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 Abstract 

              It is stated that the existence of the systematic difference of the velocity 
         correlation functions due to meteorological conditions should not be discussed 

         without consideration of their statistical errors. In the present paper, the 
         probability distribution of the auto-correlation function obtained from the velocity 

         fluctuation within a finite time interval is calculated for a model fluctuation. 

 I Introduction 

     It seems that there are variations of the statistical properties of the turbulent 

 velocity with meteorological conditions in the atmosphere. For example, given a 
 long time series of observed data of the velocity fluctuation, and if we  calculate the 

 values of the auto-correlation function of velocity from the data of a finite time 
 interval which is a part of the given time interval, we may perhaps find that the values 

 differ according as the position of the part in the whole time interval. These variations 

 of the statistical properties of the turbulent velocity in the atmosphere obtained from 
 finite numbers of data cannot simply be attributed to inhomogeneity of the atmospheric 

 conditions, since the statistical errors due to the use of limited numbers of  dat  a may 
 inevitably obscure the results of calculation. Therefore, it is necessary to evaluate 

 the dispersion of the statistical properties of the turbulent velocity composed of 
 finite numbers of data in the case of homogeneous turbulence. Then the variations 

 that exceed the statistical probable errors may be said to be due to inhomogeneity of 
 the atmospheric conditions. 

     In the present paper, we evaluate the probability distribution of velocity correla-
 tion function obtained from the values of the velocity within a finite time interval 

 under a statistically stationary condition. 

 2 A Model of the Velocity Fluctuations 

     We shall deal with the v  riations of one component of velocity with time. To 
 find the probability distribution of the auto-correlation function obtained from the 
 velocity fluctuation within  a finite time interval, we must know, for instance, the sto-
 chastic relation of the velocity at any two times (i.e. the joint-probability density 

 function), rather than the velocity correlation function. The absence, at present, of
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any available representation obliges us to imagine a model of the velocity fluctuation 

which seems to be relevant to our problem. We shall assume that the turbulent 

velocity is statistically stationary, and define velocity u as the deviation from the mean 

velocity for an infinite time interval.

   The joint-probability density  P(utl,  71,2) 

of velocity at any two instances  t1i  12 will 

have non-zero values only near a straight line 
 ut,=uti in the  (4,4) plane for  t1'=-42; and as 

 4-41  —0  co,  P(uti,  ut2) will have a distribu-
tion of a circular contour, of which the centre 

is a point  uti=ut, =0. Thus, we will assume 
that  P(uti,  ut,) has the distribution of ellip-

tical contours as shown in Fig. 1. The middle 

point of the chord of an ellipse at  uti  =const. 

(see Fig. 1) is on a straight line  ut2—{e2/(2 
 —0)}%1, where  e is the eccentricity of the 

ellipse. If we assume that all the ellipses in 

Fig. 1 are similar in shape, we have  C =const, 
and  ut, has the symmetrical distribution for 
every  utj, of which the centre is on the 

straight line given by  ut2=rut1, where  r=t2  I 

 (2  —  C2)  <  1. 
   Modifying the above intuitive  consideral 

of the fluctuations of velocities. 

(H. 1)  ut=rut_i+Xt, where  ut denotes the 

(H. 2)  ut has the expectation o and the dispers 
(H. 3) r=const.  0<-r<  1. 
(H. 4)  Xt is a random variable, which has a 

   of t. 

(H. 5) For  t1*t2,  Xi, and  Xt2 are statistically 

   Using the relation lim  rnut_„=0, (H.  1) 
 n  oo 

 ut  =  E  rn  X 
 n=0 

The representations of  4 and u2 are readily fo 

 =  
, 

 u21°: r2  •

Fig. 1  Appr. 
 tion of P( 

   of  14-121- 
   be similar) 
 P(uti,  1it2), 

   of a  chnr

  OA,

e above intuitive consideration, we shall adopt the  follow 

is of velocities. 
 -Xt, where  ut denotes the  velocity at time t. 

expectation o and the dispersion  u2, which are both  indepen( 
 O<r<  1. 

 ldom variable, which has a  normal distribution N(0, 0-2) 

X11 and X12 are statistically independent of each other. 

ation lim  rnut_„-=0, (H. 1) becomes 
 n-oo 

 Ut =  E  Yn  Xt_,  . 
 n=0 

 as of  ft and  u2 are readily found from (1), (H. 4) and (H. 5)

Fig. 1 Approximate density distribu 
   tion of  P(uti,  0,2) for a given value 

   of  t1-t2 - Every ellipse (assumed to 
   be similar) is the curve given by 
 P(uti,  ut2)=const. A middle point Q 
    of a chord  uti---c is on a line 012= 

 ntti independently of  c. 

we shall adopt the  following model 

 ity at time t. 
 2, which are both  independent of t. 

 Lai distribution N(0, 0-2) independent

Bar above the letter denotes always the expected value. 

more than the definition of u. 

   The values of r and  a depend on the time-unit.

 The relation 

If we assume

(1)

(2)

u-=---0 is nothing 

that r and  0- are
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changed to r' and  -' by the change of the time-unit from 1 to  1  In, it is required from 

(H. 1) that 

 U1=  7'n 141-1 (Xt' +r' X't-1.1n+ 712 X 1-2In+   +r  (n-11  Xt_(„_,),„) 

The second term of the right side of the above formula is independent of t, provided t 
is integer. Consequently, we can obtain from a comparison with (H. 1) 

 =  en or  a  , (3) 

 0-,2 _2  0   —  U2    
1  —r'2  1  —r2 , 

where  a--log r. From (3) we may find that a is proportional to time-unit, and 
therefore, and  la become non-dimensional values. 

   From (H. 5) we have 

 Xrn  X71  M  ,lt.  0-2 (4) 

where  8„,.„ is the  Kronecker's delta. Unless any two of  m, n,  p and q are equal,

 X,,  X„  Xp  X,—  X,„22(1,X,=  X„,3  X„  =  0  , 

                         2Xn2c)-4 

 Xm4  3  ci-4 

3 Justification of the Model 

   We can check the validity of our model, by comp rison of the veloci 
function or the energy spectrum function derived from the velocity of a 
interval by our model, and the generally admitted relations. 

    From our model, the velocity correlation function R(t) and  on, 

energy spectrum function  O(k) are easily found to be 

                     R (t) =UT, 

                                  =  u2 

 4  (k1)  —  -I - rR  (tl)  2 7r-.0 
 u2 
 7r  1+k12  • 

Y. OGURA (1953) has shown that when the velocity U of the mean flow 

large compared with the intensity  (u2)1/2 of the turbulence , the Eulerian  tirr 
function  R(t) has the same functional form as the space-correlation function, 
departure from  1 of m in  1  —R(t),---,tm has a maximum value in this case  (U 

Consequently, the exponential approximation for the Eulerian correlation  I 
have higher accuracy than that for the spatial longitudinal correlation I 

We can, therefore, estim  lie the maximum error of our model, by  assum 
is of the same functional form with (6), and examining the validity of

(5)

f the velocity correlation 

 .locitv of a infinite time

one-dimensional

(6)

                  _ 

       7r  1  +(7) 

 ;URA (1953) has shown that when the velocity U of the mean flow is sufficiently 

compared with the intensity  (u2)1/2 of the turbulence , the Eulerian time-correlation 
on R(t) has the same functional form as the space-correlation function, and that the 

 ture from  1  of  m  in  1  —R(t),---,tm has a maximum value in this case  (U/(u2)1/2-00). 

quently, the exponential approximation for the Eulerian correlation function may 
higher accuracy than that for the spatial longitudinal correlation function f(r). 
in, therefore, estim  lie the maximum error of our model , by assuming that f(r) 
the same functional form with (6), and examining the validity of the approxi-
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mation. From this assumption for f(r), we have the three-dimensional energy 
spectrum function  E(k1)  : 

           E  (k1) = -242"8 ki(8) 
                              77.(1±k,2)3 

(See G.K. BATCHELOR, p. 50). For the cases  k  <1 and k>1, the expression (8) 
becomes 

 E  (k)—k4 for  k  <1  , 

 E  (k)—k-2 for  k>  1  . 

The generally admitted relations are 

 E  (k)—k4 for  k  <  1  , 

                     E  (k)—k-513 for  k> 1  . 

Thus, there is the error of 20 percent in the power of k for the large wave number. 

   Consequently, the results in the present paper seem to be applicable to all the 
time- and space-correlation functions for the problems which do not require more than 
the above-mentioned accuracy. 

4 The Probability Distribution of the Velocity Correlation Function 

   From the expression (1), the averaged value of the velocity  u over the interval 

[—T,  T] (in terms of the random variable X) is found as 

 T 

 {u}r  E  urn  1 E  E vn 
 2  T  +  1,n=---T 2  T+1Tn—o 

            I v, r s r2T +1)  x s (9)                                                           -T-3H-         T 
+1X;4'1_1 1—rs_ _T 1—r 

We cannot know the mean value of the velocity over an infinite interval, from the 
velocity within a finite interval. Consequently, we must use  le  =11—  {li}T in place of 

u in  {R(t)},. 

 14--r+tn  U-T-  F  ut-

     2T-7n  -1  2T  -1 
                               _rs+i 

           5-0 1, (2  T  +  1)  (1-7)  XT-`+                                s-2Tmc-                                                                        2T 1-m  (2  T  +1)  (1—r) )XT—, 

                                    \ 

     rc (rni_r2T+1—7(10) 
               (2T +1) (1—r) )X 

 (m  =  0,  1,  2,   ,  2  T)  . 

   The correlation function between the velocities at time points of an interval t 

apart, obtained from u' within a finite time interval 2T can be written as 

 ER  (t)]7, =  [(u,---(170-7-)  (u,-+t{u}T)1T
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for

 

t  <T 

[R (t)] {UT  UT+  T
 1

=  -tur  uT+  ch.

 2T—t+1  [(2  T  +1)  01;

 Cff) -  (1-
 +(2  T-2  t+1){fa,

 2T  —t  +1

 {4}T-ti+{171}3-

 2T  —t  +  ){u),{4},t (11)

for  t  >  T

     [R  =  {tt,  uT+t}T 

where  .1  1, and [  ]  T denote  
,  T] respectively. We 

by

 {UT  UT+t}T =

2 T 

   t 
+ 1{17t};--(1—T —1 +1) {-41r' (12) 

the values obtained from u and u' within the interval of 

had the expression of  -X-, in (9), and  {uTuT±,}, is given

 1

 2T—t+1

 T  -t co 

E E 
 r  T  m.=0

 7m-En X,XT-Ft—:, • 
 =  0

(13)

 The 

(5),  (11),

[R  (t)],

 expectation [R  (Ob. and the 

  (12) to be (See  Appendix)* 

        2 T — t 9 T          1  I 4_

dispersion

 2P

 [0-(1)]T  of

  1 +

T  e—

[R  (0]

 1  e—  2T  ' 
 T

are found

 9  T2  e

from

 —2T)} 
 (14)**

(4),

1

}

 tO

 0.5

 0

 0

Fig. 2 The 

from
profiles of the velocity 

the velocity within a

2 

 t

 3

correlation function 

time interval 2T.

4

obtained

    * In the following expressions (also in Figs . and conclusions),  T1(—aT) and  t,(=at) under 
the limit as  a-03 are, for simplicity, written as T and t. In this case, therefore, the unit of T 
and t are determined by the relation  IM  (t)dt=u2. 

   ** (14) is immediately found from  the general formula by Y. OGURA (1957) by replacing 
 MT), T, r and  f03(C) in his expression (11)  by  [ROT, 2T,  t and  e-4'  .



PROBABILITY DISTRIBUTION OF AUTO-CORRELATION 137

25

2

/.5

/

0.5

0

 -0,5

-/

Z-0

-̀7---_-N.'

1
 F-10

 I-  10G

 fulL  Lines

 broken

 IR  (t)1,

 Lines

 (R(o)), 

 (6-  (OJT

 (expectation

 (1-( 0  )
(standard

 value)

 deviation)

   \ 

k \ ‘'

 

1

           

I,

i~/ ~ 
` =

     ^

      / 
 / 

  / 
 / 

/

 /1 

     / 
 / 

   /

     i  i 

 ~I,

  /

 i/  i
/  i

/ i
/ 

/
               •-•

     / 
 / 

   / 

,

      / 
    / 

   / 

 / 
/T -,. I

1

 T=  /0,/

 T=  100...

 T  =  /00

 T= /0

 T=  /

 T-0

 1 
/

/
/

 / 
/

 

I  
1  
I  
I  
I  
1 
 I

 i 
   / 

 /     / 
    /  / 

--'

 0 i 
 t/r

2

Fig.  3. Diagram of the expectation and 
velocity correlation function  [R(t)]7 
within a time interval 2T.

standard 

obtained

deviation of the 

from the velocity



 138 A. SHIMANUKI

 

I

 al

 0.0/

 (R(  0  AT 
 771 -

 (6-(o)1T

 C., (1)]

 0.01 

 Fig. 4

 0 

477:4E;5 

Fig. 5

 a/  1 /0 /00 /000 
 T 

Curves of the expectation and standard deviation at 

 t=0  ([R(0)]  T is equal to u'2).

 10000

 C 
I. '1

 Ratio of the standard deviation  [a(MT to the expectation 

 [R(t)]

                     3 4_2t22t1 2t2 t2  =(1762  1(  2  T  t — 17 + 41 +   (2T —1)2  i\ 2 T T T2 T2 P T3  2  T4  ) 

                        31 
                                            T   +e—,(+2t  )+e-2'(4Tt2 T —3t2                92t  e'T2T3+"TT2 

    e---27. ( 4 + ‘.5,„ T2 e-2T+,                         / 2tt24t2t  

                      TT2T2T3 

 2t  3  2t  3  2t2 t2_21  t2  2t  e-2T(+ 
 TT—T2  -T2-T3T4e2T Ta
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 e-4T+2'  (1+ T2+T2)e-4T +'T23+2TtI)+e_,T(2Tt2)1                                                    4ji 

                                                for  t  <  T  , 

 (U2)2  le P^2T-2'(' 1 1'2T I1  4 3 212  21 2t2  12  )     (2 TK T4 2  TT T2 T2  T2  T3  2T4,) 

 e_,  (  3  t_2te_`^                       )2' (4 T2- 4T t-i-t2 +4—2Tt+2  T2T3/T2 9 

               e-2T+t             2tt24t2t`\72 t 3 2t 3 2t2 t2               T T2 T2 Ta +  e-2i.—4 +4-                            T T T2 T2 T3  P 

 e_27,  2t+  t2 2t.)  , e-4T+2' (1 + 11t 2  t‘) 

 P 

 TT3/2 T T2 T2 T3 

            T t2       e-4C2 T4)1for  t  >  T  T. (15) 

These results are illustrated in Figs. with the ratio of the standard deviation 
 r  (0] to the expectation  [R(t)], 

5  Conclusions 

   Figs. 3, 4, 5 are usefull to estimate the statistical errors of the velocity correlation 
function obtained from the velocity within a finite interval. Moreover, we can find 
the following properties*. 

   (i) For  T  <1. If we confine ourselves to the problems in inertial subrange, the 
expectation and the standard deviation of  [R(t)]  , have the nearly constant profiles, 

though their absolute values are proportional to  T. Consequently, the relative errors 
are also independent of  T. 

   (ii) For  T  1 (=  (R(t)  /u2)  dt). The expectation and the standared deviation 
 o vary largely with  T. 

   (iii) For  T>>1. [R(t)], is nearly equal to R(t), but  Lo-(t)i, decreases as the  (-1  /2) 

power of  T. Consequently, the relative errors also decrease as the  (-1 /2) power of  T. 

 Acknowledgement  : The author wishes to express his sincere thanks to Prof. G. 

YAMAMOTO for his kind guidance and encouragement throughout this work. 

                           Appendix 

   The derivation of the expressions (14), (15) from (11), (12) 
   We shall introduce matrixes R, U, V, W, of which elements are  Rip  Ui,,  V 

 Wti1 defined by (c. f. (13) and (9)) 

 T—t  co  0o 0. CO 

     (1 -Y2)  E  E Er"" X  T-1-  t—m .177-n E E  Rij  X  T+1—iY  T+1-1  —  T  m=0  71=0  z=1  j=1 

     * The reason why  [R(t)] .T has negative region, may be easily understood from the fact that 

 [/?(t)], is defined as the correlation of u' (but not of u).
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                              T 

  E  r,  (1_  y2T+1) XTs.                  _in E  (1  —1J-c+1) Xs}1IL  {E rsr2T+i) yT_s 
s-1 s= - Ts-1 

           T 

       + E (i__rT—s-ElYsl,_oo00  E  E Ui, X 71-1—iY T-m.--j , 
 s=  -T i=1  j-1 

 T 

 1 E  r,  (1  r2T+1)  X  7  s+  E  (i___,T_,,i) .x.,}1 E ,„ (1_r2T-2,1 y_T+  I ,  s-1 s= -T s=1 

 T  -t  o0  00 

      +  E  (1_1•T-t-s-F1)  y  si.  E  E  V  iiXT-Fi-i  YT4  3.-j for t  < T  , 
 s--T-Ft  i-1  j=1 

                            T 

  E  r,  (1 r2T+1)-               -'l-T-5+E(i__YT—s+1)Xs}1Ers,1—r2                                                (1-2T-1\V                                                                                        IAt+T-Fi-, 
 s-1  s=  -Ts=1 

 t-T  -1  00  0o 

      +  E  (1—//—T—s)  Y  si =  E  E  W  ijXTA-3.--iY  T-1-1--1 for  t  >  T  . 
 s=  -  t+T±I  i-1  j=1 

The elements of matrixes R, U, V, W may be written as  follows  :

 R R11, R12, R13 

R21, R22, R23 

R31, R32, R33

where elements  R11 are 

 Rii  =  0 for  j�t, 

 =ri+'-1(1  _r2,--2,) for  t+1<j and j  c 2  T+  1  , 

 =r1-i-t(1-r21) for i+t  c  j  c  2  T+  1 , 

 j--2T  Ri,27,+ for  j> 2 T+  1. 

   Matrixes U, V, W can be separated in i and  j: 

 Ui,  UiU,,  Vi,=UiV,,  Wi,  =  Ui  W,  , 
where 

 Ui=  (1  -ri) for  i  <  2  T+  1  , 

 =  ran for  i > 2  T+ 1  , 

 V,=0 for  j 

     =  (1 for 1+1  j  2  T-t+  1  , 

 0T-2'1 for j > 2  T-t+1, 

 W,  -  0 for  j  �  2  T-t+  1  , 

             (1 __ri--2T+,---1)for 2 T-1+2-�_jt , 

 =(1ra'-2T-1) for t  <  j .
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     From the relations (4), (5), we may find  expressions  : 

 {R(t)}T  =2 Tt+ 1 Spur  R  , 

                   u21±1) ,SpurU   {,                 17t};(2T+ 1)2 

            -CfiIT {4}7--ttt2                                             1r                      (2T+ 1) (2T-2 t+ 1)  ( 14-)Spur V-r' 

( 

                                       2,21 A- rS
pur W,  }T- (2T  +1)  (2 t -2T-1) 1-r ) 

              -IR(t) }(2T(2) 2--t+ . -(2T--t+ 1)2  [(Spur R)2a                                      Spur+ Spur  R21  , 

 = 
(2T+ 1)41- 
                       )21r  )2t  (Spur  U)2  +Spur UrI+ Spur  U21  , 

             (1711r -fftP -I =Vo)2( 1+r                        (2T+ 1)2(2T-2 t+1)2 1-r )2 
 X [(Spur  V)2  +  Spur  VT7  +  Spur  V21  , 

 -114}1.  {1S)----r-1  (2T+  1)2  (2  t  -2T-1)2  1  1-r  ) 

 X{  (Spur  W)2+  Spur WT17-+ Spur  W2}  , 

                         g2)2  ( 1+r             {R (0 2-.= (2T -1+1)(2T + 1)21-7  .1 

 X  I  (Spur R) (Spur  U)  +Spur  R  U  + Spur  RUT  , 

                             (u2).2(  1  +  r  {R  (t)}T{4}T{u}' 
(2T-t+1) (2T+ 1) (2T-2 t+ 1)  1-r 

 X  f  (Spur  R) (Spur  V)+  Spur  RV  +  Spur  RV1 

    {R (t)}7. {4}r{44}'-`(2T -t + 1) (2P+2);)  (2t-2T-  1)  (1i7 
 X  {(Spur R) (Spur  W)  +  Spur RT3,+ Spur  RW1  , 

                          p')2 ( 1  +  r  {4}4  {4}T-t                         (2T+ 1)3 (2T-2t+ 1)  1-7 

 x  (Spur U) (Spur  V) + Spur  UV  + Spur  UV1  , 

         {4)-3'-  (2T+ 1)422)t2-2T- 1) (1+r )2)2 
 X  [  (Spur U) (Spur  W) + Spur  UW+ Spur  UW1  , 

where Spur denotes the diagonal sum of the matrix, and  - transposed matrix. In 

the square matrixes A, B of the same order have the  properties  : 

              Spur AB = Spur BA (= A ,,Bii)

141

In general,



142                          A.  SHIMANUKI 

          Spur  .:4-B =  Spur  .g,4 (= EE  A  ii Bii) 

                                                                                                                                                                                           • 

 We shall also define  Ri,  R; by 

 R1=  E  RijUi  , 

 i-1  2T-t-i 

      _  E  (1_  r2(v1+1))  (1_  r'd-n+i)  E  rn+, (1  r2,)  ,,,,'+i+1) 
 n=0 

 E72T-'+2n-i+3(1 720(1r2T1 
 n-0              

• 1-ri      =rt+1+  {(1+r)2—                                             T2-4+2y2T-t-i +21 
                  1 - Y2 

                                      for  i  <  2  T  -t  +  1, 

 2  T  -  t 

 r-2T  y  72T-•-n  r2(n+i))  (1  ---r!+4+1) 
 n-0 

 E r2(.+1)  _r2(27,_,+1))  (1  ,27-11 
 n=0 

 (2T-t+ 1)  72T+1+ 1 1r272T-t+1 +r)2                                                       r2T-t+2_yrj 
                                     for  i  >  2  T  1  , 

 R;  =  E  RijUi 

 =0 for  jct, 

   -f+i-i 2T-4tj 

           E(1 _72(n+11) (1 —701+11)E rn+1  (1  r2(-'  +3.  ))  (1  r-'+n  -1-j+1) 
 n-0  n-0 

 E  72T-V-j+2,1  +3  (1  -r20-0)  (1  72T  +1) 
                n=0 

                            rt+1 

        (t—j) (1 + 7)2 72T+2 72T+t--] +21                      1 —72 \ 
                                 for  t+  1  c  j  <2T+  1  , 

 2  T  -t 

                     Er2T--4-n (1_1,2(n+1)) (1  yn.  +1) 
                           n=0 

 t 

 4_  E  rn+1  (1  ._72(2T-t+i))  (1  72T-t  +n  +2)  4_  E  r2n4-14-2 (1  72(2T-1-1-11)  (1  72T+1)1 
 n=0 n=0 

                                                               -r2T-' +3 

          1,-2T+1-11 — (2Tt1) r2T-+1f+r)2_r2T+2r{-F1}-1                               1 y2[ 
                                       for  j  >  2  T+  1  . 

Thus, we have 
               2T                                          2 

   Spur U =(1.+1)2+1r         E-0                                  r2 (1- y2T-1-1) 2                       n=0
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 2  T  21  1-I 

Spur V  =  E  (1—r'+n-F1)  (1  —rn+')  E  (1—  r2T-t  +n  +2)  +1  (1 
 n=0  n=0 

  (172T+1)( 1r2T-2' +1),  1—y2' 

     - 2T+2t-2  2  T  -  t 
Spur  W= E (1  rff_t+.1  (1  —rn-F1)  E  _rt+,,  yn+i  _r_2T+2t_i) 

 n=0  n-0 

 72T-t   (1  r2T  +1) (1 -y-2T-F2t-1)                  1 _72  
2  T  -1 

Spur R =rt E (1-0.4+2) + ,y2(1_72(2T-4+1)1 
Spur  UU = Spur U2 = (Spur U)2 , 

                             2 T-2t 

Spur VV — (Spur U) E  (1  —rn+92  + 1-11r-2 (1 r2T-2H-1)2} 
Spur V2 = (Spur  V)2  , 

 -2  T±2t-  2 

Spur W-14-7=(Spur U)  X E (1—rn+92 + r2(1 - r-2T +0-1) 2} 
                                           172  n  —0 

Spur W2 = (Spur  W)2  , Spur  Ur  — Spur  UV  = (Spur U) (Spur  V)  , 

Spur  UW  = Spur UW = (Spur U) (Spur W)  , 

 Spur  R  r7  =  E  RjUi 

 j 

      2T+1 
                             1711    =(1-71) [(t—j)24-1+{(i+r)2_r2T+2r2T +f-j +2} 

                                                      1 

                         1r2 

      ^E  72  (j  -2T-1)  (1  ___  r2T  ) (2T—t+1)  72T-t+1 
 j=2T+2 

               72T-1+1   .1(1 +T2T +2rt +1} 71  1—r2\ 
 Spur  RU  =  Spur  RE!  , 

 Spur  R  E  Ri 

       2T- t+1 

   ='-E0_44_9 Hu_ori—t+ 1—r2f(ir)2r2T+2_ 72T+!-/ +2)1          t+1 

          2T+1 

     ^E 7,-2T+,1  r2T_2t+i)  [_  (1_0  71— 
          j..2 T-1+2 

     •-ri-f               ( 1 r)2 y2T +2 y2T +2)] 
            —r2 

                                              — 

      +  E  72  j-4T+t-2  (172T-2t +9  (2T—t  -1- 1)  r2T-4+1 
 j.-2T+2 

 -

   1—r2T-t+1 -     +    f(1 +IV_ r2T+2_1.41-11 
 1-72
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 144                         A. SHIMANUKI 

 Spur  RV  Ri  V  , 

 2T  -t-F1 
   =  E i+! 1—r2 1(1 +ITr2T—t+21,12T-!-ti+21  i=t+11—r2 t 

  • E  r2 (1L        ti=2T-1-1-21+1)(2T —1+ 1) r2T-4-1 

 + 1—r2T—' +11—r                   (1_4_r)2r2T-4+2ril 

                  2 

 Spur  MT=  ERjW, 

      2T+1 

 7:7—'  (1  _r2.-2T-1)  r_(9_t)  ri_, 1-0-4I(                                                    1+1)2_72T-1-2 72T-1-!-i +211                                                                              _r2 

 E yi -I (1rV-2T-1) rj-2T-1 (2T  —1+  1) 727--!+1 
          j.2T-F2 

    +   2{  (1 r)2 r2T+2 
               1_1, 

 , Spur RW =  E  R.(  W 

                       _                            

,(2T —1+ 1)  r2T+1 
 -t  +  2 

           1_72T-1+1   (1y} 
   1—rt2-J 

     ^Er22-2T-1 (1_ rV-2T-il)(2T —1+ 1)  r2T+1 
          1=1+1 

         172T-1+1      +  (1 +y)2_r2T-t+2711  , 
 2T-  I 

Spur RT? = 1 + r2                         (1 —r2n +2) 2 +r4_r2(2T—,-1-1)12         1—r2(i_r2)2 
 2T  -21  t 

 Spur  R2  =  2  E  E  (1_  r2,+2)  r2t  (1_1,2(.+,,  1)) 
 s-O  n-0 

     +  E  (1—r2s+2)  (1  _  r2(t+s+i)) r2!--i-2n-F21 
 n=0 

 I.-1  i-s  -1 

      ^ Er21 (1  _r2(2T-2'1-S+2  ))  (1_1.2(2T-2f4-5-m+2)) 
 s-0  n=0 

      • E (1  r2  (2T-0-1-S+2  )) (1 _r2 (2T-t +1)) r2t+2n+2} 
          n-0 

      r2(t+2) 2-1                           l_r2(2T-t+i)}       r2)2 (1+72) 
 2T-  t 

 E (1 72n-11)2 r4  1 _r2(2T-t+1))2} for  t  <  T  , 
 n=0 1  —r4
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 2  T—t  2T—t—s 

     Spur R2= 2 [ Er'' (1-725+2)(1 -r2("+"-1))                    5=-0I n^O 
      2(t-I-1)  r2c +2)     (1-r2(s+1)) (1-y2 (2T—t +0)1+  4-1r2(2T-t+1)}21          r2(1_r2)2(1 + r2) 

 2  T  —t           _r2tE / r4  (1 _r2(2T--(+1))2}for t >  T  T.       n-0 

  Calculating the serieses, we have 

    Spur U  (2T+  1)-2r   1   , 

     Spur  V  = (2T-2 t+ 1) -V+1 _r2T-ar-i  1  -r2  ' 

      Spur W (2  t  -2T  -  1)  -272T-i  +2 1_72f-2T-1    1  -r2 

 Spur  R =  (2T  -t+  1)  rt  , 

 Spurvrr
1-r2 ' 

                                                       2T-2t 
      Sur U  (2T-2t  +  1)-2r  p 

      Spur WWI(2t -2T-1) -2r  1_72f-2T-1 
  SpurU 1 r2 

      Spur RU=  -  2T--r2t+1  { (1+ r)2+1,27--t+2+1,27.÷f+2) 

             1 

                       _r2T—t +1  1_72(2T-t+1)      6             -2r (1 +6
(1-r)2  2r'+2   (1-7)2 (1-r2)2 

     Spur  RV  = Spur  RV 

             2T-2t+1  {+7)2 ± r2T-2t+2r2T+21 _  r2I+1(1_r2T-21+1) 
   1-72_r2 

            1 _ r2T-2(+1.1 _7,2T-2t+1 
               (1 -r)2  r rt+1+1,2t+1) +  (1,2+ r21+2+ 2r2T+3)                                                   (1---r2)2 

     Spur  RW = Spur RW 

                         2T f 2f-1  -                            =  -(2T-t+ 1) r2T+1+ _y2T--t-F1 {(1±r)2_72T-J+2_r}1 

 

1  -r2  1  -  r2 

     SpurRR =  1r2(2T-t+ 1) -2 r2 1-72(2T4+1)        1-r(1-y2)2 

      Spur R2 = 72t1 2 (2T- +  (4T  t-3  t2-2T+4  1-1)                     1-221+1)  

           2r2r2(2T--2:+1))1 for t T 
                    _r2)2 ^ 

 =  r2t  (2T-t+  1)2 for  t  >  T  . 

   From the above results, we find that the expectation and the dispersion of (11) 
and (12) become
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where

   In  order to find the expressions for continuous variation, replacing T,t by Ti=aT, 
 t,=at,  to  a-4  and  for  simplicity  omitting  the  subscript  1,  we  find  the  expres-

sions  (14),  (15)  derived  from

                       A. SHIMANUKI 

 LR  (t)17.  =  u2  (Si  H-S2+S3)  , 

 [o  (0]  2T =  ([R  (t)]  r  —  ER  (t)h)2 
       = [R  (t)]2,—  CR  (t)102 

 -  (u2)2 {2  (S1+  S2)2  +  (SiS,  S22)  +4  (S,  +  S6)H-  (S7  +  S8)  1  , 

 S1  -- (  1 +r) 

                                                                                                                              • 

 (2T+1)2  (2T—t+1) 1—rSpur  U, 

S2--  (2T—t+1)1—r)• Spur V for t,„---  I ( 1 +r-�-T , 
  (+r )-SpurWfor  1>  T  , 

    (2T+1) (2T—t+1)\, 1—r 

 S,— I • Spur R    2T—t •+ 1- ' 

S,---     (2T 1+ 1 ) t( r               11Ir  )•SSppuurrVUT7for t.�.__T , 

        1  

  1  (  1   +7  ) .SpurWW for  t  >  T  , 
 (2T—t+  1) t1—r ) Spur  U 

   t   

                ( ii_+;)• Spur  RU  ,  S5 (2T
+1)2 (2T—t+1)2 

 S6—   (1-                      lirr ) • Spur RV for t-�T , 
 (2T+  1)  (2T—t+1)2 

=  1                 (1  +r ) SRW for  t  >  T  , 
     (2T+1) (2T—t+1)2^1-7 /p•-ur 

 S,  —  1              Spur kr?,  (2T —t+1)2 

 S8= 1 SpurR2.     (2T —t+1)2 

 ,rder to find the expressions for continuous variation, replacing T,t by Ti=aT, 

 tnding  a-4  and  for  simplicity  omitting  the  subscript  1,  we  find  the  expres-

),  (15)  derived  from 

S3 2T—t +T2P2T2 e-2T) ,  -  I  (  t t  t 

S21_ e-2T+t) 

 

_   2f+1_f —_  2 2T  —t ( 2+2-'7'T 

 S3  = e—', 

s 4_-271t (____ 4tT  +4+  2t2t 6-2T+2t)for  t  <  T, 
    1  4T_ 22e2T-2f) for  t  >  T  ,     2T—t\(4+ t ——t—
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             Ii.( ___8t+4 t2+.4ts)+3t e_t+2t+ t2 4t )e_,T+t    S—     '4 (2T —02i .TP'T 2 }  T2  .T '  T  2  T2 

                      2t + t2  )_,+ te-4T+1            41  e-2T + (____e2T-.1 
   TT2T2, 

 S6  —  I (____16± 16t + 74  e_t+ ( 2t +3e—at)  4  (2T-1)2j.TT ) + TTT1 
        + ( —4--4Tt7T2e-2T+2f4   e_2T+t+ (-4+2t_5T) –2T 

  

1T 

             9     + T e-4T+2/1 for t <  T  , 
 133T'44 72t)_2/4—T-Ft         4 (2T—t)21T— Te2—2+Te—(4—-T6 —Te 

 ±  (  4+ T                 T2t--1T)e-2Tf__1e-4T+21 for  t  >  T  , 

   S—        7(2T1 — t)2 1(2T-1— —1— 2I)'-'2-1e-4T+2/1 
 S8  -  (2T t)2t) 2T+2t  1(4  T  t  +  2T  —3 t2—2 t- — -s) e-2'+-2-e-41 for t <T , 

        —  1   

1  (4T2-4Tt+  12)e-2'  1 for  t  >  T  .         (2T —02 
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