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 Abstract 

             The integrals contained in the famous investigations by H.  LAMB  (1904) 
        and H.  NAKANO (1925) of the problems on the motion of the surface of an elastic 
        solid produced by a linear source of disturbance, are evaluated systematically 

        by the method developed by T.  SAKAI (1934), and some remarks are given on 
         the problems. 

1. Introduction. 

    The propagation of tremors over the surface of a semi-infinite elastic solid 
produced by the vertical force concentrated at a line or a point on the surface was 
investigated by H. LAMB  Cl). He concluded that three types of waves, with the 

velocities of the ordinary longitudinal,  transver'e and RAYLEIGH waves respectively, are 

propagated outward over the surface. H. NAKANO  (2) investigated the case of a 

horizontal source of disturbance situated in the interior of the medium, and showed 

that the RAYLEIGH waves do not appear at places near the epicenter, and at large 

distances the RAYLEIGH waves are propagated with a phase retardation  which takes 

place as if they are generated at the epicenter simultaneously with the original distur-
bance. The integrals contained in these famous  and  fundamental investigations were 

evaluated by considerably complicated processes. In 1934, T. SAKAI  (3) studied the 

case of a point source of disturbance at an internal point of the body. The integrals 

involved in his theory were evaluated by the method of the steepest descent, which is 

similar to those used by A.  SOMMERFELD and H. WEYL in the problems of wireless 

telegraphy. The method developed by  SAKAI was so useful in the problems of the 

elastic waves that it has been used by many authors e.g. SAKAI and S.  SYONO  (4), 

 SYONO (5),  SAKAI  (6],  SYONO (7], T. HIRONO  (8], H. HONDA and K. NAKAMURA  (9) in 

attacking various problems. 

    In the present paper, we intend to show that the integrals involved in LAMB and 

NAKANO'S papers  relating to the problem of the motion of the surface of a semi-

infinite elastic solid produced especially by a linear source of disturbance, can be 

evaluated very systematically by SAKAI'S method, and state some remarks on the 

problems. No detailed exposition of the theories will be attempted here, since they 

are described fully in their papers. 

2. Surface Linear  Source. (LAMB'S Problem). 

    We deal with a semi-infinite elastic solid, and take the rectangular coordinates 
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 (x,y)  , so that y 0 should coincide with the surface of the solid lying on the positive 
    side of the plane.  We suppose that the motion of the solid to be in two dimensions. 

    The component displacements are denoted by u and v, the density by p, the period of 
    the motion by T =  27r/P, the time  by  t, and the  LAIN4'S constans by 2 and p. LAMB 

    showed that the component displacements  u and v of the surface of the solid produced 

    by the concentrated force Q exp  (ipt) acting parallel to y at points on the line x 0, 

    y 0 on the surface, per unit  length of it, can be expressed by the following  formulae: 

 iQ ,;(2V—le2-2(xii)exp(iEx)d$  
 u.,  27r1,1  F($) 

  (1), (Lamb.  (52)]                Q  /e
a  exp(isx)c/6 

           = 

 F(s) 

 F(i) =  (2$2--k2)2 —  4   (2) 

 k=  V  R/(2+21z)  p  k=  91p  p 

 ce  and  Ii  are  the  positive  real,  or  positive  imaginary  quantities  determined by 
 =  s2  —  h2,  i" —  k2,  s being real. 

 v1, and  v; are the velocities of the longitudinal and the transverse waves respectively. 
        The time factor exp  (ipt) is here and often in the sequel temporarily omitted. 

        Now let us consider a complex plane defined by  +4)  , and represent it further 
    upon w  (P-Fiq) plane by 

               =  la sin w, where sin w = sin p cosh q  -F i cos p sinh q, 
    and confine ourselves to the region bounded by two straight lines p =  —7/2 and  n/2, 

    and a certain region adjoining it, if necessary. Then we have 

 iQ  =  r  sin w  Fr(r) exp  (ihx sin w) dw,  271.1  , 

 (3)          "(2
)Ch•)  v.—112-F, (7'expxsinwdw,  ;7-11 

 Fe(r)  r  Cn2  +  2(r2  —  1)  —  2rVr2-1-n2  ]/D(r), 

 Ff,(1)  riD(r), 

 D(7)  =  (722 +  2(2—  1)1/7-24-1-2  —1  , 

                           =  cos  tv,  n =  k/h  vp/v,› 1. 

        The integrals (3) belong to the type fully discussed by  SAKAI  . The branch 

    points B, B'  (1  =  ±iV  n2  —1) and the poles A, A' 

 (ro  =  +ido,  do— 1/-n21...70 —1,  co < —1,  after:  Sakai) lie  A' 
     on the lines p — f a-/2 on the  w— plane, as are shown 

 in the figure 1.  8 
                                                                    --E 

      For B (cos w —  i  1/)2  —1; sin w  n) on the  P                 B/0      line p =  —7r/2, cosh  q'  =q'n' —I, and for 

    A (cos w sin w = —  V1  +  do:1) on the line 

 p = —2, coshV1-1--do', sinh q., = —  du. The  A• 

     velocity of the RAYLER;II waves  v  is represented as Fig. 1.  w-plane
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 14/1/1.--1-62. Now the cut is the line B B'. We  assume that in the upper sheet  
• of the  iv-planes ,  Vr2-1-n2  -1 tends to  1 when  I tends to a infinitely  large negative 

   imaginary value, and the path of integration L (-  /2  27/2-1-i30) lies in the upper 

   sheet. The poles also lie on the  upper sheet. 

       When  hx is large, we can use the method of the steepest descent.  The saddle 

  points lie at (p =  0).  As  ihx  sin  w  -  -  hx  cos  p  sinh  q  +-  ihx  sin  p  cosh  q, 
  the path L' of the steepest descent which passes through the saddle point  (p —  7/2, 

  q 0) is defined by sin  p cosh q  -  -1. cos  p sinh q tends to  + when (p  , 

   q or  (p  -->  0,  q--) ). 
       If we deform the original path L of integtation 

   into L', we must further take a contour integral 

   along a path  Li.L2 going round the branch point  f 
   B, and also take into account the residue at the pole 

 2.    A
, as are shown in thefigure 2. The path  LiL,-Tr 

   along which the integrands diminish most rapidly L0                                              • 2 
   is sin p cosh q  -                                                        L 

                                    7'0A       Putting  Zia==-- US')--1-ui"+d6",r 

     vu = v(°v;;"vi3)LL,2I 

 we haveFig. 2. lf,}plane. 

 iQ-sin wF,(7) exp (ihx sin  w)  dw, 

   (P)                    i
n'C2               7),"= F?,(r)  exp(ihx sin  w) dw,                         2;:11 

            , iQ                 i= C sin  to  F-,.(r)  exp(ihx sin  to) dw,                         277/1  L,L2 
  (5) 
              v,52)= -in'QFy(T) exp(inx sin w) dzo,                        277/1 L, 

           •r,;':722-4-2( T2— 1) —27VT21-722— 1  
                  DV)exp (ihx sin w)                                      at A,    (6) 

               ;Q- 
             vu•)=-.—22                -,;•-••exp(Mx sinw)•' 

 itL._D) sin to 

             J 

                                                                     .Jat 

       The values of the integrals (4) and (5) are obtained by the methods similar to 

   those described briefly in the succeeding article,  B therein being replaced by rt./2 in the 

   process of calculations, and they are expressed as follows, the time factor being 
 inserted: 

            QnYn2-1 iexp{i(pt-hx- 7,14) } 
 itu= 

 to77:(n2-2)3 (hx)'I2 

                          Q2h3 k2102 -iexpfi(pt-hx7r/4)}                        — 
-  Tr.  (k2-2112)3  (hx.)312 

 (7)           Q2
n' iexp{i(Pt -77/4 ))•        VSI)= 

         A/(d"-2)'(hx)3/2 1 

                         Q  /  2  112k2 iexp{i(Pl-hx-7.14)}  —2
tcW(k2-2h2)2 (hx)312
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          (2)Q 
4/1 21/ 122 —1 iexp{ /DI — kx7r/4)}           uo— 

         it 77  n  (hx)-I2 

                                  is/i__h(kxP-12--exn{i(pt— kx —7:/4)},                 /.2Ai7rle 

       _,2)=2Q
4/2(n"—I) iexp{i(Pt—kx 711.4)}   (8)         u/2n n71'2 (hx)31' 

 2Q)2(1 _h2 iexp(i(pt'-r/4)}_                                                      —7r/4)} 

              v 

                         /4/ 7E  k2 ) (kx)'12 

            As for  143) and  v,(j3), we have 

                   Qa0{222-26:7:-2-1-2 do On—e -F1 }          743) —- 
(— idu)exp{i(pt—hx1,71± aZ)},    (9) 

           n2 Qd'            = —  exp{i(fit— hx1/1-F 6;,0}. 
 ,tt 171+62 TY (—ido) 

           Putting  10,3  =  r, we have  hi,/1-F  tc. From the relation  F(h  sinw) =  h4  I)(7), 

       we have  F'  (h sin  w)  =  D'(T)/cosw. Putting the values of cosw and sinw 
       at A into above equation and taking into account the fact that F'  (s) is the odd 
       function of we get 

 D'(—i60)  —  id  FI(K)/h'171+6;i. 

       Also we have 

 a1  —  E2  =  hen,  /31  1/0—k2  =-  . 

           Taking these relations into consideration, we can transform (9) into following (9'): 

 u,',3)—    exp{i(Pt—rx)}, 
 /-4 

   (9') 
                       c3)•Q                          vo= --zK exp{i(pt—rx) },                                      ti 

        where 

              k2 — 2ai pal    flK =              F/ Ft (
K) • 

           The results of the present calculation (7), (8) and (9') together, are quite the 

       same with those expressed as  (90) and  (91) in LAMB'S paper.  It should be noticed 

        that in LAMB'S calculation an adequate free standing waves of RAYLEIGH type had to be 
        added for obtaining the progressive RAYLEIGH waves, whereas in  thd present calculation 

       the progressive RAYLEIGH waves are obtained directly as the result of the evaluation 

       of the integral. 

            Similar treatment of the case of a vertical force concentrated at a point on the 

       surface  may be found in  llmoNo's papers as a special case of his investigation. 

       3. Internal Linear Source. (NAKANO's Problem) 

           The periodic longitudinal waves are assumed to be emitted from the line source 

 at x 0, y f in the semi-infinite elastic solid. The same notations of the quantities 

        concerned are adopted here as in the preceding article. Using the polar coordinates 

 r 1/x2±y  —f)'  ,  —  tan'  Y we put as the radial and the transverse com-

        ponents of displacement  z7,. and  V.v. of the longitudinal waves 

                                                                                                                                                                                                                                •
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        Or =5(1)— —hi-12,1(hr), 0,=acl)— 0,1= 112,0(hr).     ar ra‘ .-) 

       Then the components of displacement at the surface of the solid are expressed 

   by NAKANO as  follows: 

      uo  —  4k2  r  i3$exp(—cif+i:-;x) dc;,              7i
__F(e)                                                             • ..... •• (10) ,  C  NAKANO. (98)) 

            21k22e2—h2 
     VG=—-FCC .)etp(—nf+i'ex)a  7r—c° 

 NAKANO transfo rmed these expressions by using 

   contour integration taking special paths, and obtained  4   Z    ).            _ Z 

 important  results.71/7 
 Now  let  us  again consider a complex plane defined,f/,e/r/ 

  by  C(E+i-0, and repesent it further upon  w(P+iq) plane /// //// 
   by  C = h sinw, and put   . V 

       r  — -V .e+f , f  --  r  cos9, x  —  rsin0. (See figure 3).  Fig. 3. 
   We have 

         41k2 r 
 uo  = sinwG,(r) exp{—iittcos(w+0)} dw,                            2Th  _7._ i ... 

•  

  (11) 
                                             Ny 

 Vo  =—2iF C2' 1::                       (-7Y(T)  exp{—ihrcos(w+0)}dw, 
                   n-h_.;_i„, 

 G.c  --TVT2-H12-1/D(T),  Gg  —  7Cri2+2(7-2-1)j/D(r). 

 When hr is large, the saddle point of the integrands of (11) lies at  w=  —0. 
   As  —ihr cos  (w  +  0) = — hr sin  (p+ 0) sinh q  —  ihr cos  (p+  0) cosh q, the path L' of the 
   steepest descent which passes through the saddle point  (p =  —0, q  -- 0) is defined by 
 cos  (p+  0) cosh q = 1.  sin(P+  0) sinh q tends to infinity  when  (p--  7/2-0,  q--)  —  00) 

   or  (p--)7z/2  —0,  q—o). The point C of  intersection of the path L' with the  Iine 

 p=  —77/2 is given by cosh q  =  1/sin0. 
       The problem is divided into three cases according as C lies below A or between 

   A and B or  above B on the line as are shown in the  figure 4. These distinctions are 
   expressed by the relations 

 1isin0 >1/1+O;,, .^1+6't; > 1isin0 > n, 1/sin0 < n. 
i.e. (12) 

 . , 

 ii ,.                                  A• 
    Sir.    7 Tr , TT 7  1 TT                   - -2-  -*  / 7                       °2  0  T 

    0  `;0   BraLf,''B 

                                                                           ; 

       AL.!_i:/  '.4/  --V/ 

            

;  1 • : /  A 
 ILI  L .                                            L LL                                                              i  

f  0 (ii) (iii) 

                                             Fig. 4. w-plane.
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 X  <  vof  /  ,  thfl-t/  <  x  <  v2f/t/v1-1;  ,  vqfj  V  74-4  <  x. 

          These critical values of x i.e.  v3f/Vet—v.4,  v2f/Vv1-4 are respectively equal to 

 hfiVe—h2  ,  hf  /  h2  , which were given by NAKANO. 

 (i)  x <  milt/14-4. The original path L of integration is displaced simply into L', 

           and we have u0  =  u>1),  vo = 

                  uisi)  = 4ik2•Csinw G,(T) —ihr  cos  (w+  0)} dw,  •77 .1t L' 
                                   • (13) 

                                          2 

 vS1)2ik
L,G2,0) exp{—ihrcos(w+0)} dw.                       7:vz 

     Now  71-04  P.  -2-0-1E° 
             dw dwdw — dw. Putting s = wwe 

         L'7-0 " -0 

           get  r  =--  cos  w  cos  0  cos  s  sin0  sin  s,  sin  zu ---- cos 0  sin  s —  sin  0  cos  s. 

           and 
 dw ds  — ds. 

 0 

          Take — s in place of s in the latter integral, and put 
                     = cos  8 cos s — sin  0 sin s ,  i;*  — —cos 8  sin s — sin 0 cos s. 

              If we take again s  P--Fiq, the path of integration becomes cos  p cosh q = 1, and 

          along it we can take cos s 1  , where  r is real and increases from zero to  infinity, 

          Taking into account the relations sin s ds =  ,  sin  s =  1.7.r  1/2i+r  , (13) can be 

 transformed as  follows  : 

                                                        ep(
nhr-r) (17,                    tfic1)=-=—4.1?--exp(—ihr)[i.-JG,C3)+,e*G.,(7-*)D      ;-chsis  0 

 ( 14) 
 1161) = 7:1exp(--ihr)CGy(r)± G 1,(T) 3 expsin shrr) 

• 

           Now, Ci9G.x(r)-1-i?a,(T*•):1,----0 = —2sin0  Gx(cos0),  CG.vCr)+G!,(T*):.1,-0 =  2Gy  (COS  0), 

          and  {exp(—hr7)/1/  =  -1  nihr  . Transferring all terms besides  exp(  —hrz-)/-tir  , 

          before the integral sign and putting  r0, we get very approximately,                          

. 1 4k21/772—sin20  sin0 cos 0 exp(—ihr)-) •n 113/2 D(cos 0) r 
 (15)                            2k2  (

n2-2sin28)cos  0  exu(—ihr)                          =(i-1) ---  D  (
cos  0) 

             Putting  h  sin()  hx,/r we have  1z4D(cos0)  F(e)  , and inserting the time 
         factor, (15) can be transformed into (16) 

                      4(1—i)k21a112f             JO)   exp{i(Pt—hr)},           VF(E) 

                        2(1 —i)k212112f 2C2—k2         K
i')=expi(pt—hr)}.  (16)              1/P(6) 

         (16) is the results obtained by NAKANO [(91) of p.  37D, but under the supposition that 
 hr1/2r, instead of  hr, is large. 

•
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 v:sf  Ili  <  x  <  v2f  / The path  Li passes between A and B, and we 
   must take into account the residue at A, and we  have: 

 tto  t4"+143),II=—vv0")-+") 

            (_)8,k2 1rvr2n2_1           u3 lzexp{—ihr cos (w+ 0 )}1      L DV)at A 

       (3)4k2rDi (r)sinw—rCd2+2(72 —1)]  (17)h=exp{ihr cos(w+ 0)}]    LatA• 

  Now,  c—ihr  cos  (w+  0)jat  A = 111C —ieff+V 1+ ir-,; xj. 
      Quite similarly as in the preceding section, (17) can be transformed into following 

  (18) and (19) successively. 

                 8k2V O (n2 — 1)          143) ---• -exp{— ihx V 1+ lz,c(30},                         IY ( —Mu) 
                                                                                     ------ • - • (18) 

 4ik2  60:2(6;1+1)—n2J  
 exp{—  ihx1/1±  —  0}.  V1

+  D' 

  And inserting the time factor, we have 

               c3)••13ig           u,,= 8z1z2exp(—exp{i(pt—,                     (10• 
                                                      (19) 

 vS3)--=—4k22 exp(—atf) exp{i(fit—fcx)}.                        F'—  k2 ( 

  (19) is the most important result obtained by NAKANO (114). Also in NAKANO'S 
  calculation, an adequate standing waves of RAYLEIGH type had to be added as in 

   LAMB'S case. 

  (iii) n3f/ V v=','< x. The path L' lies above B, and we must take a contour integral 
  along a path  LLL2 going round B, besides the residue at A. The path  LiL2 is defined 
  by cos  (p+  0)  cosh q n sin0, and is assumed to tends to w =  —  0  —ic>0. We have, 

 u,,  u,S"+uT+u,5",  vo  =  vP+v;2)-4-v63), 

                (,___/k2            Uo—7"'"sinwexp{ihr cos(w+ 0)} dw, 
                           7.n  L

i  La 
                                                    (20)               2ite  

           VCC2• Gy(r) exp{—ihr cos(w+ 0)} dw.  71.h  LiL2 

       When  tut is a value of iv on L2,  VCOS'Wi  )2'  —1 is  —1/1cos2w+n2-1 on L1, if  to 
  is the value on L1 corresponding to  wt.  Donoting,  G,(costoi) and  G,(coswi) by 

 G.,*(cosw) and  Gy*(cosw) on  L,, we have 

          4i                 k2      u,;-) exp{ —ihroas(w+  0)} dw, 
 Li  -----  •  •••  (21) 

 9  T,2 

 le'—  CGy(r)  —  G  il*  exp{  —  ihrcos  (w+  dIV,  Z-12 
 -Et 

 Gx(r)  GAT)  27D22+2(72-1):2-Ci2+712-1  D(r)D* 

 G„(r)—Gg*(i)  8r2(r2-1)Ce--1-2(-12—  1)D1  n2  —  1  /DOW)*  (r) , 

 D(r)Do  (r)  [n3+ 2(r  —1))4  —1672(72-1)2(72+n' -1).



                 ON THE MOTION OF THE SURFACE OF AN ELASTIC SOLID 65 

            Along  —L1, we can put  cos  (w  0)  n  sin0  —i(r  +  cos0^n2—  1)  and  —ihr  cos(w+  0) 

 Vie  f—ikx—hrr Where  r increases from zero at B to infinity. After Sakai, 
        we have, along  —Li near B, 

                      in  
 cos  w +n2--1= —cos(0--Fie)r. 

            Transferring the factors except  1/7  exp(  —  hrr) before the integral sign, putting 

        r = 0, we have, as  exp(—  hrr) dr =  /2(hr)112  : 

         (2) 4^2  (n2  —1)3'42 . 2 f) exp{i(Pt—kx) } 
          u=          ()k(n cos°n' —1 sin0)"1-2exp(—Vk 

  (22) 
                    8 V2 i(n2 — 1r4exp{i(pt—kx)} 

 0 

                    n(n cos Od-ii/n2 — 1 sin0)3/2exp(/ k2f)7.3/2 

        (22) corresponds to  NAKANO (112), i.e. 

 4k2                —'  eXp{i(Pi  kx)  }-t1/c2—k2 Vc2CIex dC ,                                F(C) f(c) 
                                                       c_k)
—k2  = 21k2exp{i(Pt kx)} 2C2—k22C-2 }  ex  dC,        Tc {  F(C)KC) 

                                                            c-k) 

                     f(S) =(2c2—k2)2 +c2 — 112VC2-k2 

                     XRe(—i/C2f-FiCx), 

        which were  left in the integral form. 

            When the periodic transverse waves are assumed to be emitted from the linear 

        source at x  = 0, y = f, the motion of the surface of a semi-infinite elastic solid can 

        be calculated by the methods similar to those stated above. 

        4. Summary 

            The integrals involved in the investigations "On the Propagation of Tremors over 

        the Surface of an  Elastic Solid" due to periodic vertical force concentrated at a line 

        of the surface of the solid by H. LAMB (1904) as a part of his famous paper, and 
        "On RAYLEIGH Waves" produced by the waves emitted from a horizontal  linear  source 

        lying in the interior of the solid by H.  NAKANO (1925), are shown to be evaluated quite 

        systematically by the method developed by T. SAKAI (1934). The values of some 

        integrals left in the integral form in  NAKANO'S paper are also obtained. 
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