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Abstract

The integrals contained in the famous investigations by H., Lame (1904)
and H. Nikaxo (1925} of the problems on the motion of the surface of an elastic
solid produced by a linear source of disturbance, are evaluated systematically
by the method developed by T. Sazar (1934), and some remarks are given on
the problems.

1. Introduetion.

The propagation of tremors over the surface of a semi-infinite elastic solid
produced by the vertical force concentrated at a line or a point on the surface was
investigated by H. Lams (1), He concluded that three types of waves, with the
velocities of the ordinary longitudinal, transverse and RAYLEIGH waves respectively, are
propagated outward over the surface. H., Naxkano [2]) investigated the case of a
horizontal source of disturbance situated in the interior of the medium, and showed
that the RAYLEIGH waves do not appear at places near the epicenter, and at large
distances the RAYLEIGH waves are propagated with a phase retardation which takes
place as if they are generated at the epicenter simultaneously with the original distur-
bance. The integrals contained in these famous and fundamental investigations were
evaluated by considerably complicated processes. In 1934, T. Saxar! (3] studied the
case of a point source of disturbance at an internal point of the body. The integrals
involved in his theory were evaluated by the method of the steepest descent, which is
similar to those used by A. SoMMERFELD and H. WEYL in the problems of wireless
telegraphy. The method developed by SAKAI was so useful in the problems of the
elastic waves that it has been used by many authors e.g. Sakal and S. Syéno (4],
Syéno 5], Sakar (6], Svovo (7], T. Hirono (8], H. HonDA and K. NAKAMURA (9] in
attacking various problems.

In the present paper, we intend to show that the integrals involved in LAMB and
NAKANO's papers relating to the problem of the motion of the surface of a semi-
infinite clastic solid produced especially by a linear source of disturbance, can be
evaluated very systematically by Saxal's method, and state some remarks on the
problems. No detailed exposition of the theories will be attempted here, since they
are described fully in their papers.

2. Surface Linear Source, (LAMB's Problem).
We deal with a semi-infinite elastic solid, and take the rectangular coordinates
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ON THE MOTION OF THE SURFACE OF AN LELASTIC SOLID

(x,%), so that ¥ = 0 should coincide with the surface of the solid lying on the positive
side of the plane. We suppose that the motion of the solid to be in two dimensions.
The component displacements are denoted by # and », the density by p, the period of
the motion by T = 2x/p, the time by {, and the LAME'S constans by 4 and x. LAMB
showed that the component displacements # and v ol the surfzce of the solid produced
by the concentrated force @ exp (ipf) acting parallel to » at points on the line x =0,
¥ =0 on the surface, per unit length of it, can be expressed by the following formulae :

uy = — & 5 S8k —2ap)exp(ifx)ds
’ 2rp ), [G) .
s @ : oo (1, (Lamb, (52))
G o @ (" kaexp(ifx)ds
" Zoh g F(&) ¥
F(F) = (28 -k — 480, e (2)
B = Vii(a+20) p = pio, k= Volp p= po.

« and /5 are the positive real, or positive imaginary quantities determined by
o = &% — BE= gt — R & being real.

v, and 2, are the velocities of the longitudinal and the transverse waves respectively.
The time factor exp (ipf) is here and often in the sequel temporarily omitted.
Now let us consider a complex plane delined by & (£+4%), and represent it further

upon w (p+ig) plane by

; = Isinw, where sinw = sinpcoshq -+ icos psinhg,

and confine ourselves to the region bounded by two straight lines p = —=/2 and n/2,

and a certain region adjoining it, if necessary. Then we have

iQ %1‘- ,':l:. ] ] .
#y = 2 " sinw F.(7) exp (7hx sin w) dw,
= ¥t
s WBiix ’ (3)
Vo = — fﬁ_? } F,(v) exp ({hx sinw) duw,

FoT) = 70+ 2012 — 1) — 27V T4+47—1 )/D(T),
F.(7) = T%/D(r),
D) = @+ 20D - @ -DVit+at-1,
7= cosuw, n=Fklh = vp/v.> 1.
The integrals (3) belong to the type fully discussed by SAKAI. The branch
points B, B/ (¥ = 4+iv'u*~1) and the poles A, A’

(Yo = +idy, do=Vn* 2o —1, &< —1, after:'Sakai) lie 9% :
on the lines p = +=/2 on the w—plane, as are shown
in the figure 1. id ‘
For B (cosiw = —iVr—~1}; sinw = —n) on the “g 0 % 2
line p = —#/2, coshq'= #, sinh¢'= —V#*—1, and for e A i
A (cosw = —idy, sinw = —VI1+dZ) on the line
p = —=n/2 coshqy = V1+é° sinhg, — —du. The Al

velocity of the Ravieicn waves #, is represented  as Fig- 1. w-plane.
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v = /v 1+d., Now the cut is the line Bi3. We assumc that in the upper sheet
of the w-planes, V7*+z*—1 tends to ¥ when 7 tends to a infinitely large negative
imaginary value, and the path of integration L (—m/2—iw —» /2 +{=) lies in the upper
sheet, The poles also lie on the unper sheet.

When /Zrx is iarge, we can use the method of the steepest descent. The saddle

points lie at (p = £r~/2, ¢ = 0). As 7hxsinw = —/lircos psinhg + ks sin pcoshag,
the path £’ of ihe stespest descent which passes through the saddle point (f = —=/2,
¢ = 0) 1s defined by sing coshg = —1. cos p sinhg tends to +< when (p — —m,

g-r—==2)ar (p-—0, g—» .
1f we deform the criginal path L of integtation

into L', we must further take a contour integral ; /1 4
along a path LiL: going round the branch point j i / l f
B, and also take into account the residue at the pole | I / B
5 ; ~Tr ) [/
A, as are shown in the figure 2. The path L.[l. ]T‘ = lo <
along which the integrands diminish moest rapidly ‘ i e f
| Lo
is sin p coshg = —an. -y | ’
Putting 20 = 2§ -+oi" + 25>, T if TT/’ | »
oo = BOHUO+0P, R
we have Fig. 2. « plane.
wit= :;E‘L S sin w F.(7) exp (fhx sin w) duw,
"4 I .
. :Q ............... (T’)
v = — ?zf__# L’Fy(i’) exp(7fx sin w) dw, !
ey e 13
5 27”1 X m w Fe(7) expléhx sin w) duw.
L =+ (3)
c2n 0 e vp
U= F(7) exp(ifex sin w) dw,
T Ly
. ) LTI =27y TR — L) . o ol '
#® :%A [ £ T2 DD’(T)I V i 2 exp (ihxsin w)J' l
- L R ] (6)
i Q 7 = e
= Q i — explihxsin w)

p L DV(r)ysinw -

The values of the integrals (4) and (5) are obtained by thé methods similar to
those described briefly in the succeeding article, ¢ therein being replaced by #/2 in the
process of calculations, and they are expressed as follows, the time factor being
inserted :

wo Q1 2._73' Yt fexpli(pt—hx—=/4)}

v & n N = (-2 (ha)™
_ Q12 BEVE—R fexpli(pt—hx-r/4)}
T w r (-2 (e Y ' ;
5 P “ {0}
A & 2 w dexpl{i(pt—hx—=/4)}
VTN 7 (-2t Chx)2 .

_Q /2 i texpli(pt—hx—r/d)}
TopN 7 E-2h)E Ghx)'™ )
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czj_ Q -J \/ n'_l 48X_p(i(pf k.t‘— /4)}

(hx)™®
R 1 P
A/r’v’ k* (—kxwe}.p{z(pi kx—n/4)}, .
S 2Q 2 (' —1) zexn{z(pa! —kx—a/4)} P
YT N A (hx)™®
20 7 7 (1 iexpli(pt—hx—n/D)}
ke
As for #§” and v§”, we have
u§P = — Q Ol —20;—2+2 G Vﬂanﬁf’f_ﬂ:l_}__ exp{i(pft—Hxy/ 14+63)},
F1 D=0
. g (@
. S, N———C R w54

£ VI8 D/(—ido)

Putting p/vs = x, we have v'1+¢% = x. From the relation F(/sinw) = B D(7),
we have F'{isinw) = —h'sinw D'(7)/cosw. Putting the values of cosw and sinw
at A into above eguation and taking into account the fact that F/(&) is the odd
function of £, we get

D'(—idy) = idy F'(&)/ TPV 1+62.
Also we have
o= Ve~ =k, b = V=it = Wi—n+l.
Taking these relations into consideration, we can transform (9) into following (97):

ui=— —Q;— Hexpli(pl—rx)}, ]
L T [:gf)
v = ﬂ—z"g— Kexpli(pt—rx)},
where
_ _ w2 R—25} - Ko
i F'Cx) » AT TTEGY

The results of the present calculation (7), (8) and (9') together, ara quite the
same with those expressed as (90) and (31) in LamB's paper. It should be noticed
that in T.amp's calculation an adequate free standing waves of RAYLEIGH type had to be
added for oliaining the progressive RAYLEIGH waves, whereas in the present calculation
the progressive RAYLEIGT waves are obtained directly as the resuit of the evaluation
of the integral.

Similar treatment of the case of a vertical force concentrated at a point on the
surface may be found in HIRONO's papers as a special case of his investigation.

3. Tnternal Linear Source. (INAKANG's Problem)

The periodic Iongitudinal waves are assumed to be emitted [rom the line source
at x =0, ¥ = f in the semi-infinite elastic solid. The same notations of the guantities
concerned are adopted here as in the preceding article. Using the polar coordinates

r=vV2+(y—75°, ¢=tan™ y_;f we put as the radial and the transverse com-

ponents of displacement ¢, and #, of the longitudinal waves
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HD oD
0. = 57 = —hHe (hr), U, = .3__5‘; =0, ® = Hplhd.

Then the comaoonents of displacement at the surface of the colid are expressed
by Naxano ag follows:

2 aa &
y = | ey exoC—a+iza) a,
- 2~ e p e (10), [TNakaxo, (98))
Rt e 28R iz
By = _-‘%— j-h—}@% exp(—af+ifx) dé. !

NAKAND transformed these expressions by using
contour integration taking specizl paths, and obtained

z
important results.
Now let us again consider a complex plane defined
by ¢(&+ip), and repesent it further upon w(p+iq) plane
by ¢ = hsinw, and put
r=V@+f, f=rcos), x=rsind. (See figure 3).
We have
19 Brie
wy = 41?: j‘ sinw G-(V) exp{—ihrcos{w+0)} dw,
e s £
2152 M7 .
Wy g g G.(7) exp{—ihrcos(w+0)}dw,
Ge =7V T 4n'—=1/D(), G, = T[22 =1/ L.
When kr is larze, the saddle point of the integrands of (11) lies at w = —0.
As —ihrcos (w+ ") = —Lrsin (p+0) sinh g — ikrcos (p+06) coshg, the path L' of the

steepest descent which passes through the saddle point (p= —f, g = 0) is defined by
cos(p+0)coshg= 1. sin(p+0) sinh ¢ tends to infinity when (f—>— 7/2—6, g —>°)
or (p—>=/2—0, g—»=). The point C of intersection of the path L' with the Iine
p=—m/2 is given by coshqg = 1/sinf.

The problem is divided into three cases according as C lies below A or between
A and B or zbove B on the line as are shown in the figure 4.  These distinctions are
expressed by the relations

1/sinf > V1403, V146> 1/sinf >n, 1/sinf <an

i.e. (12)

A i £
o7 - ]

e o ; poaAT

[ I ' LEI'I L

i) {ii) (iii)

Fig. 4. w-plane.
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r<of/Voi—v;, vfVori—ui<zx<of/Vvi—-ul, wf/Vi-vi<zx
These critical values of x ie. vaf/Vei—vi, »f/Vvi—v: are respectively equal to
B/VE—K, Bf/VE -k, which were given by NAKANO,
() x <#f/Vei-vi. The original path L of integration is displaced simply into L/,

i .
and we have = u§>, v = vj",

dik*
wi? = j f; g sinw GA(7) exp{ —ikrcos(w+0)} dw,
fod sessssssenns (13)
i”
= :t]z— E G:(7) exp{—ihrcos(w+6)} dw.
Now E-fries FGire “Fofie
5 dw = [ dw = X dw — ( dw. Putting s = w+0, we
4! ~E-0-1= -8 “-
get T = cosw = cos 0§ cos s+ sinf sins, #=sinw =cosf sins — sin # coss.
and Trie - f-ie
{ dw = [ ds — { ds.
Lt % L

Take —s in place of 5 in the latter integral, and put
* =cos ! coss — sin # sin s, %= —cos @ sins — sinf coss.

If we take again s = p+ig, the path of integration becomes cos p coshg =1, and
along it we can take coss = 1 —¢7, where 7 i3 real and increases from zero to infinity,
Taking into account the relations sins ds = ddr, sins= VvV VZ&+r, (13) can be
transformed as follows :

4a5? .
wiP = — . exp(ﬁfs?’){ [BGA)+5¥G(T*)) exp(~Ars) oo ,

al . sins

s & T s (14)
o= — “% _oxp(~ikr) g{(;y(?')—i—Gg(i‘*)je—xp(.:]y—‘-)- dr.

it % sins

Now, [BG:(7)4-F¥G:(1*)Jemn = —2sind Ge(cosl), [Gy (T )+ Gy (I™) =0 = 2G,(cos),
and 50 {exp(—hro)/v < Ydt =+'w/hr. Transferring all terms besides exp(—/7ir7)/Vz,
before the integral sign and putting © == 0, we get very approximately,

45 v n *—sin’f sinf cosfl  exp(—ihr)

6 T (e s DL MENIE
By =l l’v’?hﬂf‘-' ~ Dleost) Vi (15)
WP (il S =IE0I0060 0L -]

v I_-:In‘1 D(CDS&) 1/7

Putting #iisind = Jhx/# = £, we have A'D(cosl) = F(&), and inserting the time
factor, (15) can be transformed into (16) :

_ LTy
u’= M'{Z sV e — expli(pt—hr)},

Vi /i F(E) veamsnenner (16D
1 2 it 1 2¢% {7
= (l‘/j}f’]f 7 f_(:) xoli(pl—nhr) h

(16) is the results obtained by Naxkano [(91) of p. 37], but under the supposition that
k7 /2f, instead of B#, is large.
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(D) of/Vvi—v <x<vsf/Vei—vi  The path L' passes between 4 and B, and we
must take into account the residue at A4, and we have:
#, = 5 +u’, 2, = V57 a5,
uc:]‘) 8%2 T‘/T —l‘ﬂ —]-
il

e exp{—-ihrcos(w+5)}lu]

1 4B [(Tla*+2(72—1)]
I
B i [

D'(r)sinw exp{ —ikrcos(w+ ) }]

Now, C[—ilrcos(w+0)Jaa = —ihl—i8yf+V 14 d% 20

Quite similarly as in the preceding section, (17) can be transformed into following
(18) and (19) successively.

L3 g Lo e I .
@3y __ 8'777 6”1/611 (71 1) exp{_z'!zxv.rl_’_‘\'\-a —f.‘lfﬂn},

u —ir
h T—id
D {l. . T . A (18)
; 4k Sof2(00+1) —#2] = =
PP = — % VW exp{ —ihxy/ 148 —hféo}.
And inserting the time factor, we have
u? = 8ik* ‘( 5 exp(—auf) exp{i(pl—rxx)}, ;
- (19)
3 2 2 __ 2 .
v = —d4k? i )— exp(—of) exp{i(pt—rx)}.

(19) is the most important result obtained by Nakawo (114}, Also in NAKANO's
calculation, an adequate standing waves of RAYLEIGH type had to be added as in
LAME’s case,

(iii) »of/Vei—v2 << x The path L’ lies akove B, and we must take a contour integral
along a path L;L: going round £, besides the residue at A. The path I,Ls is defined

by cos (p+1) cosh g = zsinf, and is assumed to tends to w — —r/2—0—¢>, We have,

uy = wP+uP+ul®, v, = o P+oS+05?,

€2y _ 4!]13’ . r—z 7

uy =2~ | sinwG.(1) exp{~ihrcos(w+0)} duw,
L " cosemsmvescsmmssmenin: (T
j 2 3 P .

WP = 2jz S G,(7) exp{ —ihrcos(w+0)} dw.
“® L1lLa

When w is a value of w on Lo, Veosun+2'—1 is —Veostwt 72 —1 on Ly, if w
is the value on L. corresponding to . Donoting Ge(cosw,) and Gy(cosw,) by
G:*(cosw) and G,*(cosw) on L., we have

ArLn
u§P= _‘h— j sinw Gx(1) —G.*(7) ] exp{ —ihrcosCio+ 03} duw,

Ls e s (DY

#P= f E LG(T) — G/ (r) ] expl{ —ihrcos(ew+ 8)} duw,
G.(r )—c;, (1) = 21+ 2(r* - D) VT 57 =1 /D) D¥(1),
G(N =G = 8 (= DA+2(r =D W Pt =1 /D)D),
D(P)D* (1) = [+ 2072 - 1)) = 1672 (r2 = 1)*(r2+ »° -1).
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Along —L,, we can put cos(w+0) =nsinf —i(z+cosfV n*—1) and —ihrcos(w+8)
= —/F*—h* f—ikx—hrt Where t increases from zero at B to infinity. After Sakai,
we have, along — L near B,

2o rm 1 — iﬂ
cosw+ iy -1 c——os(ﬁ—l—iq’) T

Transferring the factors except v © exp(—#»r) before the integral sign, putting

r =0, we have, as Su-v’r’ exp{—hre) dr = /m [2(hr)¥*:

V2 (Br—1)% 0 ~ expli(pt—kx)}
@_ _ = { S =y i RX) )
" V 7k(n cosl-+iV n*—1sin6)* s~y F =1 7t -
8V2 i(n—1)H =13~ exp{i(pt—kx)}
1 N — e —_ ) = ]
o=~ ek ncn cosl-+iy/m—Temye e VE & 2 73

(22) corresponds to Nakano (112), i.e.

o _ 4 Fil A (V- VE-—F¢
uj ex-p{z(pt kx}} I(—‘Dl F(C) = f(C) } eX dC:
o 2k i 20-F A&
vo=—— exp{i(pi—kx)} Lﬂ-{ J3G) O } eX d¢, J
o) = QRE-FPE+ VI V-

X = Re(—VI—IEf+ilx),

which were left in the integral form.

When the periodic transverse waves are assumed to be emitted from the linear
source at x =0, y =f, the motion of the surface of a semi-infinite elastic solid can
be calculated by the methods similar to those stated above.

4, Summary

The integrals involved in the investigations “On the Propagation of Tremors over
the Surface of an Elastic Solid” due to periodic vertical force concentrated at a line
of the surface of the solid by H. Lame (1904) as a part of his famous paper, and
“On RAYLEIGH Waves” produced by the waves emitted from a horizontal linear source
lying in the interior of the solid by H. NAKANO (1925), are shown to be evaluated quite
systematically by the method developed by T. Saxar (1934). The wvalues of some
integrals left in the integral form in NAKANO's paper are also obtained.
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