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Abstract

It is stated that the existence of the systematic difference of the velocity
correlation functions due to meteorological conditions should not be discussed
without consideration of their statistical errors, In the present paper, the
probability distribution of the auto-correlation function obtained from the velocity
luctuation within a finile time interval is calculated for a model fuctuation.

1 Introduction

It seems that there are variations of the statistical propertics of the turbulent
velocity with meteorological conditions in the atmosphere. For cxample, given a
long time scries of observed data of the velocity fluctuation, and if we calculate the
values of the auto-correlation function of velocity from the data of a finite time
interval which is a part of the given time interval, we may perhaps find that the values
differ according as the position of the part in the whole time interval. These variations
of the statistical properties of the turbulent velocity in the atmosphere obtained from
finite numbers of data cannot simply be attributed to inhomogeneity of the atmospheric
conditions, since the statistical errors due to the use of limited numbers of data may
inevitably obscure the results of caleulation. Therefore, it is necessary to evaluate
the dispersion of the statistical properties of the turbulent wvelocity composed of
finite numbers of data in the case of homogeneous turbulence. Then the variations
that exceed the statistical probable errors may be said to be due to inhomogeneity of
the atmospheric conditions.

In the present paper, we evaluate the probability distribution of velocity correla-
tion function obtained from the values of the velocity within a finite time interval
under a statistically stationary condition.

2 A Model of the Velocity Fluctuations

We shall deal with the v riations of one component of velocity with time. To
find the probability distribution of the auto-correlation function obtained from the
velocity fluctuation within a finite time interval, we must know, for instance, the sto-
chastic relation of the velocity at any two times (Le. the joint-probability density
function), rather than the velocity correlation function. The absence, at present, of
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any available representation obliges us to imagine a model of the velocity fluctuation
which seems to be relevant to our problem. We shall assume that the turbulent
velocity is statistically stationary, and define velocity « as the deviation from the mean
velocity for an infinite time interval.

The joint-probability density P(uy,, uy,) e, ”
of velocity at any two instances {;, { will G%~
have non-zero values only near a straight line ot
=, in the (4, {,) plane for f;=t,; and as
|ty—ty| =00, P(uy, ) will have a distribu- 7 /
tion of a circular contour, of which the centre /
is a point #,, =, =0. Thus, we will assume / ¢ i
that P(uy,, w,,) has the distribution of ellip- ;
tical contours as shown in Fig. 1. The middle

point of the chord of an ellipse at u,, =const. ,
(see Fig. 1) is on a straight line wu,, ={£*/(2
— &}y, where & is the eccentricity of the

Fig. 1 Approximate density distribu
tion of Pluy,, u,,) for a given value
Fig. 1 are similar in shape, we have é=const, of [t-t,|.  Every ellipse (assumed to
be similar) is the curve given by
Pluy,, wy,)=const. A middle point @
- ’ ) of a chord w; =c is on a line uy,—
straight line given by uy, =, , where r=¢*/ riy, independently of e.
(2—ef<1.
Madilying the above intuitive consideration, we shall adopt the following model

ellipse.  If we assume that all the ellipses in

and u,, has the symmetrical distribution for
every uy,, ol which the centre is on the

of the fluctuations of velocities.

(H. 1) w,=ru, ,+X, where u, denotes the velocity at time £

(H. 2) u, has the expectation o and the dispersion 2, which are both independent of £.

(H. 3) r=const. 0<r<1.

(H. 4) X, is a random variable, which has a normal distribution N(0, ¢2) independent
of £

(H. 5) For t, 4, X,, and X, are statistically independent of cach other.

Using the relation lim #"u,_,=0, (H. 1) becomes

w= 227" Xy (1)
The representations of # and #? are readily found from (1), (H. 4) and (H. 5) :
#=0,

w=_2 (2)
Bar above the letter denotes always the expected value. The relation 2=0 is nothing

more than the definition of w.
The values of # and o depend on the time-unit. If we assume that » and o are
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changed to v’ and ¢’ by the change of the time-unit from 1 to 1 /&, it is required from
(H. 1) that

=" U+ (X" 42" X' 4t 7" X et ooene s 5 ("_”Xr—m—l)m) .

The second term of the right side of the above formula is independent of ¢, provided /
is integer. Consequently, we can obtain from a comparison with (H. 1)

p=p" or a=mua, (3)
' gt —
Iy e
where a=—log . From (3) we may find that a is proportional to time-unit, and

therefore, {;=at and A=k [a become non-dimensional values.
From (H. 5) we have
erfn = 8lu.ﬂ' a*, [4)

where §,,, is the Kronecker's delta.  Unless any two of m, n, p and ¢ are equal,

XK K K= X7 K, X, = KX, =1,
X2 X, =, (5)

X 3d=3e4.

3 Justification of the Model
We can check the validity of our model, by comp rison of the velocity correlation
function or the energy spectrum function derived from the velocity of a infinite time

interval by our model, and the generally admitted relations.
From our model, the velocity correlation function R(t) and one-dimensional

energy spectrum function ¢ (k) are easily found to be

R =0 %,

= u® g1 (6)
$ )= o [ Ry e an

- L

IS BV T @)

Y. Ocura (1933) has shown that when the velocity U of the mean flow is sufficiently
Jarge compared with the intensity (#%) /2 of the turbulence, the Eulerian time-correlation
function R(f) has the same functional form as the space-correlation function, and that the
departure from 1 of m in 1—R({)~¢" has @ maximum value in this case (I /(u2)Y2—o0).
Consequently, the exponential approximation for the Eulerian correlation function may
have higher accuracy than that for the spatial longitudinal correlation function f(r).
We can, therefore, estimite the maximum error of our model, by assuming that f(r)

is of the same functional form with (6), and examining the validity of the approxi-
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mation. From this assumption for f(#), we have the three-dimensional energy

spectrum function (k) :

u? Bk
E (kl) = = ) _(l ;];;zJa (al)

(See G.K. BATcHELOR, p. 50). For the cases k<1 and k>1, the expression (8)

becomes
E (kB)~k* for k<1,

E (kR)y~k® for B>1.
The generally admitted relations are

E (R)~Fk* for k<1,

E (R)y~k5* for k>1.

Thus, there is the error of 20 percent in the power of & for the large wave number.
Consequently, the results in the present paper seem to be applicable to all the
time- and space-correlation functions for the problems which do not require more than

the above-mentioned accuracy.

4 The Probability Distribution of the Velocity Correlation Function

From the expression (1), the averaged value of the velocity # over the interval
[—T, T] (in terms of the random variable X) is found as

T T oo
T 1_ _ S—W 2= Ll s 51 Y
# 2T+1 =27 “m = ZT ,,;;—'T;:ﬁr Ko
1 \:i' ¥ (1—r2T+1) ¥ 1 ;‘ 1— T+ X 9
T & 1= Xt A X @)

We cannot know the mean value of the velocity over an infinite interval, from the
velocity within a finite interval. Consequently, we must use " —u—{f}; in place of
# in {R(f)};.

W gty = Y_ppu—{lt}r

2T —-m -1 27 -1

—_ i 4 ! N 4 s—aT+m__ 7”7”71—7’5"'1 b
2 2T+ (1-7) Xrst g (7 @T+I) (1 1) ) X
{01 F G 1 —p2T 1 '
R R )Xo (10)
(o= b Bsviinn e s . 27).

The correlation function between the velocities at time points of an interval {
apart, obtained from #" within a finite time interval 27" can be written as

[R (0] = [, 9" +1]e = [, —Che) sG]
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fort =T
[R ] = Gt o= g g g [@T 1) ()3 + @ T2+ i) + {0}
= { it — gy = (1= gy )@ e, (1)

fort > T

[R {1)]1' ={t, Uty }r— gT—i[_—l. {#)i— (1 ] T——E-Z'JFI:){M’ {#}1—rmn , (12)

where { }, and [ |; denote the values obtlained [rom » and «’ within the interval of
[—T, T] respectively. We had the expression of {@}, in (9), and {w,u,,}, is given
by

T

{u-r u-r+i}r: 2 T_-l£+_1 L= ;;—-: . 0?’”””1\’.,_,, Xﬁ.t_.;,, . (13)

g

I

=]

The expectation [R ()], and the dispersion [o(f)]: of [R(f)], are found from (4),
(5), (11), (12) to be (See Appendix)*

TS PR SN G S TR SN SEPARI g FOR | —zr‘}
[R®)] W—{C’ Jrsz_(. 2+T"27T*TT£ A J'
(14)%*
Lo
o5}
g
0
03y / B 3 F]

Tig. 2 The profiles of the velocity correlation function obtained
from the velocity within a time interval 27

* In the following expressions (also in Figs. and conclusions), 7,(=a7) and ¢,(=at) under
the limit as a—0 are, for simplicity, written as T and # In this case, therefore, the unit of T°
and ! are determined by the relation rOR (tydi=u®.

** (14) is immediately found from the general formula by Y. Ocura (1957) by replacing
fx(m). T. 7 and f_,(¢) in his expression (11) by [R(#)], 27, £ and e~¢ .
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Fig. 3. Diagram of the expectation and standard deviation of the

velocity correlation function [R(f)]r obtained from the velocity
within a time interval 27,
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Fig. 4 Curves of the expectation and standard deviation at
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Ratio of the standard deviation [o(!)]7 to the expectation -
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+e—‘T+2'<1 P 7% 1.2 ]+£’"T+ 1\ }2 o %'g )+£_i1L2T4 )l
for t<T,
- {2(1222.);}2 lor (o 2Tt = Y e Tt et e o)
+¢f'( '}ﬁ 4 -*’ . )+ 2\4 gy o L . 2; + f
= E SN S
4 g2l {_?Tf % fﬂ - %ﬁ —re“'T”'{;-%- | .}- - T{g" +emi T .\]{2 %«i )
+6_‘T|\2T1 )l for t>1T. (15)

These results are illustrated in Figs. 2~5, with the ratio of the standard deviation
[o())]. to the expectation [R(i)],.

5 Conclusions

Figs. 3, 4, 5 are usefull to estimate the statistical errors of the velocity correlation
function obtained from the velocity within a finite interval. Moreover, we can find
the following properties®,

(i) For T<1. If we confine ourselves to the problems in inertial subrange, the
expectation and the standard deviation of [R(f)]; have the nearly constant profiles,
though their absolute values are proportional to 7. Consequently, the relative errors
are also independent of 7.

(i) For T=1 (fm Jm(R(t) [u?) a!ﬂ, The expectation and the standared deviation
vary largely with g

(iti) For T>1. [R(f)], is nearly equal to R(f), but [o(f)]; decreases as the (—1/2)
power of 7. Consequently, the relative errors also decrease as the (—1/2) power of T.

Acknowledgement :  The anthor wishes to express his sincere thanks to Prof. G.
Yamamoto for his kind guidance and encouragement throughout this work.

Appendix
The derivation of the expressions (14), (15) from (11), (12)
We shall introduce matrixes &, U, ¥V, W, of which elements are R, Uy, V5,
W;; defined by (c. [ (13) and (9))

Tt o o oo =
o > =
(1—»2) Y‘ Z > e X et Y= 3! Z Ry Xpri Ve,
'r-=—1r =) ﬂzﬂ =1 j=1

*  The reason why [R({)]; has negative region, may be easily understood from the tact that
[R(0)]; is defined as the correlation of «’ (but not of ).
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=T,

t=T.

o T o
[:T; P=rT X gt 3 (1T x,} [g (1= T Y g,
T o =]
+ B (=Yl = 3 2 Vi Xriai Yras.
s=-T =1 j=1
w0 T oo
[ }:; (12T X, 4 Z‘T (1 #T—s+1) X‘l {SZ!‘ (1= T2 Vg,
Tt oo oo
+ 3 (=) Y 3 DV K Ve or
sm=— T4t i=1 j=1
oo T oo
{sg r=rT) Xogt c.ET e X‘} { s";f P {L—oT- ¥ gy
t-T-1 -]
+ 3 ATV = B Y Wy Xrai Yy for
sm= i T41 i=1 F=1

The elements of matrixes R, U, IV, W may be wrilten as follows :

R= Ru, Ry, Rm, ......
RE].: Rna: Rsa- ......
Rﬂl: Rss; Rau. ......

where elements R;; are

Ry=0 for j=1,
= pit =l (1 —y3i—%) for t+1<j=i+tand i=2T+1,
= pi=i—t (1 —yp2f) for i+1=j<2T+1,
=y 1Ry for j>2T+1.

Matrixes U, I', W can be separated in ¢ and j:

Ul'j =U; Uj:, f',-f = U; V_r'- W.-j = {J; Wj ,

where
U= (1) for ¢=<2T+1,
— yiaT1 (] T4y for i>27T+1,
Vi=0 for 15¢,
= {1—-#iY for +1=<j=2T—i4+1,
— AT (] Ty for j>2T—#+1,
W;=0 for j=2T-¢+1,
= (1—pi=sT+-1) for 2T—-t+2=<;=<¢,

= it (1—p¥=2T—1) for t<j.
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From the relations (4), (5), we may find expressions :

e u? f 147
{0}y {WFr—s = (@T+1) (2T—21+1) k = )Spur 74

T 2 Tiafes %
{#Fr {#}——: = @r71) (;"'5__21;_—)( ﬁ)bpur W,

RO — (zr(“?:if [(Spur R)? | Spur RR | Spur R?} ,

@ = s (157 ) {(Spur U2+ Spur UT + Spur U7),

Rt (5“‘)2 1++
(W {ak = = o 11 (21— 2;%1)2( - )
x| (Spur 1")*+4Spur I 7 4 Spur 12} ,
P

) (Ler s

T—1y® \1—7,
x| (Spur W2+ Spur WV - Spur W2},

hlv

e 14
‘Lu}r {‘u'}tg._’,, = (2T+ 1\3 (

TR (ALY _filt — _ 77(272)8_ S /ﬂ
{R (@)} {u}: = @T—i+1) @T+1)F \1—r/
* [(Spur R) (Spur U) - Spur RU + Spur RU} ,

e (2)2 flw
{R {ﬂ}?{u}r {'H}T—# - (2T71+1}(27('1+)I) (2'1 Zt' l) || T E ]

x [ (Spur R) (Spur 1)+ Spur R +Spur RV},

——— . 22 g
ROy 03 {1 = oy (21(3:)1“) (22T 1) \ 7,

x [ (Spur R) (Spur W)+ Spur RW +Spur RW ),

(ﬁ}‘ [’ 147

b= or s er—aii 1) \1—r/
» | (Spur U) (Spur I") + Spur UV +Spur UV},

(?‘2 f 147 \?

@3 B = o e o 1) L1-
x ((Spur U) (Spur W) +Spur UW+ Spur UW} ,

where Spur denotes the diagonal sum of the matrix, and ~ transposed matrix. In general,
the square matrixes A, B of the same order have the properties :

Spur AB = Spur B4 \_1\_1 A Bj;

'
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Spur AB — Spur BA (= b I AL-,B.-_i)
+ 7 -
We shall also define R;, R; by
[{,‘ = Z R"‘J Uj 7]

i1 - i
= E pim=1 (1 y20i-1)) (1 4nid) \: et (1 p2i) (1_rf+u+i+1]
=0 =0
E z‘;.rsz‘-r'ys-—iﬁi(l, #) (1—p2T4Y)
P

— L 1—yt {(1ﬁ‘_,},),_,,,zrﬂru__,,zr—f—nz]

1—#2
for 1=27T-t+1,
b
— el i { E p2T—i—n (lil.zmui) (1—pt+n1)
#=1
2\ Z ICESY (I,rstz'r‘-.'-o-n) (1_,.27'4)}
”-“

" I 2Tt
= p3TH+i=1 | (9T {4 1) 92T+ -1—17-? - o [(1+7)2 r”*’“—-r}j
| =

for 1+ >2T—1+1,

Ry =2 R;U;,

— 0 for j=1¢,
—t4i-1 2T 4t §
- z i (l_rgcruu}(l_r(uﬂ:) £ Z Pt (1_rzt—‘+‘p‘ ) (17?.-'+n+:'»1)
n=0 n=10

+ O T tan s (] g3t (1 p274Y)
n=0
_ (f—j) fu:.j_,r 1 _1_1:;1{(1+.r)z_,3T+a_1.sT+l—j+n}

for i+1=j=<2T+1,
2Tt
— 2T+ j—1 { Z pAT="=n (1 —p2n+1)) (] pn+1)
n=>0

-1 @

= \._‘-:] y?l*! (1 === ?2(2T-4+1 )) (1 _raT—-‘+fl+E) e __Y__.‘:) yEﬂ#—r—S (1 _ranf' F1 l) (1;},27-}1)}
n= n=
1 —pal—41

i B e o 20 Vi A

for j>2T+1.

Thus, we have
2T

Spur U = Z (1—r"+1)2 4 i ’::3 (1—paT+3)2
=0
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2T -2 1
Spur V = }: (Ig‘r‘_u+l) (1—?"“’])4- Z (1 _raT—t+n+z) FHAL {]_Tg‘}"fzi,f,l)
n=0 n=0
[+2 ;
{ﬁ (1 Bty ettty |
2T+2¢-.2 2T ¢
Spur W= 25 (1—raT=tm49) (1—pmtt) 1 35 (L—pben i) oo (1743
=0 =)
T—t4
Lla,_?_‘: (1,,.21"4—1) (1 ,r—EI‘e—z!—l) ;
2T-3¢ i
Spur R = #* { > (1—p2nt2) 4 lj’ = i~ ,z(zT—uru)}
n={ - ]

Spur UU = Spur U# = (Spur U)? ,
2, 2T-2t g
Spur V¥ = (Spur U) x { 2 (1)t oy (1—pervaap]
n=0 Sl

D

Spur "2 = (Spur 17)*,
N 9Ty 2 ;
Spur Wi = (Spur U) x | 23 (1-rjet "

=il

Spur W* = (Spur )2, Spur UT" = Spur UV — (Spur U) (Spur V),
Spur UW — Spur UW = (Spur U) (Spur W) ,
SPUI‘R('}’ = Z RJ‘ Uj

i

1= renar_])a}

2T+1

= 3 ¥ [ Nt ,1frj—’ 2 oaT48 _ 0T fvjig] |
o =) (=Yt S (4 0iR il i) |
] Z p2tj—2T—1) (l—r”“] F_{zT_t+1)rzT—f|1
§=2T+2 L
42 T—t |
L (e pm— i)
Spur RU = Spur R,
Spur RI" = Z?: RV,
2T 141 = 1 —pint
= j=§1 (I —ff_t} L_U-—t)rl—f+ _i__? {(] 4,7)2_72T¢2__ r2T+.—j+2}:]
2T+41
+j_2;f+2yj—e‘r+f—1 (1—r2T—2t41) [‘—(j—t) i
=E li:—r:‘: {(1+7)2ﬁ?.z'r+2_7?"+f—j+z]]

. §+272jmar+r—z (1—poT—2143) J:ﬁ (@T—t+1) 741
e

3Tt
1 l?irii [(l+?)2_r2T+!!_ff+l}]

]
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Spl.ll’ RV = z R,j Vf‘

2T - -1

i i, =1t .
= — i) | —gpt S g2 paT—tte el —4—i42
i_%l {l—# )[ it o {(Ln)e—r . i)
+ 3 - (1 paT—t41) [, (2T —t+1) 211
fm 8T 449
P S |
+ l_lf—-r“_' {(14_?)2,,-27‘4”,,}] ’
Spur RW = "?“ R, W,
271 ~ 7 ik i
= Vit (] 2Ty | (f _pyi— e AT ) T2 paTHi—j+2] |
j_%,rlﬂ (1—» )L (=)' T [(1=7)2—r ¥ ]_l
L Z _rj—!(l . ra'—z‘r—a)rj—e'r—l [‘_(2]*_“_1) prT—'+1
j=2T42 2
1—p27—141 " i <
+ - 1=t (1-+-r)"—?’”+”—r‘+1}J ’

Spur RW = > R; W;

¥
= 3 (el (@7 gy ) pTa
(=27 142 L
1— y2T—t41

t+ 1—»®

((147)2—p2T—*42_p }J'

a5 ,.si-erﬂ(l,,,z'—ar—x)r_ (2Tt +1) 2T 4t

f=i41 L
1—p2T—1+1 : 1
< ,,1?'_?2, — {1 4r)2—peT m,_,,}_! ,
T it A
Spur RR = n;:) 'liiz (1—r2n+8)24. (T2 {1_,.2(21_.';1:]2 ,
_oT-2t ¢
Spur R*=2 b ¥ { > (1 p2i+2)pat(] p20nsiim)
L gl w=0 .

b0 (1—pmst2) (1 — p2tast) ,a:m,a]

n=0
t-1 t—s-1
+ sgﬂ{ g} 72t (1—p2(aT—214542)) (] _p2(sT—2t454n42))
=
o ,,Z_;) (1___,.2(21"—5!+.¢+2l) (1 ,_,.2(21‘-:'+1b) rz!—au+s}
f 2=
| (1—7::)('-’:(“:}? [1_yztzT—r+1l} |

2T -1
i,.zr% 3 (1 r2n+2)e 4 r:( (1_?2(2T—1+1))s} for t<T,

=0 _1__
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2Tt 8T —t-s

Spur R* = 2[ 2 { Do (1—r24) (1—p2insin)
s=0 n=0
2(f+1) 2(!+2) P
rl—r (1—p2ts10)) {I_r’uﬂ‘—tﬂ))} + ﬁ:}g)_’_(ﬁrii‘ {1_,a<=T—.+n}=:]
2Tt \
oyt { ,,Z.E; (1—p2re2)2 4 1:?4 (l_yﬁ(zr—lel)n} for t>T.
Calculating the serieses, we have
T
Spur U = @T+1)~2r 1252
T

Spur V — (2T—2¢+1)—2r+1 1 l’ir:'“ ,

Spur W7 = (2427 —1) ~gparsss 1700

Spur R = (2T —i+41) #

Spur VV §% 1 —peT—2t41
s =@T—2t+1)—2r ———,

Spur Wiv' _ ] — pot—sT—1

{Pur 7= @212 = —,

SPur}i‘U— ‘2_[:‘+1 [ 1+r)“+rzr—f+s+rsr+f+g}

2Tt . —p2(2T—1)
—2 (14) AT gy 17

(= "=
Spur RV = Spur RV
2T —2¢+1

=1 [(I-E-?‘)’+fzr—“"+”+r27'“} —

f
1—#2

f2!+l(1 71’21'—3#4%1)

A iy D

(]_rE)T ( 2+rzi+ﬂ+2721'+3) s

Spur RW = Spur RW

= I Tt Yperay 1T (1 g gty ]
~ ]_;_,-2 1_1.2(21"—.‘-;-1)
Spur RR = % (2T —14+-1)—29¢2 T
Spur R? = 72 {Eﬂgj_fftli + (AT t—3B—2T +41—1)
2p2 ;
Tlf-%'*')z— (1- ,-Mﬂ"«-m.nl)} for t<T,
= 72 (2T —#+ 1) for t=T.

From the above results, we find that the expectation and the dispersion of (11)
and (12) become
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R ()], = u* (S1+S:+S5,),
e (0)]; = ([R )]~ [R(H)],)*
=[RHI— (ROT,)
— (u3)3 {2 (S, +-S2)2+ (5:5:—S5:%) 4 (S5 Su)ﬁ(Sﬁ—Sg)},

where
B L _____-.1:’11 Spur U,
@T IFRT ¢11) \1=

Se=— iy @r=ry (1) SV for ¢+,
- (‘ZT-.:I)(12T—_t3r'l) (15%) - spur W o WELy

e

Sa=-— (QT;I;.Il')t {*: : SSI;:J(} for t=T,
=~ @r=eriye () S%%Si or B34

S5 == @ri) (tzr—t—m ‘-"1;_” Spur RU,

S )(2.1’1“:H1)= (1) Spur RV B Bt
= ‘(ﬁﬁﬂ%’!‘jﬂﬂ (1L SpurRW for t>7T,

Si=@r 1z+1}z St Bk

§s= b St B

In order to find the expressions for continuous variation, replacing T, { by Ti=aT,
t,=at, tending a—0, and for simplicity omitting the subscript 1, we find the expres-
sions (14), (15) derived from

— 1 ”_ j; _f__g —eT
Si=gr \—r T e T)

1 (L ot 1 1 e

Si=gry (2t t - Tg_=+),

S,=¢,

— I __4T 2_2 T2t <
R o 15

1 (741" 44 2 _ _E_ 557*5‘) for ¢>T,
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T T e
o '1{ 3—1T+3!} for t=T,
By = (—21-1:;)"2‘ [(2r—t— 5 )+ g
Ss= '(2T1:t)'”' {(4 Tt4+2T—-312-21— -é-) e % e“"TH’} for =T,
- “(Er'l:i)’f [(4T*— 4T+ 2)e ¥} for ¢>T.
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