee-waves have small amplitude of wave form on account of
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interference. They are apt to appear in large amplitude waves or rotors in the atmo-
sphere with strong shear. According to CORBY and WALLINGTON (1956) the other 
factors controlling the lee-wave amplitude are mountain size and shape , which are 
discussed in the previous section. Consequently we may conclude that the large am-

plitude lee-wave or rotor appears under the following  conditions  : Large  It, suitable 
width  b  =k--1- and strong wind shear or small  12. 

    According to SCORER (1949), the conditions of occurence of well developed lee-
waves are that the wind direction is almost constant with height up to a considerable 

height and that an upper layer of low value of  /2 is above a lower layer of high value 
of  /2. These results are in agreement with us. 

   Lastly in this section we shall add a few words on the effect of the upper boundary . 
It is of interest to consider the effect of introducing a rigid lid roughly as a tropopause , 
at height  z2 the solution of (8) is shown by 

                 K  (k, z)  =  I  „,(k z) —  Im(k
zz2))I _„,(k z) (56)                                       .(2 

where  I  „,(x) is the modified Bessel function of the first kind . When m is pure 
imaginary,  I  ,„(x) is conjugate to  I  _„,(x) and argument of  I  ,,(x) tends to zero as x increases

    Fig. 3. The differnce of argument of  modified  Bessel function of the  first kind . 
         Putting 

 /6.i(xi)=ect1-fl'ii and  .T6i(x2)—e6q+72i 
 12-74 is shown as a function of  xi; Lines of equal  7i=x2  /xl are entered as auxiliary lines.
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to infinity. For example, the difference 
in argument of  /8,(x) and  /_,i(x) is shown 

in Fig. 3. When this difference is integer 

times it, the value of x is the zero of  (56). 

The greatest zero varies very little when 

 z2/z=n changes from cc to 2, this value 
increases from 3.15 at  7?=  co to only 2.70 

at  n = 2. But when  7/  <  2, the variation 
in the value of the greatest zero becomes 

great and there is no zero for  n < 1.689. 
For the second zero, the variation with  n 

is greater than that of the greatest zero, 
and they have no zero when  i  <  2.850. 

This and several computations suggest 
that it would give a good approximation 

to the flow of an unbounded atmosphere

 Z 

km 
 10

5

0

Fig. 4.

 T.1  5  0  m/s  ec 

Models of wind used in this paper.

d atmosphere unless the lid b e very low.

6 Examples 

   In order to examine the airflow over the ridge with numerical examples, suitable 

values must be assigned to the constant parameter, L. 1 etc.. Fig. 4 is a graph of the 

wind profile used in this computation. Taking  13 1.4x  10-7 cm-1, the  following values 

are obtained.

 ticz-o 4.0  m/sec 2.0 
 1 2.96 5.91 

 Imi 2.92 5.89 
 • In this paper , for simplicity, the following values are assumed, 

 L  =  1  km 

 1  (:-1m1)=. 3, 6 and 10 

     First, we shall examine the flow for 1 =3. The largest  ei, 

  1.02 and others are 0.35, 0.12, 0.043  etc. So far as the  perturb 
 the amplitude of disturbances is  proportional to the mountain  h 

 vary with mountain width.  Accordin to CORBY and  WALLINGTO 

 value which excites the largest  amplitude lee-wave and it often  rE 
 which is mentioned in  §4. The  variation of lee-wave amplitude 

  is illustrated in Fig. 5. In a  discussion of the lee wave for the  1 
 amplitude is attained in the lower  layer and in the upper layer • 

  exponentially (see Fig. 6). The  waves for smaller k have  fin 
  surfaces, one for  k1, two for k2,  and so on. It is interesting 

  maximum amplitude in the upper  layer is smaller than that in  t: 
  of these longer waves often attain a greater amplitude in the  -ur 

  short waves even when their  amplitude is negligible in the lower

1.2 

9.86 

9.85

• for 1 =3 . The largest  eigen value of  Kai(k) is 
 Ac. So far as the  perturbation method, is used, 

 ortional to the mountain  height, and also it will 

 g to CORBY and  WALLINGTON (1956) b  =k---1 is the 
 ade lee-wave and it often  resembles the resonance 

 tion of lee-wave amplitude with mountain width 
 Dn of the lee wave for the  largest k0, a maximum 

 Ter and in the upper layer the amplitude falls off 
 ves for smaller k have  finite numbers of nodal 

 Ld so on. It is interesting to see here that the 
 Ter is smaller than that in  he lower layer. Many 

greater amplitude in the  pper layer than that of 
 de is negligible in the lower layer.
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   height is

of lee wave amplitudes with size of mountain,

kept constant, 

      k b  e-bk

 h=  1. The amplitude is given 
 K  zi(kn E)  
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Variation of amplitude with height, 
with its optimum-width ridge. 1=3.

 AmpLitude 

each lee-wave being 

But the sign for k1

associated 

is  reverse.
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   The variation of airflow with mountain height is shown in Figs. 7-9, where b has 

been taken as unit, nearly equal to  ko-1. The amplitude increases with height h. 
When the ridge is low,  h=0.20, the lee-waves appear as infinite wave trains on the lee 
side of the mountain. When h is increased to 0.35 there is one point at the ground 

under the wave crest near x  =16.2 at which the velocity is zero. With  h=0.50, the 
amplitude of lee waves is so large that a well-developed rotor appears with reversed 

flow at the ground. The condition of the existence of the rotor has been described in 
the previous section. It is shown in these figures that the disturbances die away with 
height in the upper layer and no disturbances can be detected at levels higher than 
10 km, even near the ridge. This contradicts the study of the two-layer model (SCORER 

1949) in which the amplitude of disturbances increases upward for a wide range of wave 
length. The cause of this discrepancy is the difference of the model. The solution for 

1= constant is given by the harmonic functions (42), whereas the solution in this model 
is represented by the modified Bessel function (10), which decreases with height but 

behaviour near the ground coincides with each other. One of the remarkable features 
of the airflow is the strong surface wind on the lee slope under lee-wave troughs. In 

Fig. 7 strong surface winds are found on the lee side x=1.5 and apart from the ridge, 
 x=7.3, 13.5 etc. The strong wind on the lee slope is often observed and this calcu-

lation may be applied in explaining this observation. 

   The main features of calculations for various b are revealed in Figs. 9-14 in which 

 h=0.5. Fig. 10 shows the flow over a very narrow mountain,  b  =0.1. The amplitudes 
of lee-waves are negligible and the motion involves mainly symmetrical elevation of the 

streamlines over the mountain. When b increases to 0.3 (Fig. 11) a wave with small 
amplitude appears in the lee side and, practically, it consists of only a single sine wave 
whose wave number is  27r  ko. The disturbances at levels heigher than 7 km are 

negligible. 

   Fig. 9 is an example for flow in resonance. The barrier is of the optimum width 
for exciting the shortest lee-wave and the wave developed to a remarkable amplitude 

becomes a rotor. The wave for k1=0.35 is found in the upper layer. 
   For the broad mountain (Figs. 10-12) the short wave disappears and the longer lee-

waves dominate, which often develope into rotors in the remote distance from the ridge. 
Then the disturbances in the upper layer may be shown to be with the considerable 
amplitude. 

   Next we shall examine 1=6. The zeros of  K,2(k) are 3.3, 1.8, 1.05, 0.64 etc.. The 
optimum width for the largest k is 0.3. Fig. 13 is an example of flow for b =0.3. Lee-

waves of small wave length appear in the lower  layer and some of wave crest develop 
into rotors. When b increases long wave increases its amplitude and disturbances 
extend to the upper layer. These flows may be seen in Fig. 14. 

   Lastly the flows for 1=10 are shown in Figs. 15-16. The zeros of  Ki,),(k) are 6.6, 
4.4, 3.2 etc. The ratio of wave length between ajoint lee-waves is about 0.73, then 

on account of the interference of such waves, clear lee-wave can hardly be found in 
these examples, except for a small b. For this example b ---- 1, the width is too large to
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Fig. 11. Stream lines calculated for a flow over a ridge.  1=3,
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 I

 x 

Fig. 15. Stream lines calculated for a stable atmospheric flow over a narrow ridge. 

 1=10,  h=0.5, b=1

excite definite lee-waves. It is interesting to note that the "S" shaped streamlines 

appear above the ridge. An aviator who crosses a mountian often encounters an 

extraordinary wind stream, especially a descending wind at the windward side of the 
ridge and an ascending wind at the lee side. Fig. 15 probably shows these airstreams. 

The flow for  b=10 resembles the former. I suppose that in the very stable atmosphere 
the mountain is apt to create a turbulent flow and steady solution is hardly applicable. 

The investigation of this possibility must be the subject of future research.

7 Conclusions 

   The present paper gives a satisfactory solution of the equation for two-dimensional 

flow over the ridge, in which the basic wind velocity varies with height. By the as-

sumption on choice of upper-boundary conditions we have a plausible solution which 

represents the occurrence of the lee-waves on the lee side of the mountain and the 

disturbances near the ridge. These conclusions consistent with those reached by other 

writers, are summarized as  follows  : 

   1. Non-wave disturbances die away over the ridge, both up- and down-wards. 

This is clearly seen only near the ridge. 

   2. On the downstream lee-waves are found, which have constant amplitudes. 

But it is often shown that the resultant wave is remarkable only near the ridge, on
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account of the interference of the waves. 

   3. Upward displacement reverses with height in some cases and often produces 

a closed streamline. 

   4. Lee-waves have their largest amplitude at some level and they die awy high 

up in the air. Their amplitude depends upon the character of the air stream and the 

shape of the ridge. Sometimes it develops into a rotor. 

 Acknowledgment  : The writer wishes to express this gratitude to Professor G. 

YAMAMOTO not only for his criticism, but also for his encouragement. Most of the 

numerical calculations were done by Mrs. T. TOGARI and Miss K. HAGA, to whom the 

author is most grateful.

                            References 

 CORBY,  G.A. and SAWYER, J.S., 1958  a  : The air flow over a ridge-the effects of the upper 
    boundary and high-level conditions. Quart.  J.R. Meteor, Soc., 84, 25-37. 

CORBY, G.A. and  SAWYER, J.S., 1958  b  : Airflow over  mountains  ; indeterminacy of solu-
    tion. Qurat. J. R. Meteor, Soc., 84, 284-285. 

CORBY, G.A. and WALLINGTON,  C.E.,  1956  ; Airflow over mountains; the lee-wave amplitude. 

    Quart. J. R. Meteor. Soc., 82, 266-274. 
D,YSON, F.J.  1960  : Stability of an idealized atmosphere. II. Zeros of the confluent 

   hypergeometric function. Phys. Fluids 3, 155-157. 
ELIASSEN, A. and PALM, E.  1954  : Inst. Weather and Climate Res. Norw,  Acad. Sci. Letter 

 Publ., No.  1, Cited by ELIASSEN, A. and  Ki..iNsciimiDT,  E.  ; Dynamic Meteorology,



138                              G. ONISHI 

    Handbuch d. Physik, Vol. 48,  p. 62. 1954. Springer-Verlag. 
 ERDEL1YI, A.  1953  : Higher Transcendental Functions, Vol. 2. 396 pp.  McGroaw-Hill Co., 

    New York. 
LAMB, H.  1945  : Hydrodynamics, 738 pp.  Dover Publications, New York. 
LONG, R.R.  1953  : Some aspects of the flow of stratified fluids. 1. A theoretical investiga-

    tion. Tellus, 5, 42-58. 
LONG,  R.R.  1955  : Some aspects of the flow of stratified fluids. 3. Continuous density 

    gradients. Tellus, 7,  341-357. 
LYRA, G.  1943: Theorie der stationaren  LeewellenstrOmung in freier Atmosphare. Zeit. 

    f. ang. Math. u. Mech., 23,  1-28. 
PALM, E.  1953  : On the formation of surface waves in a fluid flowing over a corrugated bed 

    and on the development of mountain waves. Astrophys, Norvegica, 5, No. 5. 61-130. 
PALM, E.  1958  : Airflow over  mountain  ; indeterminacy of solution. Quart. J. R. Meteor. 

 Soc., 84, 464-465. 
QUENEY, P.  1947  : Theory of perturbations in stratified currents with applications to air 

    flow over mountain barriers. Dept. of Meteor., Misc. Rep., No. 23, 81  pp. 
SCORER, R.S.  1949  :  Theory of waves in the  lee of mountains.  Qurat. J. R. Meteor. Soc., 

    75,  41-56. 
SCORER, R.S. 1951 : On the stability of stably-stratified shearing layers. Quart. J. R. 

    Meteor. Soc., 77, pp  76-84. 
SCORER R.S. 1958  a  : Airflow over  mountains  ; indeterminacy of solution. Quart.  J.R. 

    Meteor. Soc., 84,  182-183. 
SCORER, R.S. 1958  b  : Airflow over  mountains  ; indeterminacy of solution. Quart.  J.R. 

    Meteor. Soc., 84, 465-466. 
SCORER,  B.S. and  KLEIFORTH, H.  1959  : Theory of mountain waves of large amplitude. 

    Quart J.R. Meteor. Soc., 85, 131-143. 
WALLINGTON  C.E. and PORTNALL, J.  1958: A numerical study of the wavelength and 

    amplitude of lee-waves. Quart.  J.R. Meteor. Soc., 84, 38-45. 
WATSON, G.N.  1952  : A Treatise on the theory of Bessel functions, 2nd ed. Cambridge 

 Unviersity Press.


