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Abstract

The most accurate representation of the transmissicn for an infra-red
spectral interval is, i course, obtained by a numerical computation like
Cowring's with respect to a real band. In this raper it is shewn numerically
thal such a computed transmission is expressed as 2 lunction of the variable

oo \-1/2 r i i i 5
uo’a:ﬁ‘*l(ﬂ:? " _f‘?_) /% which was introduced by Gooby in expressing the trans-
mission of a model spectrum, where » is the absorbing mass in g cm-2, @ the
half-width, ¢ the mean line intensity, § the mean line distance. So that we
only need to compute the transmission against # for a given value of the half-
width.

1 Introduction

The transmission of a model spectrum which assumed random line positions and
an exponential distribution of line intensities has been investigated by Goopy [6]
and shown to be in good agreement with CowLINGg's computation [1] of the trans-
mission for several intervals of the rotational band of water vapour. Gopson [4,5] has
also investigated the transmission of a similar medel in which a logarithmic ogive
distribution of line intensities was assumed, and has shown that it gave smaller errors
than other transmission functions previously proposed in representing the transmission
of a certain spectral interval of the rotational band of water vapour.

There is, however, one noteworthy point in adopting a random model. A random
model assumes the presence of sufficient numbers of lines in a given interval, while the
interval is usually so narrow that the black body energy curve can safely be regarded
as constant in it, and that not so many lines as assumed by the random model can
exist in it. In addition, as the distribution of line positions in narrow intervals may
differ considerably from one interval to another, even if the transmission based on the
random model is shown to be valid for certain intervals, it is not certain that the
same will hold for other intervals.

Under these circumstances, if a higher approximate representation of the trans-
mission than what is known, for example, as CowLinGg’s “universal curve’” is to be
hoped for, we think it will be ohtained by a numerical computation like CowLING'S
with respect to the real band. It is, however, needed to reduce labour of computa-
tion as much as possible. In the presnt paper it is shown numerically that the com-
puted transmission is expressed as a function, not necessarily an exponential one, of the
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NUMERICAL STUDY OF WATER VAFOUR TRANSMISSION

variable ; yo« 8—1<rx2 - W;—m)ﬂ/g . which was introduced by Goopy and accordingiy

will be called the Goony variable in this paper, where #is the absorbing massin g.cm™2,
o the half-width, ¢ the mean line intensty, and 8 the mean line distance. So that
for a given interval we only need to compute the transmission against # for a given
value of the half-width.

2 Transmission at Constant Pressure and Temperature

Whether a given distribution of line positions is allowed to be random or not is
not so clearly guessed from the definition of randomness which implies that all ar-
rangements of line positions are equally probable. The following consideration will be
useful in guessing the problem. Let n lines be distributed at random in the interval Ap.
The probability that no line exists in a narrow interval, &, of the interval will be given

(4~

) . As dv=nd, where & is the mean line distance, the probability becomes

(1— %—Céﬁ)“ and tends toe __‘;‘ as #-—> oo. This means that in case of random
C

line positions the disribution of line distances is expressed as an exponental function

of the line distance. In Fig. | are shown the distributions of line distance for the
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Fig. 1. Line distance histograms

intervals of 100-125 cm—! and 225-250 cm—' of the water vapour band, the trans-
mission for both intervals being computed by Cowring. It will be seen that the
distribution of line distance for 100-125 cmi—' is nearer to the exponential distribution
than that for 225-250cm—!. By the preceeding discussion we infer that the line
arrangement of the former interval is more likely to be at random than that of the
latter interval.

Now, Goony has shown (cf. Fig.1, (b) of his paper [6]), that the transmission of the
100-125 ecm—* interval computed by CowLING was well expressed by the transmission
function based on his random model. The comparison between Goony’'s transmission
function and CowrLing's data for this interval is reproduced here in Fig. 2 taking the
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Goopy variable as abscissa.

Similar comparison of the Goopy’s theory with CowLING’s date for the 225-250cm—1
interval, which Goopy did not show explicitly, is shown in Fig. 3. If the statistical
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Figs 2. Comparison between Goony’s transmission function and CowrLing’s
data for 100-125 cm~! interval. The solid curve is Goony’s function
and the points are due to CowLing’s data and ¢=4.25% 10% cm2g-1,
#=1.48 cm~! recommended by Goopy.
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Fig, 3. Comparison between Goony’s transmission function and CowrLiNg’s
data for 225-250 cm-1 interval. The heavy solid curve is Goony’s
function and the points are due to CowLiNG’s data and ¢ = 6.93
% 10% om?g—1, §=9.51 cm—! recommended by Goopy.
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NUMERICAL STUDY OF WATER VAPOUR TRANSMISSION

theory of Goopy were applicable to the transmission of this interval, the points in
the figure, due to Cowring's data, should have coincided with the exponential curve re-
presenting the theory. Actually, some discrepancy between them is seen in Fig. 3.

In reviewing the random theories of transmission hitherto proposed [4,6] we see that
the exponential representation of the transmission function is due to the randomness
of the line positions, while the distribution of line intensities determines the functional
form of the exponent. Now suppose an interval in which the distribution of line intensi-
ties is exponential like Goopy’s model, but that the distribution of line positions
differs from the random distribution. Then it may be possible to express the trans-
ﬂ)““

9w

mission of the nterval as a certain function of uo ocB*l(m* + , whichmay in

general differ slightly from the exponential function. According to Gonsox, a loga-
rithmic ogive distribution of line intensities is more likely than an exponential one,
so that the use of the Gopsox variable will be more reasonable. However, as the
Goopy variable is by far a simpler combination of o#/8 and «/§ than Gopson vari-
able, the Goovy variable is used in this paper from the standpoint of reducing the
labour of computation,

Now in expressing the transmission as an empirical function of the Goony vari-
able, there is no need to use the empirical, or fictitious values of & and § recommended

Table 1
The transmission”as a function?of the Goony wvariable for difierent values of a.

100-125cm—1 interval

Goony Ty Tr ri(2=0,1) Tr 77(¢=0.1)

variable (@=0.1) |&=0,2) —rr(@=0.2) (¢=0.03) —'rl(ﬂ'-z(}.l)
0.0 1,000 1.000 0.000 1.000 0.000
0.1 0.923 0.921 40,002 0.920 --0.003
0.3 0.796 0.796 0.000 0.792 +0.004
0.8 0.636 0.627 +0,009 0.624 +0.012
1.0 0.467 0.472 —0.005 0.461 +0.006
1.5 0.321 0.326 —0.005 0.316 4-0.005
2.0 0.219 0.221 —0.002 0.214 +0.005
2.5 0.150 0.150 0,000 0.150 0.000
3.0 0.103 0.104 —0.001 0.110 —0.007
3.5 0.072 0.072 0.000 0.080 —0.008
4.0 0.050 0.051 ~0.001 0.051 ~0.001
5.0 | 0.020 0.021 —0.001 0.030 ~0.010

225-250 cm—! interval

Goopy T T Tr{e=0.1) Tr rr{e=0.1)

variable (2=0.1) (=0.2) —r(®=0.2) (®=0.05) —rr(@=0.05)
0.0 1.000 1.000 0.000 1.000 0.000
0.1 0.920 0.910 +0.010 0.920 0.000
0.3 0.771 0.773 —0.002 0.760 1 0.012
0.6 0.594 0.607 —0.013 0.579 -+ 0.015
1.0 0.435 0.447 —0.012 0r.434 £ 0.001
1.5 | 0.319 0.326 —0.007 0.321 —0.002
2.0 | 0.236 0.241 —0.005 0.244 —0.008
2.5 | 0.175 0.178 10.002 0.181 ~0.006
3.0 | 0.129 0.127 +0.002 0.131 —0.002
3.5 | 0.095 0.091 10,004 0.095 0.000
4.0 0.065 0.059 10.006 0.063 --0.002
5.0 0.020 0.020 0.000 0.020 0.000
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The transmission as a function of the Goony variable, for the different
values of &, for 225-250 cm—! interval. The points represent the trans-
mission computed by Cowring's method with nse of the spectrum data
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mission function for the sake of the comparison,
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by Goopy instead of the real values of o and § available from the intensity-position
data of absorption band. Using the intensity-position data by Yamamoro and OnisH1
[10] the transmission for 100-125 cm~* and 225-250 cm™ intervals were recalculated
by Cowrinc’s method for 0=0.2, 0.1 and 0.05 cm™* and they are shown as a function
of the Goony wvariahle whose ¢ and & values are obtained from YamaAmoro-ONISHI’S
data. (Fig. 4 and Fig. 5) It will be seen that the transmission curves for both
intervals differ from the exponential funection of the Goony variable, but the differ-
ence of curves of both intervals is rather small, suggesting that CowLING’s “universal
curve” approximation is a uselul simplification. II the line which connects the point
oo = 0.1 cm™! is taken to be the transmission curve, the transmission errors due to
different values ol o are seen in Table 1 for «=0.2 and 0.05 cm—*. A systematic distribu-
tion of errors iz seen in the table, but the errors are of a tolerable degree.

3 Transmission in Case of Variable Pressure

The pressure effect on the transmission has been studied chiefly on the cases of

ELsassEr band and of a single line of the LORENTZ shape, and so we will consider
the case of the ELsasser band first.

1. Transmission for the ELSSASSER band.
The transmission function for the ELsassEr band is given by

1 (= P2 Sq sinh 8
= 7_5;5% gy [_ jf!lﬁ coshf — cos s dﬁ} ) (1)
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where p, and p, are the pressure at the top and the bottom of the air column con-
sidered, S is the intensity of the line, @ the line distance, g the specific humidity, g

the acceleration of gravity, f = 27;“ , o« the half-width, s = 2;’” , and » the wave

number. Prass and FIVEL [9] have studied theoretically the transmission of the
Ersasser band for model atmosphere in which ¢ is constant with height. The follow-
ing study, however, is based on numerical computation. In order to carry out
a numerical study, a standard atmosphere with a relative humidity of 6094 at all
heights, which was originally used as a model atmosphere in estimating a nocturnal
radiation by LoNNgvIST [8], wasassumed, and a weak absorption line at 852.51 cm™,
whose intensity is shown in Fig. 6 as a function ol temperature, was taken as an

ps Sq sinh

b1 gd cosh [j‘ COS S
and cos s were computed by numercal integration, and the reciprocals of the values
are shown in Fig. 7 as a function of coss. As can be seen from the figure,

example. Then the values of S -dp for various values of p,, P,

£y Sg sinhf ; 1 : i
[Sm 24 Go%h f—co3s cij)} is nearly proportional to coss. It is reasonable that

the linear relationship holds when the values of p,, p, are nearly equal, but it is sig-
nificant that the relationship still holds with high approximation even in the case
of py =0mb and p,= 1000 mb. Hence we can generally assume that,

(2)

SPZ Sq sinhff 5 :
b, gd cosh f—coss cosh ﬁ — COS§

Putting two special values for s, for instance, coss =1 and 0, we have

gf’ﬂﬁ _sinhf
by gd coshff —1 3)
‘ﬁgﬁi sinh ff ap : (
Jpy; gd coshfi (coshp—1)

coshf =

and with use of the § of (3), (Sdi) is given by

(%) = coth f S Sq tanh § dp, (4)
Hence, quite similar to the case of constant pressure, the transmission can be ex-
pressed as
ry=sinh f{” I i G (5)
deinh B

The values of ; of {5) were computed by GonsoN [8] as function of §and H—E‘i;- B
The numerical computation of Kapran [7] is also of use in evaluating (5). For the
standard atmosphere and the ELsassEr band composed of the above mentioned lines

the values of =, were obtained both by the above approximation with use of Sg and
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B, and by a complete numerical integration of equation (1), as listed in Table 2. Tt will
be seen that the agreement of both +; values is excellently good.

Table 2
Comparison of 7; values obtained from eqnations (3), (4) and (5) with those
obtained by a complete numerical integration of equation (1), for an
Ersasser band and a standard atmosphere. Conventionally the former is
expressed as vy (Approx.) and the latter as ,(Exact).

7 p g T T . SeTy
2 Pr {Exact) [(Approx.) Srrar Pa £ { [.EX'L{l(‘.t) (.—‘\pp[]’c':x.) Birpat
1000 900 0.777 0.777 0.000 700 600 0.927 0.928 0,001
" 800 0.703 0.703 0.000 " 500 0.899 0.869 0.000
" 700 0.870 0.670 0.000 " 400 0.890 0.889 0,001
" 800 0.654 0.654 (.000 " 300 0.887 0.886 0.001
“ 500 0.647 0.649 0.002 “ 200 0.886 0.886 0.000
" 400 0.646 0.647 0.001 “ 100 0.888 0.888 0.000
" 300 0.645 0.646 0,001 u 0 0.886 0.886 0.000

” 200 0.645 (0.646 0.001

o 100 0.645 0.646 0.001 600 500 0.959 0.958 0.001
" 0 0.845 0.646 0.001 " 400 0.944 0.944 0.000
" 300 0.940 0.940 0.000
900 800 0.834 0.834 0.000 " 200 0.939 0.938 0.001
n 700 0.777 0.777 0.000 " 100 0.939 0.938 0.001L
” 600 0.753 0.753 0.000 “ 0 0,939 0.938 0.001

" 500 0.742 0,743 0.001
" 400 0.739 0,739 0.000 500 400 0,981 0.981 0.000

” 300 0.737 0.737 0.000 " 300 0.975 0.975 0.000
" 200 0.736 0.737 0,001 u 200 0.974 0.974 0.000
" 100 0.736 0.737 0.001 " 100 0.974 0.974 0.000
" 0 0.736 0.737 0,001 " 0 0.974 0.974 0.000
800 700 0.885 0.885 0.000 400 300 0.993 0.994 0.001
" 600 0.844 0.843 0.001 " 200 0.992 0.992 0.000 .
” 500 0.828 0.827 0,001 u 100 0.992 0.992 0.000

" 400 0.820 0.820 0,000 " 0 0.992 0.992 0.000
" 300 0.818 0.819 0,001
" 200 0.816 0.818 0,002 300 200 0.9987 0.9086 0.0001

” 100 0.816 0.818 0.002 " 100 0.9986 0.9985 0.0001
" 0 0.816 0.818 0.002 o 0 0.9984 0.9984 0.0001
200 100 0.99992  0.99991 0.00001
u 0 0.96991] 0.999%0] 0.00001
100 0 0.99999  0.999%9  0.00000

An easier, but less accurate way of estimating the value of § was suggested by
Curris [2]. That is,

b2 5S¢ g4
B —Sﬂ_éﬁ:__ﬁ » (6)
B SP9 Se. ap '
Py gd
and the corresponding 'S:; is simply given by
Su _ (?2 Sg
T Q)

The values of +; obtained from equation (6), (7) and (5) for several p, and p,
of the model atmosphere are shown in Table 3. The agreement of the +; values
with the 7; (exact) values is fairly good.
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Table 3
Comparison of =y values obtained from equations
(6), (7) and (5) with ;(Exact).

P P 77 (Approx.) 71 (Exact) Error

1000 900 0.779 0.777 0.002
o 800 0.708 0.703 0,003
” 700 0.675 0.670 0.005
" 600 0.658 0.654 0.004
p 500 0.652 0.647 0.005
” 400 0.649 0.646 0.003
" 300 0.648 0.645 0.003
” 200 0.647 0.645 0.002
“ 100 0.647 0.645 0.002
" 0 0.647 0.645 0.002

2. The Goony variable in case of variable pressure.

The next problem is to find out an effective Goopy variable in case ol variable
pressure. The preceeding derivation of the ELSASSER transmission function will be
instructive for the purpose. Starting from the LorENTZ line case, we will assume

1 (P Sqa o
g Sp et P—f pifud (8)

Putting two special values of » in cquation (8), for instance » =0 and » = §/4, §
being the mean line distance, (corresponding to coss=1 and 0 of the case of the
ELsasser band) and computing numerically the left side of (8), we can determine

the valus of S and . The effective Goony variable is, accordingly, given by

(ST@;) tL‘!,'a-

(e 5n)

T ©)

where (Su),, means the average value of Su for the lines in the interval considered.
If the transmission for a given interval at constant pressure is known as a function
of the Goony variable at constant pressure, the same transmission at variable pres-
sures will be obtained as a function of the effective Goopy variable given by (9).
The computation of the Goony variable given by (9), however, will be very complicated
because of the two-fold averaging with respect to pressures and lines. Instead of the
quantity (9), using the average intensity in place of S in equation (8), we can derive

the quantity ou ES—l(EZ T+ m;’r “)ml/z to be the effective Goony variable. The use-

fulness of this quantity in expressing the transmission at variable pressure is not
examined numerically owing to an enormous amount of computation to be carried out.

The usefulness of the effective %“- and A for the case of the Ersasser band is, at

present, the only guarantee on this point.
The effective half-width proposed by CURTIS is given by
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_ §ratlap

=& (10)
f’g O'q d‘ ]
P g ?

and the effective thickness is given by

— ?2 oq
ou =\ L dp, 11
[y 2L ap (1)
These will, of course, he of use in composing the effective Goony wvariable with high
accurancy.
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