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 Abstract 

             Normal mode waves formed by SH waves generated from a line source in 
       an elastic plate are investigated, including both steady state and transient cases. 
       A remark is made on the relationship between the ray solution and normal mode 

       solution, the former being derived by the saddle point method, the latter by residue 
       calculation. The results of steady state excitation show that there occurs resonance 

        at cut-off frequencies. In the case of error-functional pulse, the  variations of 
       relative amplitude and frequency with the time elapsed from the beginning of the 

       record are shown. The results show that the first antisymmetric mode has an 
       extremely large amplitude compared with other modes. For prescribed horizontal 

       distances, the motions due to the first two modes are calculated, when both the 
       source and the receiver lie in the median plane. From these results we see 
       that a superposition of the first few modes will give rather correct aspect of the 
       record except for the beginning of it. 

Introduction 

   Since the first discovery of Rayleigh waves over the surface of a semi-infinite 
elastic solid, and Love waves transmitted in a two-layered half space, a number of 
investigators have studied the theory of free surface waves for various cases of  hori-
zontally layered media. In such boundary value problems , when a simple harmonic 
motion is assumed, the eigenvalues are given by component wave numbers parallel to 
the boundary surfaces, and are denoted by  co/c„ where  co is the circular frequency ,  c,, 
the phase velocity. Although for a single prescribed frequency there is a set of  infinite 
numbers of phase velocity, only those with real values give propagation modes which 

are usually of seismological importance. The dispersive property is usually displayed 
in the form of dispersion curves in  c„—co or  c„ —T diagrams, where T is the period . 

   In so far as free waves are considered, it is impossible  to discuss the  absolute 
amplitudes of eigenmotions. Actually, it may be supposed that in each normal mode, 
the displacement amplitude excited by the initial disturbances not only varies with the 
frequency, but also differs according as the types and location of source. Thus , it is of 
importance to investigate the excitation function of eigenmotion which will be de-

termined by various factors. 
   In seismology, to identify the types and modes of recorded surface waves , we must 

have exact knowledge about the excitation function above mentioned and also of 

particular eigenmotions of a particle. In the case of shallow water explosion, C. L.
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PEKERIS (1948) first gave a very thorough theory of normal mode propagation in two 
and three layered liquids. 

   In this series of papers, an appropriate method for layered solids will be presented 
by taking up the simplest model, an infinite elastic plate bounded by two parallel 

planes. The problem of a typical  crustal structure characterized by two-layered 
half space may be treated in a similar manner, although the characteristic equation be-
comes much more complicated. 

   In the present paper, normal mode waves formed by SH waves from a line source 

are investigated, those which are formed by P and SV waves generated from certain 
types of source will be treated in the next papers. Although the first problem is 

particularly simple, the analysis given is very useful, for it gives us a clear insight into 
the  eigenmotions in stratified media. 

   The dispersion curves of SH normal mode waves in a plate have been studied by 

Y. SATO (1951). 

1 Formal Solution 

    Consider a homogeneous isotropic plate with uniform width  2H and infinite area. 

We choose the rectangular coordinates (x, y, z), so that z-axis is perpendicular to the 

plane  surfaces of the plate, and x, y-axes lie in the median plane. 
   The motion is supposed to be due to SH waves emanated cylindrically from the 

line source at  x=0, z=d, as shown in Fig.  I. Of course the motion is independent of 

y, and the displacement has only y component. 
   Let v be the displacement,  ,u, the rigidity, and p the density. The equation of 

motion is 

 v 1   D2  v   v,2  a42 

where  vs—I/yip is the velocity of S waves. 

If a simple harmonic motion with the time factor  eiwt is assumed, we have 

 (v2+  k2) v =  0  , 
where 

                                Iv  —                                                     v
s 

    Throughout this work, the plane wave solution will be used as a particular solution 

of the wave equations. Generally, if the elementary solution which satisfies the 
boundary conditions is found, the solution for the case of a point source can be de-

rived by integrating the elementary one with respect to two spherical angles, and the 

solution for a line source, with respect to a cylindrical angle. Therefore, if we can 
derive the elementary solution, the generalized solution will be obtained automatically 
by performing to the elementary one the integral operator which is adequate to the 

 type of source. 
    First, we express the initial displacement  vo due to the source by plane waves of
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                            the form 

                                           vo-ik[xsinw+ izcos w](1) 

 2Hx  •/                             where w indicates, if it is real, the angle made by 

 1)  id the z-axis and the wave-normal of SH waves, and 

 

_  ,t 

                              may take complex values in the course of genera- 

  //4/7///46////////4lization to the case of a line source. Another 
                    Fig.  1. displacement waves representing a perturbation 

                             caused by the presence of plane boundaries may 

be expressed by 

 vi  [A  cosw  +B  eihrcoste]  e--ikx  sin  tv,                                          (2) 

where A and B are constants to be determined by the boundary conditions. When 
w takes a real value, (2) may be considered to represent a pair of upgoing and 
downgoing waves. 

    The boundary conditions that the boundary planes are free from stress are written 
as 

 P a
z3V2 — 0 at zH , (3) 

where 

 7)  vo+vi. (4) 

Substituting (1) and (2) into (3), we have the simultaneous equations for A and  B . 

 A  —Be2ikH  cosle)  e-  ikdcosw 

 A  —  "s  =  e-ik  (2  H±d)cosw 

Thus, 

                   A = 

                                   

• {e-ikdcosw+ e- ik (2 H-d)cos w} 
                         2 sin (2HIcos w) 

                                         (5) 
                                 feikdcosw+ e-ik(2H-Fd)cosw} 

  B   

 2  sin  (2  kH  cos  w) 

Substituting (5) into (2), using (4) and simplifying the results, we obtain the elementary 
solution 

 v2  {cos [k (z+d) cos w]  +  cos [k  ([z  —d  I —2 H) cos w]}w .(6) 

       = 

 2  sin  (2  k  H  cos  w) 

   To generalize the problem to the case of a line source, we must perform to (1) 
and (6) the operation (cf. Appendix 1) 

 ^k  H  r/2-Fiw  d  w (7) 
 Tt 

 -.c/2- ioo 

From (1), the displacement  vo due to the initial disturbances can be written
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 k H  O/  2+k°  ikrx  Sin  w+ z - cosw]  d  wH H 
0(2)(k    Vo e L(8) 

        where 
 r  /  x2  +  (z  —  d)  2 (9) 

          When  h  7 is large, (8) may be approximated by the asymptotic formula 

                            vo 2 e- ikr+o 4 i  (10)  n-  (r  /  H) 

       which represents the outgoing waves from a line source, the amplitude of which is 
       independent of the frequency. 

          The solution v corresponding to the line source (8) can be obtained from (6) as 

       follows: 

   ,r/2+tico 
      v 1/ H [cos  {k  (z  d) cos  w}  +  cos  {k  (lz  —2 H) cos  w}]  eikx  sin  w d  w 

                               7c/2ico  sin  (2  k  H  cos  W) 

                   - 

                                                (11) 
                                 ico 

             H_+ sin (a'a") cos  a  cos  a'  cos  a" +sin a sin a' sin  a"e_sindw
71' -n/2-ioo sin  a COS  a 

                                                       (11)' 

       where  a=  k H cos  w,  a'=  k z cos  w,  a"  =  k d cos w and the upper sign is to be used if 

 z>d, and the lower if z<d. 
          In Fig. 2 is shown the path of 

       integration  L, in which a small indenta-

       tion is made to the left of the origin for 
 convenience sake. 

                                                                                                        _ 

          The integrand in (11) has poles27Cne 
       determined by the relation 

             sin  (2  k  H  cos  w)  =  0  . (12) 

          It is to be noticed that no other • 

        singular points are present in this Fig. 2. Original path of integration L, a 
        problem, but generally, in layered media particular path L', and location 

        in which elastic bodily waves with variousof poles in the caseY-6. 

        velocities can be transmitted, there are usually branch points requiring a considera-
        tion of Riemann surface and branch line integrals. 

           There seem to be two approaches to the evaluation of the integral in (11) or 

       (11)'.  One method lies in deforming the contour so that the resultant integration 
       consists of a residue integration around the poles. The other approach is the so-

       called saddle point method, which consists of deforming the original path of integration 
        in such a way that the resultant contour contains the path of steepest descent, and the 

       main part of the integral can be obtained from the immediate neighbourhood of the
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saddle point. This method is, of course, applicable only when certain parameters in 
the exponent are relatively large. 

    The first method gives the normal mode solution (cf.  PEKERIS (1948)), the second 
the ray solution, each solution being available according as the nature of the 

problem. The two types of solution will be discussed separately, then the relation be-
tween them will be considered. But, beforehand, the location of the poles in the w-

plane, where we put  w=e+i  B, must be investigated. 

2 Poles, Phase Velocity, and Group Velocity 

    Since w represents the angle made by the wave-normal and the vertical if it is 
real, we may put 

 sin  w  —  -75  , (13) 

where c is the phase velocity. It may be considered that, for a given value of fre-

quency, the poles specify the eigenvalues sin  w„ which are related to the phase velocity 
by the equation  (13). 

    A concept of slight absorption of a medium teaches us that we may always write 

 sin  w  =  a—ib  , (14) 

where  a and b are positive real, if the time factor be given by  ei't. Paying attention 

to (14), the required roots of the equation (12) are obtained as follows; 

 w  =  0  , 0 <0<7-r                                             2  ' 

 -{
)  =  sin  0  , (15) 

 2   sec  0  . 

 w  =  —i  6  ,  6  >  0 

 =  sinh  6  ,  (16) 

 12 

 V-2Tt sechO, 

where  y=kH,  n=  0,  1,  2,  3,   (17) 

The poles represented by (15) are situated on the part of the real axis  0_0�7-112, and 
correspond to the propagation modes. On the other hand, the poles expressed by (16) 

lie on the negative imaginary axis, and give the attenuation modes, the phase velocities 
being positive imaginary. We have no complex poles in this problem. In both 
relations (15) and (16), the set of even values of n is derived from the equation 

sin (k H cos  w)=-0, while that of odd values of n, from the equation cos  (k  H cos w) =0. 
As can be seen from (11)', the former gives the symmetric and the latter the antisym-
metric motion with respect to the median plane,  z=0. 

    As is well known, if the phase velocity is a function of the frequency, the energy
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of shock-type waves is transmitted with the group velocity U which is formally defined 

as U d  w  /  d (k sin w). In our case this can be expressed for the propagation mode, 

 U   d                         sd  vsd (sec 0)                                  sin. (18)  d  (k  sin  w) d d  (tan  0) 

Similarly, we have for the attenuation mode 

 U—iv,  sinh  . (19) 
If we put 

 U  U(20) 
 v s 

it follows that 
       U=_-_(21) 

   We note that the group velocity defined by (18) represents the speed of energy 
transportation in the simple harmonic motion as well as in a transient motion. (M.A. 

 BIOT  (1958)). 

   The dispersive properties of eigen-  0-0 
      '-5 

motion as given by (15), (16) and1;/ 

(21) are shown in Fig. 3, in the o,„4•6  10  12 
form ofF)—yor Udiagram. TheLU n=a F2 
upper part 0<-f),  U<1 of the figure    r represents the propagation modes, and4 
the lower part, where the ordinates are 6 

taken as if), i U instead of --V,—U , 

corresponds to the attenuation mode.8 
It can be seen that for any value of  y  /0 

there is a set of infinite values for  T), 
and also there is a set of infinite values 

for  y corresponding to a given value of Fig. 3. Dispersion curves for SH-type normal                                                       mode waves in an  elastic plate. 
 v. The fact shows that general motion Symmetric modes are represented 

due to a simple harmonic source can beby  n-0, 2, 4,  and antisymmetric                                                       ones are by  n—1, 3, 5,   
represented by superposing infinite 

eigenmotions, and particularly, the propagated wave motion can be expressed with a 
set of finite  eigenmotions of propagation mode. 

3 Normal Mode Solution 

   To evaluate the integral in (11)', the original path of integration must be de-
formed so as to make a closed path. In view of the fact that the integrand is an odd 
function of cos  w, it is convenient to use a particular  path.  L', as shown in Fig. 2,  which 
extends from  vo--i00 to  w  —7t+  i  co, and is drawn in such a way that the two parts of 

the path halved at the point M  (0  —7t/2,  =0) are mutually obtained by twice reflec-
tions with respect to the two lines  0  —7r  /2 and  —0. As with the case of the original 

path  L, we make a small indentation around  M, which is ultimately made to infinitely 
small after the calculation of residues,
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    At the same distances from M upward and downward along the path  L', the 
function cos w has the same absolute value, but with the opposite signs, so that the inte-

gral along the path L' vanishes. Also the integral vanishes along the lines joining the 
paths L and L' at infinite distances. Thus, the integral in (11') reduces to residue 

 integrals only. It is to be noted that the first term in the integrand has no normal 
 mode. From the residue calculation it follows that; 

 vS+va+VS+Va (22) 

 v,'1   = 2 Ecos (mcos (inn-d), 
 T1Sm761n 1 

                                            (23) 
                  T)„.„ = sin Om ,  y =  11171"  sec  8,  ,  for  v 

 —  —I  sinh  Om,  y—vi  n  sech  6„„  for  Ds 

 —  0  ,  1,  2,   

       r ) a}   = 2 Esin  I  (m—i)it21 sin {(m-2)7t67}    11  
  Da  7),,,V 

                                           (24) 
 71,1z  = sin  Om = sec  0m  , for  va 

 =  —i sinh  0,„  y =  i)  n sech  8,n for  Va 

 m=  1,  2,  3,   

where  =  x  ,  ,-----zIH ,  ern—  • (25) 

 Subscripts s and a show respectively the symmetric and antisymmetric motion with 
 respect to the plane  z  =0, and  vs,  vc, represent the propagation modes,  Vs,  Vt, the at-

 enuation modes. The symmetric motion expressed by (23) corresponds to the case 
 n=2  m in the relations (15) and (16), the antisymmetric motion (24) to the case 
 n=2  m-1 in the same relations. The summation must be carried out for all the pos-
 sible modes determined from a prescribed frequency. 

    It is to be noted that (23) and (24) may be considered as the series expansion 
 of the displacement in terms of normalized orthogonal eigenfunctions. The reciprocity 

 relation between the source and receiver may be suggested from a general property of 
 Green's function, by use of which the problem can be solved otherwise easily. 

     In the sequel, we will restrict the problem to the motion at relatively large dis-
 tances from the epicenter. Then, the attenuation modes need not to be considered, 

 since these modes are damped out exponentially with the horizontal distance. We 
 will denote by  Xm and  „7, the symmetric and antisymmetric types of propagated 

  mode, respectively. 
     To discuss the amplitude it is convenient to write it in terms of a paramenter 0 

 as follows; 

                 1-71= 2  2-  E  IQ  3,17ld,0(wt                                           (26) 

                                                                                                      , 

                      LVa  n m  Q12,111  (z, d,  Om)
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                      1/cos Om-                              cos (m,71'2.)  cos (m 7Z' d)Q s , m— -1/2  m,  sin  Om 
                                           (27) 

                 17,21/mc_os1.8s,i„n 0,-„ sin i (m— 07-/-•tri sin  {  (m-1) ell ,  Qa,m 

where  Q,,, and  Qa,„, represent the excitation function of respective modes for steady 
state waves. They consist of three factors, that is, (1) the factor due to the location of 
receiver cos  (rivr2), sin  {(m  —  1/2)  7r2}, (2) the factor due to the location of source 
cos  (m7rcl), sin  {(m-1/2)  7rci} , (3) the relative amplitude of each mode,  -Vcos 0,,/{1/2m  sin. 

 Om,  -1/  cos  On,  Ai/  2  rn  —  1 sin  Om]. The factors (1) and (2) vary with the mode number m, 
but are independent of the frequency. Whereas, the relative amplitude of each mode 
varies with both the frequency and the mode number through the relations  

1  1/cos0„,  _ -V71-forS ,i+                 V2m-  sin 0,„1/?2-4  ii22  7t2 
                                           (28)              1   1/cos  0,„ _  1/ 7-r               -t/ 2 m____.1  sin  dmVy2 — (2 m-1)z7-0,for S„,-  . 

Since the radiation due to the line source (10) is uniform in all direction, and is also 
independent of the frequency, the effect due to the source is not introduced. 

   The factors (1) and (2) are respectively shown in Figs. 4 and 5, and the relative 
amplitude (3) in Fig. 6. It is seen from Fig. 4 that the symmetric and the antisym-
metric motions have respectively a  loop in the median plane, a node on the boundary 
surfaces, and both have always  loops on the boundary planes. Fig. 6 shows that re-
sonance occurs at cut-off frequencies, and for a prescribed frequency, the amplitude 
increases with the mode number although the differences are small except near the cut- 

    z,,E,,cos(M7 Gi)  -1.0 0  i0 0 /.0  I Sin{(m--2L)rcd)  E+ 
               1.0 „ 

                                        / ''., --------                                                                                                                , 
. Ll m=0kg 

-4.1,, 
                              ,',.....                                                            zz;               / 77 \2 it,,kik ,,IPA\ ..._\\,,                                                                       , °pi °/ „-- 
      o 1.0 

                              ,____Nr, M.„r•hill     • _L0._,
.0  -40 10 -40 0 40\ 

  -----cos (rwrZ)-s,ni(m-iptZ} \\‘ 
Fig. 4. Effect of the location of observing1. 

       point, or amplitude distribution. Fig. 5. Effect of the location of source. 
 EI  :  cos  (m,  7t  cl) 

 ,21tt  : sin  {(m—  i)  7C  3}
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 6--
                                                          5--  
-  Z,  F,  Z,  

3  -                                                  
2 - 

 a 6  8  /0  20  JO 

                             Fig. 6. Relative amplitude 
 1  N/conOm              E

;;_zAs 14./cos Om-A  a                        ?n,--sin  omV2m-1  sin  On; • 

 off frequencies. It is shown that the relative amplitude of  E.,,k becomes zero. 

4 Ray Solution 

    On the path L in Fig. 2, the imaginary part of cos w is not zero, so that the 
 absolute value of  e-i 4k H cos w is less than unity.  Therefore, in the expression  (11), 

the factor  1/sin (2 k H cos w) can be expanded in the power series of  e-i4kII cos I V 
thus have a different expression for the displacement as follows; 

   Tr/2+i  oo 
 V  =  1/k H                                  E e— ik [pc sin w+ C4n11—(H -1)--1-(11—d)) cos w] 

                       - re/2  —icoLn—° 

                         ^ E  e—  [x  sin  tv+  {4  H  (I/  2)  (H  d))  cos  v.)] 
 M-1 

                         ^ E  e-ik  [x  sin  w+  (4  p  (H  —  z)—  (H  —  d))  cos  w] 
 p-1 

                          ^Ee—ik [3 sin up-I- (4 qH— kH—E)+(H—d)) coszed dw(29) 
                                    q=0 

 If we put 

 R„,  sin  0„  =  x  R„,  sin  0„,=  x 

 R cos  0„ 4 n  H+  (H  —  z)  (H  —  d)  ,  R ccs  0  „, = 4 m  H  (H  —  z)  —  (H  d)  , 
                                            (30) 

 &  sin  Op  X  R,  sin  0,  =  x 

 R  p cos  Bp  = 4  p  H+  —z)—  (H  —  d)  ,  R  q  cos  0q = 4 q  H—  (H  z)  (H  d)  , 

 (1,29) can be written as 
  7c/2 +i co 

 vHrE e-ih cos (w—O„) ^ e  kRm  cos  (w-em) 
 7r "4-11  mtic~ 

                                               co 

                          E  e—ikRpcos(w—Op) ^ E  e—ikRqcos(w—Og)  dw (31) 
 P-1 

    If we assume that  kR„,  kR„,,  kRp,  kR  q))1, the method of saddle point can give
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approximate values for the integrals in (31). 
    Consider, for example, the integral 

                                    v/2+i oo 
                           =  e-ikR„coS(w-9,i)  d  w                                            (32) 

 /2-ac. 

The saddle point becomes  w=0,,, from the 
 6- relation  (a/a w){cos (w—e„)}  — 0, and thee„-- 

path of steepest descent is determined 
from the equation  Im  [—ikR0 cos  (w-0„)] Ls 

 const=—kR0, to be cos  (60-0„) cosh  6 
= 1. In Fig. 7 are shown the saddle °

co5enj7 9 point S(w= O„),thepath of steepest 
descent  L„ and the original path of 
integration L. Convergency of the in-
tegral along Ls is secured by the relation                                                                                                      --en-- 
Im [cos  (w  —04= sin  (0  —On) sinh <  0  . Fig. 7. Saddle point S, and the path of 

                                                         steepest descent  Ls.    I
n the vicinity of the saddle point, 

we may put  w=  07,-1-p  et", and the integral (32) can be evaluated approximately 
as 

 eltkii-tikR,--  (1/2)  kRo2 d p = 27r e-ik RyriLir/4 i                                           (33) 
 k  R„• 

   By virtue of (32), an approximate value for (31) becomes 

                 - tiltR
e-ikRq v/T-et/4 .0 e-ike               E  E  (34)   Y  Lnr--01/R7,/HR777/Rp—iRpIHRIIH]• 

   Referring to the relations (30), we can identify the respective terms under the 
four summing notations in (34), with the direct or reflected bodily waves. Obviously, 

          111/Pr7:7Wk                                                                       m=2 

                                            n-/ 

               -ml 

                                                      V4 
\  P=0 g2 

 P  -1111r 

         A 

                    Fig. 8. Ray paths of some  reflected waves  (34).
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the reflection coefficient at the free surfaces is unity. Some ray paths are indicated in 
Fig. 8. In (30),  R„,  R,„,  Rp,  R, represent the distances of the ray path of respective 

waves, and  O,  ,  Om,  Op,  Op the angles between the rays and the vertical. 

5 Relation between Normal Mode Solution and Ray Solution 

    In the normal mode solution (26), the summation is taken over m, which implies 
the mode number, i.e. a number showing the order in series of decreasing eigenvalues 

 -
7)„, for a prescribed frequency. (Fig. 3) On the other hand, the ray solution indicates 
the summation over the numbers of reflection of rays at a boundary surface. (Fig. 8) 
Although the physical meaning of the summation indexes are different from each other, 
it can be shown that the normal mode solution is derived directly from the ray solution 

if the frequency is relatively large. 

    Returning to (29), if the summation indexes of both the second and third sums 
are replaced by the negative numbers, and the same letter  11, is used in each sum, we 

have the formula, 

  7r/2-1-co 
  v1/k re- k[x sin w+(e+f) cos w] E +e-i k [a; sin w — (e+ f)cos v]  E 

 7r J  n=0  n -1                        -fr/2-ioc, 

 e-  il<x  sin  w-  (e+  f)cos E  ei  +e  -ik[xsinw-(e-f)cosre]  E  e-iny  dw (35) 
 n=1  n=0 

where 

 e  ---z,  f  —d  ,  y  =  4  k  II  cos  w (36) 

Using the Poisson sum-formula (cf. MORSE and FESHBACH (1953)), we can write 

 E  e-inv  /  27-t F(2m7r)                                           (37)  n-0 y m y 

where F  (my) is the Fourier  transform of f  e-  lin'. We have the relation 

     F (v y)   1/V 2f (y T)ydrr _= f e-i,(72v+7)d T. (38)                                       27r 

At any point on the path L in Fig. 2, Re (cos w) is not small, so that, if  p is large, Re (y) 

becomes relatively large. Thus the integral in (38) may be written formally as 

 2  7r  8 (y2  v+  y), where  8 is the delta function. Accordingly, one obtains 

                 F (2  m7riy) =  -V 2  Tc y  8 (2 m  7r  +  y)  . (39) 

Substituting (39) into (37) yields 

 E  e-i")) = 2  7r  E  8 (2 m  71-+  7)  • (40)  n=0  m  =  co 

Similarly, one obtains 

 e-i"Y  =  27r  E  (2  m  7-t-y)  . (41) 
 Th-1  m



            NORMAL MODE WAVES IN AN ELASTIC PLATE (1)  55 

   Substituting (40) and (41) into (35), it follows that 

 co 
 7e/2+  i  co- 

   V  =  4 E-1/y7 J[8 (2 m77.+  y)  cos  (k  e  cos  w) e-ik [x snnw+f cosw] 
           m=-co --g/2-  i  co 

 H-^  (2  m  7r— y) cos  (k e cos w)  e -ik[xsi"-f"sw]d w .           1(42) 
   Since no singular point is present in the integrand in (42), the path L may be 

shifted to the right by an amount of  7-r/2. Then (42)  becomes 

 V =  E  f -Vy—8 (2m+y) e—ikf "sw+8(2m—y) eikf "s wi cos (k e cosw) ei" sin w d  w  . 
       m-----c° --ico 

                                           (43) 
If we put 2 m  7-r±  y= X, where + sign is to be used in the first term of the integrand, 

 — sign in the second, (43) is transformed as 

                                   co 

       v _icos  (k  f  cos  w) cos  (k  e  cos  w)2, f [ 28_(X) d Xeikxsin W                                           (44)       111,----=— co-Vysin w . 

Using the relation 
                                                                oc, 

 f  f  (X)  8 (X) d  X= f  (0)  , (45) 
we have from (44) 

                      E"' V= E
1/y.C,   cos (g k e) cos (g k f) e-11"^/i-g2(46) 

                                          , 

 m 0V77V1— g2 

where  g  =  mm /2  12  k  II  ,  en,  —  2  ,  If  m  *  0  ,  en,  =  1  ,  if  m  =  0  . 

By virtue of the relation (15), it follows that 

  V  =  Vs+Va 

 vs = 2  2  i   -Vcos  0,,                              cos (m  7r  2) cos (m  7r  d)  e-iin  7-t  tan  Omx 
         7t  tn=0  1/2  m  sin  m0 

       ,coVcos O                    ---
,-  va ..-=2-1/L'E  sin [ (m—I\ 77'21 sin f (m—Jon,di e_i (rn-1/2).ittan 0„,x 

          7-t.-11/2m-1 sin om 

                                          (47) 
   The expression (47) coincides with that of the normal mode solution (26), pro-

vided only that the summation in the latter is carried out for all the normal modes . 
Since this situation may be realized when  ))- is large, it may be said that the normal 
mode solution can be derived from the ray path solution if the frequency is large. Of 
course, when  y is not large, the approximation by the saddle point method becomes in-

accurate, and the equivalency of the two kinds of solution is no more valid. 

6 Aperiodic Solution 

   In the preceding sections we have obtained the steady state solution due to a
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line source with the time factor  ei't  . Now we will discuss an aperiodic case in which 

the primary waves are shock type. Generally, if the time variation of the displace-

ment due to primary waves is given by the function 

 f  (t) — 1  IF (6)) d, (48)                               1/  2rt'  co 

where  F(0)) is the Fourier transform of  f(t), then the aperiodic solution corresponding 
to (26)  is given by 

 1   F  (0))  v  d  . (49) 
 1/2  71"  _co 

We will consider the case in which  f(t) is given by 

 f  e-12/2a2. (50) 

where a is a parameter to specify the time interval in which an appreciable amount of 
displacement occurs. 

    In view of the expression of the initial displacement (10), it is convenient to use, 

instead of (50), the function 

 f  (t)  e—{2/2a2—rs14i (51) 

Since the Fourier transform of  f(t) is 

                 F  (0))  = a  e—a2w2/2 (52) 

the initial displacement  V0 for the aperiodic case is obtained from (49) and (52), as 
follows; 

 V  1     =fa e—a2co2/2—•r/4ii[   

                                   d 

   27-t (7  7  H) 

    = a  j  2 Re  f e_ a2(.02/2 —ir/4 2  eiwt-ikr-Fit14til= 2  e-(t-fivs) 2/2 a2 
   7T.(ilH)7-r  (1111) 

                                          (53) 

    The calculation of (53) shows that the aperiodic source can be derived by  per-

forming the operation 

                       a  I/  2  Ref  e—a2  <02/2  —7r/4i  d  w  (54) 

 0 

 to the expressions for a simple harmonic source. Accordingly, the same operation 

 yields the aperiodic solutions  V  „  V  a as 

                    Va 
                          aRe .1ca2o2/2 —,r/4i1 vs}                        d. (55) 

 va 

 If we use  non-dimensional quantities, (55) can be written
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 Vs 2 i/  2ar1Gsi                                            (56)  { VV 71- (;,,::(1)\ J 

                                                

iG 
                               )0l„J 

 1Gsi 1  r  cos  (m7t) cos  (m,  n-  8-02)2/2-7t/  4i  ,                                            (57)  [Gal ^yvLin  (m—i) 77'21 sin {(m—17)ct} 

 f(r,75,1,  .3)  =  (7  t-7  X)  =  (7  t—e  -g), (58)  

t  oHyvs)  ,  a  —  al(11/vs)  =   (59) 

where the subscripts m in  '572f  in are omitted hereafter. 
   When we consider the case  x,  t >>  1, the integral in (56) can be evaluated ap-

proximately by the method of stationary phase. A contribution to the integral from 
the immediate neighbourhood of the stationary point of the function f can give 
approximate value of the integral, since the contributions from other parts of the path 
are cancelled by interference. (cf. PEKERIS (1948)). 

   The stationary point  70 of the function f is determined from the relation 

               d f                                           (60) 
        dy  d 

The function f can be expanded in power series in the vicinity of the stationary point as 

      f(Y,tm             e—(&) x/io— -6-CO XU3— 214(Fo)(61) 

where  u=y—yo, and the dots over  6 indicate successive differentiation with respect to 
 7. The suffixed factors are to be evaluated at  y  yo. If the slowly varying terms 

 Gs, Ga are approximated by their values at  yo, and are taken out from the 
integrand, it follows that, 

{V 51= 22  a  z Re{fGsi  ei(701_10                                      8-1/2 (ott2+1/370u3+1/121730—  ) g d u 1V
a1Vm[Gai 

   = 2  2  _Ft  z Re{Gs}_lox) 27t(1+ if _5(F0)2 (FO) jx0(_1))         UX2  7tmGal4-                                        (0)38(U22 
                                          (62) 

where + sign is to be used  if  <  0, and  — sign if  > 0. In our case, can be cal-
culated as 

                     d2d2 (tan6+)                                            (63)                     — 
d  y2  d  (sec  0)2C0t3 0 . 

which is always negative, so that + sign must be used. 
   Taking the first term in the bracketed one following  e"4i in (62), and retaining 

the second as a correction term, we have 

Vs  =  2 2 a__,1 _rapo)2/2fcos  (m  rt  2) cos (Ind)                                         e  V-1/6{sin{(m—fl71'21sin{(m— i)7t dcos (y0  t 0  T)} 
                                           (64)
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    The condition of the validity of this approximation is expressed by 

                1 —5  (Z,)24_ (70) < 1  . (65) 
                24'  (

0)  3  8  (  2 

The condition (65) means that (64) is valid when the horizontal distance of the re-
ceiver is relatively large, and the time is sufficiently removed from that which is as-

sociated with the maximum value U  =1 of the group velocity. 
    The analysis above given is summarized as follows; in the case of shock-type waves, 

principal energy is transmitted with the group velocity, and for specified values of 
    and  i, the approximate value of the displacement is given by (64), and this ex-

pression is characterized by the frequency which corresponds to the group velocity 
determined from the relation (60). 

    The parametric representation of (64) is given by 

          4V 2-a i/sin 0         =0  e-1/2 (am ir sec 00)2 

               s 

               X  m 1/2 M cos°, 

          • cos  (in  rt cos (Ind) cos [sin 0 01 —in .7etan 0 03-c] 

                           1/Sin00  6-1/2 (a (in—1/2) 7r sec 00)2       V41/2 a 
                         znt—icosO, 

         • sin  {(m—i)  n  2} sin  {(m-1-)  n  67} cos [sin  8ot  (m—  7r tan  0  „xi (66) 

This expression is useful for numerical calculation. The condition (65) can be written 
also in terms of  0. For this purpose, we write 

                         d3 (tan 0)3 cos4 0 
        =  — 

 d V; d (sec 0)3  —  sin5 0 

                        I  (67)  d4 d4 (tan 0) —_3  (cos'B+4  cos5  0) 
 d  d  (sec  0)  4  sin'  0 

Substitution of (63) and (67) into (65) gives 

                       tan 0 <(68)                                                          -3- 

                                           If this condition is violated,          

Ie ((;,TV tan 0 or I) must be very large. But 
 0.3 in this case, the integrand in (56) 
                                           becomes very small on account of 

    athe factor a e- (5      co,')2/2, so that this 

 

0  2 

                                           case needs not to be considered. 

 a  / Thus, the calculation of Airy phase 
                                               becomes unnecessary. Figs. 9, a, 

                                          b, c. show the variation of relative 

 o                   

6  0  /0 20  29 60 60  /00 

                                           amplitudes  13,  Uta of first few modes 

         Fig. 9, a. with  y  0,
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       Fig. 9, b. Fig. 9, c. 

                Fig. 9. Relative amplitude in the case of shock-type waves. 

where 

            ifsin 0, _1/2 r am sec Pop eli/Si11Bo - 1/2ra (in— 1/2)sec610]2           s —eeL 
         114  cos  0  0 -  2142—  1  cos  00 

                                                (1,69) 

and  yo is the frequency satisfying the relation  ET1=.fti. The inserted small figure in 
 Fig. 9,a represents the error-functional pulse from the source. Fig. 9, a corresponds 

to the most sharp pulse from the source, and Figs. 9, b and c correspond to less sharp 

pulses in order. As the amplitude of  Xo always vanishes, this mode is omitted. In 
Figs. 10 and 11 are shown respectively the variation of amplitudes  as,  ot„, and the 
frequency  yo, with the factor  (t—to)  /to, where  to is given by  x  /vs. The behaviours of the 

 curves in Fig. 11 are not changed for any value of  a. 
    In Fig. 12 are shown the motions due to the first two modes when the source and 

 the receiver lie in the median plane  (2=  el= 0), the horizontal distances of the receiver 

                                 -  

-  005 

                          03 

 02  --

        1  I                                                     

• F; 

 r17'  r02  0 

                Fig. 10. Variation of the relative amplitudes  ois and  aa , with 
 (V-10)/t0, where to---.x/v5.
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                                        Fig. 12, d. 
    Fig.  12. Calculated records for and E;H, when both the source and receiver lie in 

             the median plane. Figs. 12, a, b correspond to  X-5, Figs. 12, c, d to  g=10. 

being  X=5 and 10. These figures show that the normal mode solution is inadequate for 
the precise prediction of the first arrival, but at later stages, a superposition of the first 
few modes may provides rather correct aspect of the record. 

7  Concluding Remarks 

   In the case of simple harmonic motion,  there occurs resonance at cut-off  fre-

quencies, as shown in Fig. 6. But, when we assume  a source which radiates waves of 
varied amplitude in azimuthal directions, a new factor in the relative amplitude will 
be introduced, and there might be cases where the resonance above mentioned dis-
appears. 

   In shock-type waves, the relative amplitude becomes the largest in  X mode, 

which suggests the existence of predominant antisymmetric motion. 
   In the earlier stage of the record, especially at the beginning of it, the superposition 

of component motions due to respective modes becomes practically impossible  owing 
to the ever increasing frequency, so that we must resort to the ray solution. But, in 

later stages, since the relative amplitude decreases considerably with increasing' mode 
number, a superposition of first few modes may provides rather good aspect of the 
record. 

   If the formula (35), from which originates the ray solution, is obtained , the 
normal mode solution can be found directly from this formula when the frequency is re-

latively large. This result may be useful for the problems of other layered  media, in
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which the formula equivalent to (35) can easily be constructed. 

                            Appendix 

1. An Integral Representation of I I,,(2) (kr). 

    The Hankel function of the second kind and zeroth order can be written 

             Io(2)= ,e_izcoshw, dze),(1)                       i 
 co+Tri2  i 

provided that  larg  z  I  <n/2 (cf. WATSON (1922)) 
    Putting  7.21  —i(w  —  0) in (1), we have 

                                          7e/2+ (9 iCO 

             HO(2) (z)fe- i 2 cos (w -e) d w (2) 
                                     7r  —  fr/2 

If we put w p+i q, the condition of convergency, [cos  (w-0)] <0 can be expressed 
by 

 q  >  0  ,  +  0  >  p  >  0  (3) 

 q  <  0  ,  0  >  > 

Since the integrand in (2) has no singular point, the path may be shifted to the left by 
an amount  0, so that 

 g/2±  i  op 
 H0(2) (z)  X  f  e_  cos  _  e)  d  w (4) 

 ra —  7r/2—  oo 

    In this expression, the convergency of the  integral is secured by the relation (3). 
    If we put 

 z  kr,  r  sin  0  —x,  coe  —1z—  di (5) 
it follows that 

 7r/2+i  oo 
 HO  (2)  (k  —1  e—  e  sin  —  d  'cos d w (6) 

 7r  -  i 

This expression may be considered to be a superposition of plane waves. 
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