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 Abstract 

              The most accurate representation of the  transmission for an  infra-red 
        spectral interval is,  ('if course, obtained by a numerical computation like 

        CowLING's with respect to a real band. In this raper it is  slIcINn  nrmerically 
        that such a computed transmission is expressed as a function of the variable 

        itcra6-1(a2  y172, which was introduced by  Goony in expressing the trans- 
        mission of a model spectrum, where 7.4. is the absorbing mass in g cm-2,  a the 

        half-width,  cr the mean line intensity,  a the mean line distance. So that we 
        only need to compute the transmission against  It for a given value of the  half-

        width. 

I Introduction 

   The transmission of a model spectrum which assumed random line positions and 
an exponential distribution of line intensities has been investigated by GOODY  [6] 

and shown to be in good agreement with COWLING'S computation [1] of the trans-
mission for several intervals of the rotational band of water vapour. GODSON [4,5] has 
also investigated the transmission of a similar model in which a logarithmic ogive 

distribution of line intensities was assumed, and has shown that it gave smaller errors 
than other transmission functions previously proposed in representing the transmission 
of a certain spectral interval of the rotational band of water vapour. 

   There is, however, one noteworthy point in adopting a random model. A random 
model assumes the presence of sufficient numbers of lines in a given interval , while the 
interval is usually so narrow that the black body energy curve can safely be regarded 
as constant in it, and that not so many lines as assumed by the random  mode] can 

exist in it. In addition, as the distribution of line positions in narrow intervals may 
differ considerably from one interval to another, even if the transmission based on the 
random model is shown to be  valid for certain intervals , it is not certain that the 
same will hold for other intervals. 

   Under these circumstances, if a higher approximate representation of the trans-
mission than what is known, for example, as  CowLING's "universal curve" is to be 

hoped for, we think it will be obtained by a numerical computation like  COWLING'S 
with respect to the real band. It is, however, needed to reduce labour of computa-

tion as much as possible. In the presnt paper it is shown numerically that the com-

puted transmission is expressed as a function, not  necessarily an exponential one, of the 
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                        )-I/2 variable  ;  uo.ccS-1 (a2mya)                  +  which was introduced by GOODY and accordingly 
                   7/- 

will be called the  GOODY variable in this paper , where u is the absorbing mass in  g.cm-2, 
 a the half-width, the mean line intensty, and  8 the mean line distance. So that 

for a given interval we only need to compute the transmission against u for a given 

value of the  half-width. 

2 Transmission at Constant Pressure and Temperature 

   Whether a given distribution of line positions is allowed to be random or not is 
not so clearly guessed from the definition of randomness which implies that all ar-

rangements of line positions are equally probable. The following consideration will be 
useful in guessing the problem. Let n lines be distributed at random in the interval  Av. 

The probability that no line exists in a narrow interval, d, of the interval will be given 

 dv—d   . As  dv  —71,6  , where  8 is the mean line distance, the probability becomes  A
P 
     1)" 

( 1 — nand tends toas n00. This means that in case of random       8) 
line positions the disribution of line distances is expressed as an exponental function 

of the line distance. In Fig. 1 are shown the distributions of line distance for the 
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                            Fig. 1. Line distance histograms 

intervals of 100-125  cm-1 and 225-250  cm-1 of the water vapour band, the trans-

mission for both intervals being computed by COWLING. It will be seen that the 
distribution of line distance for 100-125  cm-1 is nearer to the exponential distribution 

than that for 225-250  cm-1. By the preceeding discussion we infer that the line 
arrangement of the former interval is more likely to be at random than  that of the 

latter interval. 
   Now, GOODY has shown (cf. Fig.1, (b) of his paper  [6]), that the transmission of the 

 100-125  cm-1 interval computed by COWLING was well expressed by the transmission 

 function based on his random model. The comparison between  GOODY'S transmission 
 function and CowLING's data for this interval is reproduced here in Fig. 2 taking the 
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 GOODY variable as abscissa. 

     Similar comparison of the  GOODY'S theory with COWLING'S date for the  225 -250cm-1 

 interval, which GOODY did not show explicitly , is shown in  Fig: 3. If the statistical 
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theory of GOODY were applicable to the transmission of this interval , the points in 
the figure, due to COWLING'S data, should have coincided with the exponential curve re-

presenting the theory. Actually, some discrepancy between them is seen in Fig. 3. 
 In reviewing the random theories of transmission hitherto proposed [4,6] we see that 

the exponential representation of the transmission function is due to the randomness 
of the line positions, while the distribution of line intensities determines the functional 
form of the exponent. Now suppose an interval in which the distribution of line intensi-

ties is exponential like  GOODY's model, but that the distribution of line positions 
differs from the random distribution. Then it may be possible to express the trans- 

                                                            a mission of the interval as a certain function of uo-0(.8-1 ( a2 +  ucr)--1/2 , which may in 
                                                                  7r 

general differ slightly from the exponential function. According to  GonsoN, a loga-
rithmic ogive distribution of line intensities is more likely than an exponential one, 
so that the use of the GODSON variable will be more reasonable.  However , as the 
GOODY variable is by far a simpler combination of  au/8 and  a/8 than GonsoN vari-
able, the  Goo  rrY variable is used in this paper from the standpoint of reducing the 
labour of computation. 

   Now in expressing the transmission as an empirical function of the  GOODY vari-
able, there is no need to use the empirical, or fictitious values of  cr and  8 recommended 

                                   Table 1 
       The  transmission:as a  function7of the GOODY variable for different values of  a. 

 100-125:cm-1- interval 

     GOODY  T/  T/  T/(a.---0.1)  Tr  T  j(cv  --OA) 
         variable  (a=0.1)  (a._-0.2)  -77(a=0.2)  (a:-.0.05)  -,r/(a=0.1) 

      0.0 1.000 1.000 0.000 1.000 0.000 
       0.1 0.923 0.921  +0.002 0.920  +0.003 

      0.3 0.796 0.796  0.00C 0.792  +0.004 
       0.6 0.636 0.627  +0.009 0.624  +0.012 
       1.0 0.467 0.472  -0.005  0.461  +0.006 
       1.5  0.321 0.326 -0.005 0.316 +0.005 
       2.0 0.219 0.221  -0.002 0.214 +0.005 
      2.5 0.150 0.150 0.000 0.150 0.000 

       3.0 0.103 0.104  -0.001 0.110  -0.007 
      3.5 0.072 0.072 0.000 0.080  -0 .008 

       4.0 0.050 0.051 -0.001 0.051 -0.001 
       5.0 I 0.020 0.021  -0.001 0.030  -0.010 

 22E-250  cm-l- interval  
I   -    GOODY  Tr T]  77(a-0.1)Tr r-                                                                                                i(a.---.0.1) 

         variable (a=0.1) (a=0.2) -7.1-(a_=0.2) (a.-_-0,05) -Ti(az--0.05) 

      0.0 1.000 1.000 0.000 1.000 0.000 
       0.1 0.920 0.910  -!  0.010 0.920 0.000 
       0.3 0.771 0.773 -0.002 0.760  1 0.012 
 0.6 0.594  0.607  -0.013 0.579  +0.015 

       1.0  j 0.435 0.447  -0.012 0.434 0.001        1
.5  I 0.319 0.326 -0.007 0.321 -0.002 

      2.0 0.236  0.241 -0.005 0.244 -0.008 
       2.5 0.175 0.173  -1 0.002 0.181 -0.006 
       3.0 0.129 0.127  +0.002 0.131  -0.002 
      3.5 0.095 0.091  I  0.004 0.095 0.000 

       4.0 0.065 0.059  10.006 0.063  --0.002 
      5.0 0.020 0.020 0.000 0.020 0.000 
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 by GOODY instead of the real values of o- and  8 available from the intensity-position 
 data of absorption band. Using the intensity-position data by YAMAMOTO and  ONISHI 

 [10] the transmission for  100-125  cm-1 and 225-250  cm-1 intervals were recalculated 
 by  COWLING'S method for  oc=0.2, 0.1 and 0.05  cm--' and they are shown as a function 

 of the  GOODY variable whose  o and  8 values are obtained from  YAMAMOTO-ONISEI's 
 data. (Fig. 4 and Fig. 5) It will be seen that the transmission curves for both 

 intervals differ from the exponential function of the GOODY variable, but the differ-
 ence of curves of both intervals is rather small, suggesting that COWLING'S "universal 

 carve" approximation is a useful simplification. If the line which connects the point 
 a = 0.1  cm-1 is taken to be the transmission curve, the transmission errors due to 

 different values of  a are seen in Table 1 for  a=0.2 and 0.05 A systematic  distribu-
 tion of errors is seen in the table, but the errors are of a tolerable degree. 

 3 Transmission in Case of Variable Pressure 

    The pressure effect on the transmission has been studied chiefly on the cases of 
 ELSASSER band and of a single line of the LORENTZ shape, and so we will consider 

 the case of the ELSASSER band first. 

 1. Transmission for the  ELSSASSER  band. 
    The transmission function for the ELSASSER band is given by 

             1C-H'Sq sinh/3  71  —  2nexPJP1 gelcoshr--cos s61P ,(1) 
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 where  fi, and  fi, are the pressure at the top and the bottom of the air column con-

 sidered, S is the intensity of the line, d the line distance, q the specific humidity, g 

                                      7tOt  the acceleration of gravity,1512d ,  a the half-width, s =   2717' , and  7) the wave 

 number. PLASS and  FivEL [9] have studied theoretically the transmission of the 
 ELSASSER band for model atmosphere in which q is constant with height. The follow-

 ing study, however, is based on numerical computation. In order to carry out 
 a numerical study, a standard atmosphere with a relative humidity of 60 % at all 
 heights, which was originally used as a model atmosphere in estimating a nocturnal 

 radiation by  LONNgvisT  [8]  , was assumed, and a weak absorption line at 852.51  cm--1, 
 whose intensity is shown in Fig. 6 as a function  of temperature, was taken as an 

 example. Then the values of 51)2—Sq sinhp—    dp for various  values of pupa 
 gd  cosh  13—cos  s 

 and cos s were computed by numercal integration, and the reciprocals of the values 
 are shown in Fig. 7 as a function of cos s. As can be seen from the figure, 

 rfp2 Sq sinhi3                      dpiis nearly proportional to cos s. It is reasonable that 
 L3Pi gd coshs—cos s 

 the linear relationship holds when the values of  pi,  Pa are nearly equal, but it  is sig-

 nificant that the relationship still holds with high approximation even in the case 

 of  pi = 0 mb and  fi,= 1000 mb. Hence we can generally assume that, 

 CP2 Sqsinh (g1sinh  P (2) 
 JP1 gd cosh(3—cos scipcosh  t6  — cos s 

 Putting two special values for s, for instance, cos s  1 and 0, we have 

 P2Sq sinhfdA 

                 cosh"=  iPi  gd cosh—1 P"              2 Sq  sinh dp  (3) 
                        JP/ gd  cosh  (cosh,6-1) 

 and with use of the  fl of (3),  ('—"  ) is given by 

                S(d)= cothu—Sq               tanh, (4) 
                             p, gd 

 Hence, quite similar to the case of constant pressure, the transmission can be ex-

 pressed as 

             TI =sinh 
S_e —ycosh#Jo  (ly)(5) 

                                      dsinh 

                                                  — u— 

 The values of TI of (5) were computed by  GODSON [3] as function of  13 andSfl . 

 The numerical computation of KAPLAN [7] is also of use in evaluating (5). For the 
 standard atmosphere and the ELSASSER band composed of the above mentioned lines 

 the values of  17 were  obta  ined both by the above approximation with use of  Sduand 
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 -g
, and by a complete numerical integration of equation (1), as listed in Table 2. It will 

be seen that the agreement of both TI values is excellently good. 

                                   Table 2 
         Comparison of  71 values obtained from  equations (3), (4) and (5) with those 

         obtained by a complete numerical integration of equation  (1), for an 
          ELSASSER band and a standard atmosphere. Conventionally the former is 
         expressed as  7  1 (Approx.) and the latter as  Ti(Exact). 

 - 

. 

      Pi ,TiT                kExact) (Apprf                      ox .) Error P211IT,Tf                                                         I (Exact) (Approx.) Error 

  1000 900 0.777 0.777 0.000 700 600 0.927 0.928 0.001 
        800 0.703 0.703 0.000  H 500 0.899 0.899 0.000 
       700 0.670 0.670 0.000 400 0.890 0.889 0.001 
   H 600 0.654 0.654 0.000 300 0 .887 0.886  0.001 
 11 500 0.647 0.649 0.002 200 0.886 0.886 0.000 
       400 0.646 0.647  0.001 100 0.886 0.886 0.000 
 /I 300 0.645 0.646  0.001  I/ 0 0.886 0.886 0.000 
    •200  0.645 0.646  0.001     •100 0.645 0.646  0.001 600 500 0.959 0.958  i 0.001 

   •0 0.645 0 .646  0.001 400 0.944 0.944 0.000 
 H 300 0.940 0.940 0.000 
   900 800 0.834 0.834 0.000 200 0.939 0.938 0.001 
 H 700 0.777 0.777  0.000 100 0.939 0 .938  0.001 
   •600 0.753 0.753 0.000  H 0 0.939 0.938 0.001 
         500 0.742 0.743 0.001 

    •400 0.739 0.739 0.000 500 400 0.981  I  0.981 0.000 
 H 300 0.737 0.737 0 .000  H 300 0.975 0.975 0.000 
    •200 0.736 0.737 0.001  H 200 0.974 0 .974 0.000 
    •100 0.736 0.737 0.001  H 100 0.974 0.974 0.000 
 /I 0 0.736 0.737 0.001  H 0 0.974 0.974 0.000 

   800 700 0.885 0.885  0.000 400 300 0.993 0.994 0.001 
   •600 0.844 0.843  0.001 200 0.992 0.992 0.000 

 H 500 0.828 0.827 0.001  11 100 0.992  I 0.992  0.000 
 11 400 0.820 0.820 0.000  •/ 0 0.992 0.992 0.000 
 /I 300 0.818 0.819  0.001 

 11 200 0.816 0.818 0.002 300 200 0.9987 0.9986 0.0001 
 /1 100 0.816 0.818 0.002 100 0.9986 0.9985 0.0001 
        0 0.816 0.818 0.002 0 0.9984 0.9984 0.0001 

 200 100  0.99992  0.99991  0.000  01 
                                                 0 0.99991 0.99990  0.00001 

                                        100 0  0.999991 0.99999 0.00000 

   An easier, but less accurate way of estimating the value of was suggested by 
CURTIS  [2]  . That is, 

 P2  Sq  

            =  Pigd   (6)                             P"
[P2Sq  j
p,  gd 

   and the corresponding is simply given by 

 Su  c  Sq  (7) 
 d  gcl 

  The values of  Tr obtained from equation (6), (7) and (5) for several  Pi and  p, 
of the model atmosphere are shown in Table 3. The agreement of the  7/ values 

with the  ri (exact) values is fairly good. 
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                                     Table 3 

                       Comparison of  ri values obtained from equations 

                          (61, (7) and (5) with  Ti(Exact). 

          P2  Pi  Tr  (Approx.)  I  T/  (Exact)  I Error 
        1000 900  I 0.779 0.777  I 0.002 

              800 0.706 0.703 0.003 
              700 0.675 0.670 0.005 
              600 0.658 0.654 0.004 
              500 0.652 0.647 0.005 
 /I 400 0.649 0.646 0.003 
 I/ 300 0.648 0.645 0.003 
              200 0.647 0.645 0.002 
              100 0.647 0.645 0.002 
              0 0.647 0.645 0.002 

 2. The GOODY variable in case of variable pressure. 

    The next problem is to find out an effective  GOODY variable in case of variable 

 pressure. The preceeding derivation of  the ELSASSER transmission function will be 
 instructive for the purpose. Starting from the  LORENTZ line case, we will assume 

                    1  C'2  Sqa cl,h=Su                                              (8)                               7.rgp
i v2 +(X2-I-  7r. P2 +-C-C2 • 

 Putting two special values of  7) in equation (8), for instance  v = 0 and  7) =  8/4,  8 
 being the mean line distance, (corresponding to cos s 1 and 0 of the case of the 

 ELSASSER band) and computing numerically the left side of (8), we can determine 

 the  valus of Su and  a. The effective GOODY variable is, accordingly, given by 

 (Su)ava  
              1/2 , (9) 

 8(To + (SU) ava  

 where  (Su)a, means the average value of  Su for the lines in the interval considered. 

 If the transmission for a given interval at constant pressure is known as a function 
 of the GOODY variable at constant pressure, the same transmission at variable pres-

 sures will be obtained as a function of the effective GOODY variable given by (9). 

 The computation of the GOODY variable given by (9), however, will be very complicated 
 because of the two-fold averaging with respect to pressures and lines. Instead of the 

 quantity (9), using the average intensity in place of S in equation (8), we can derive 

 the quantity  Tx.  8-1(—a2 +  a-  2 to be the effective GOODY variable. The use- 
                                  Ir 

 fulness of this quantity in expressIing the transmission at variable pressure is not 

 examined numerically owing to an enormous amount of computation to be carried out. 

 The usefulness of the effective and and for the case of the ELSASSER band is, at 

 present, the only guarantee on this point. 
    The effective half-width proposed by CURTIS is given by 
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                                P2  crq 

                                g-P                                             (10) 
                             di) 

                               Pi g 

and the effective thickness is given by 

             ffu °-q=CP' dp (II) 
                                    -Pig 

These will, of course, be of use in composing the effective GOODY variable with high 

accurancy. 
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