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Abstract.

In this paper we treat the propagation of elastic waves in zn elastic sphere
of large radius assumned to have a concentric fluid spherical core whose radivs is
also large. Both the madia of the elastic shell and fluid core are supposed to be
inhomogeneous and the velocities of the elasiic waves propagating in them are
proporiional to =" and »~¢ resgectively, where m and § are ariitrary real number
and Coth are Jarger than -1,

The values of the elastic constants are taken from the obsarvational dala in
the seisnic phenomena.  The nuinerical calculations are applied to the reflection
and refraction coefficients at the boundary of the core and the cdisplacements of
the free swiace at the points of emergence of various elastic waves.

I. The Reflection and Refraction Cocflicients at the Boundary of the Fluid Core

An elastic sphere of radius a is assumed to have a concencentric fluid spherical
core, the radius, density and the LAmE's constant of the latter being ¢, p’ and A"
The velocity v, of the waves propagating in the fluld core is supposed to be propor-
tional to »—;

’,T{i L ' [@))
A T v 7

where s is real and > — 1, p is a real constant and the motion i3 assumed to be simple
harmonic and to be expressed by exp{ —iot].

In such a fijuid the pnrticulm' seclutions of the wave equation;

(J’ 1 0T a o B
- = I 9
rid ks = 6.1' ( EPr) r :.ml"f af (smﬁ fll] ) T @
are IDS =YL& (p, r) Pu(cosl), , 3
where Y., is a particular solution of
day 2 QY o -?(72*13
{1; + r + (ﬁ ) Y
and is expressed by means of t}‘e Hankel function:
(I),f“) a1
E [p) = % (E €y

Y is a diverging wave which propagates outward, and Y™ a converging, remembering
the time factor exp (—icf).

The outer elastic shell ¢ =< 7= g is assumed to be the same medium as discussed
in the previous paper (1], and a converging dilatational wave in the shall is expressed
as follows; 4 =Y2 (k+) Pudcos?d). (5)
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ON THE PROPAGATION OF ELASTIC WAVES IN AN INIIOMOGENE®US SPHERE {II}

This wave i3 accompanied at the boundary of the fluid core # = ¢ by the reflected

waves :
oAy = Ynlm'\k C) Y:’D (r’?,?’) Pn(COS 0),
' * Yaulk,c
()
W, = l F I 4 m(k C) .'1) (-. dPn.(COS (}}

2 n Yﬁ”,(,, ) H e ) == d(l——:
and by the refracted wave:

I = G, Yp; gz °§ Y52 (p,7) Pulcos ).

In the case of a converging distortional wave;

o __1 { ) dPJI(CDS ﬂ)
w = P) nm § ! di »

which propagates in the elastic shell, the reflected waves;

.d‘.. — Vll- }?f\.'—m(‘.u,c) Y’(l)

(%k,7) Pa(cosf),

iy T
1 F';\u,‘t)u(:j C) 1y a dR!(COz@)
Wy = 5 W Y:,(; S e 6) ¥ L 06,n)- ST 8

and the refracted wave;

e = _‘i" ’“(5': C) u) 6
[] U“’ Y’:—; (‘p, C) Y (P, ) P“(COS ),

appear at the boundary.
A diverging wave in the fluid core;
I = Y5 (p,7) Pu(cosb)

produces at the boundary # = ¢ the reflected converging wave;

Y(’U(p L‘:l o
= L 200 Y:;;'
Yp M

and the waves refracted into the outer elastic shell;

(p,7) Pulcos b)),

1)
4= M, Y:;,‘Ef,: 26) Y (k,7) Palcos 0),

=a __l; n \ﬁ; C) 1y = dPrL(COS ﬁ)
“ 2 NR Iv;!l}“(‘-' ) Y:;,m (h ?‘) dﬂ ’

(6)

™

&

>

(10)

an

(12)

(13)

(1)

(15

(16)

When we denote the radial and tangential eomponents of the displacements just
outside the boundary # = ¢ by #, and v, and those just inside the boundary by #; and v,
the boundary conditions, which assure that the displacements and the normal com-
ponent of the pressure are continuous at the boundary and there is no shearing force

in the fluid, are as follows;
D

. av
Uy T Ui, Ade + 200 =— = 2! A-', ————

o ar

an

With the help of these relations the reflection and refraction coflicients can be

ohtained easiiy. After a short calculation we get:

Z2i(m+1)

FM - c* D’

(18)
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& Vin(k,€)

VFI=
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UDL(26)
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In these equations the dash / denotes the differentiation &/J7.
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ON THE PROPAGATION OF ELASTIC WAVES IN AN INHOMOGENEOUS SPHERE ({II}

2. The Reflected Waves at the Boundary of the Fluid Core

When we consider a small sphere of radius Ko, whose center is the source @
(5,0,0) of the elastic waves, the medium in this small sphere may be regarded as
homogeneous and isotropic approximately. Thus the dilatational and distortional
waves at the surface of this sphere may be expressed by

4~ Ry expRR) and g~ o5 (R~ exp(ié R}, &)

where 6, is the angle between the directions of Ky and (O&). The displacements and
the corresponding external forcer of the 4—and w-waves according to (2], are

Upy ~ _;:e" eﬂ%‘iﬂ"), ug, = 0, ug, = 0, 5
Fo ~ — i_;: ex_p}gf}fio), Fiy = 0, Fy, = D, (36)
amd Coss o exg}(;{_i&)_’ mo,,&_‘:ié}fﬂ_ ex_l’%‘;:&l, at, = D, 30

In the above relations and all through this paper a constant jactor, which assures that
the displacements have the dimension of length, is omitted.
The dilatational and distortional waves propagating from such a source are
assumed to take the form:
1 ndn

4= =~ Yo Deosnr 1 (d) LR Po-i{cos(0-m)]}, (39)
and dP, ' {cos(f—r)}
L _i E(m+ﬁc§’::05nr rPEL Y06 -{dﬂ . (40)
1

These expressions coincide asymptotically (R—cc) with B 'exp(fkR) and - 5" ﬂ G { R
exp(i§ K)} respectively, when the medium is homogeneous m =0, and take the same

form as (34) in the vicinity of the source. These waves propagate inward through

the elastic shell. The reflected waves at the boundary, » = ¢, are
PREENE B ndn Vb YOke) Y (e) YOG
= 2 Jim+I)cosnn YOk Yk 0
pre E',l.._g_ ,...% {cos(ﬁ—rr)}, (41)
W S ndn YR Y(Ro) YO0 YP(40)
4 J(m+Dcosnn YiP.0) Y(8,0)
dpP, ! {cos(f—n)}
% Pyt — § (42)
P 3 f ndn Y, Y2 0) Y2k 0) YO(k7)
57 2 )m+Dcosun Yrko) YOk
X Vp-l Pyt {cos(f—7n)}, (43)
SRS S N ORI CLR 4IRS
' 4 )Om+ Dcosnr Yi(¢.c) Yi(60

 dP.t [cos(8—7))
xwﬂ" dﬁ » (44)
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where 4r and wp are reflected dilatational and distortional waves of the primary dilata-
tional wave 4, and 4s and ws are those of the primary distortional one w.
The approximate expressions of these waves can be obtained by the same method

of saddle point as in the previous paper. For this purpose we substitute the expressions:

; 1 m+l s _,_
L3 .- J ; i _E
¥t (B, ) = P — gﬂ pr’ewcp :I: 3—ﬁcos il Ao ) } s
and i f o 3 1
Pil (ki) = TI“ f exp{znlog(cosd -+ isin ’ccfsg)) Y g (45)
- S (cost+isis f cosg) ¥

into the four Y-functions in the numerator and the spherical harmonics.

On the other hand the asymptotic formula of the denominator is

‘ +1
YE])Ck’,C) YiP(ke) ~ C\/kﬁz";“*q —— {¢— @),

Remembering that the reflection coefficients have no exponential character, the saddle
point can be easily obtained. )f we denote the values at this point by bar, we have
the first order approximation as follows:

rd Fe P
—ncosT: E exp {w \Q —bal-- -+ io f _Eii}
o

) o A Ua -
dp ~ /—7 = [./ 4 Natl _ \ ds n1 _ - r ds L (‘Ib)
71 i COST3COS T ———+(—) cos T, cos T j —}-=
»\,brnchmH{\ c) 0s Ts 3 Foree = g =
where = kb"sinT, = kentlsinT, = kettlsinTs = Ervtlsin T,
0 = —T1 +T:+T.s—t747
m+1 ?
(.-i ds kb"”“ _ Pentl
a ~—— - C0ST1 — — 1 COS T»
Jova  m+1 T om+l 2
¥ i (13 kcuﬂ-l krm-il =
gl —= — T COS Ty, (47
L e T €05 Ts + 1 Cos T bl

The path of the integration is taken along the ray determined by
kr*lsin®, = n,

In the following the “bar” and the word “in the first aporoximation” will be omitted
where no confusion occurs.

 ds
in* costy Frexp icy Y L = }
@
(i)} ~ — = == — iﬂ‘-
i 2136"’\/57'130-:& 0 s )’*“ COST2 COST, k ( )J 1 gosT cosrgj Lds }37 (18
s 1\ Fem &3¢%n AV
where n = kb*lsinti = kewtlsinte = Zem'lsinty = &#otsingg,
I +TaTy —i1y
mt1 ?
"2 s Sontl i
) vaar - ;z—l—l COSTs + T COSTa (43)
A P
—#costy Veexnio { s j ds
._f\' -~ — k.ol U A f)A J
: s

{(r\uﬂl CO\ST]CO

Tio )””H:oss] cossugf ds (59)
.-\.c S 7 on
,\f brn o sin 5 &2t Vo }

R 1 VA



ON THE PROPAGATION OF ELASTIC WAVES IN AN INHOMOGENEOUS SPHERE {lI}
where 7 = &b»*'sinti = &¢M'sinte = kem''sint: = kret'sinrg
in‘cost: Waexp io‘-{ E ds |
g i SRS s QAP P f . (51)
s mtl r
,\/brno-sinﬂ{(—i) COS T3 COSCy i L Ve ] COS Ty COS T 5 ﬁ}ﬂ
. C / Q%o  \N¢ At
Where A ds ebm+l E ditl
o gq”—w = i R

3. The Waves through the Fluid Core.

The primary waves (39) and (40) are refracted partly into the fluid core at the
boundary # = ¢. The refracted waves pass again into the outer elastic shell and
propagate outward. They are denoted by 4rx and ®wpx, when the primary wave is
the dilatational 4 (33), and by 4dsx, wsx in the case when the primary wave is the
distortional o (40). If we write

Il

Y90 = YRL(p,0), t =12,

then according to the well known relations of the Bessel functions, (3],

Yy (p, Cexp-_ - s—l—l = — exp (_ins—l-il) Y$P(p, 0,
Y%"? (p,cexp—+1) — exp (\m;-l-T) YE.”(P, o). (52)
With the help of these relations and the above refraction coefficients, we obtain
p 1 ndn YO#,5) YOk,0) Y (ky6) Y (p,00-71) YO (0 Y“’Uz 7)
PE = 2 S (m—+1)coszr {f('?(k ) y\.)(k Y Tu g },S‘(p,(,) Yg 5, C)J
X Gp-t ML € arr™ Pa——.i.—'LCOS(@"n)J: ' (53)
1 ndn YO(kh) YOk, 0) YI(p,0) Y frce” ) YR80 YO (EY

@rr = 7 V(m+licosnr  YP(ke) YO (k) | Y*"(ﬁ c) Y,‘; WD) 1* ¥S¥(E0) ¥4 )
ar,-L {cos(f—=)}

X Guel Ned @ ori® p : (54)
1 ¢ ndn YIO(6,8) ¥ (§,0) Y(h,0) Yi2(p,ce” 1) YO ke) YO k)
dss = 3 [Tt Deosnr YOG YOG (Y950 YO | YOUke) YUk
X Upl Myt €™ Pod [cos(0-)}, (55)
1 i YO(E,8) YO(E,0 YP(,0) YP(peem T\ ) YOU5,0 YOET)
Wsk = g E (#m+ L)cosnm LY (o) Yoo )* {YIUEL) FPUE
' . dP. 1 {cos(0—7)}
3 Ul Ml gt ——2 - = (55)

The same method of approximation as above shows that
npcrtH cos® Tecos® T3 G, M. exp if

drx ~ ——
(m+1)(s+ l)J(br)’“*gnsinﬁ COST1COSTz -+ COST6 /—00—
& an

67
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where
n = kb4 sinty = ket sinte = potlsints = port sint, = kentsints = Lt gin,

TQ—TL+ E"‘n"(_t—l_ T5—7To
m+1 s+1 + m+17
_00 _ 1 ( 1 I | | P 1 g 4 )
G m+1\ kb tlcnst, kc"'*‘cosra) s+1\ potlcosts © petticosty
1 7 1 1 5
m T\ Thecosts T ke costs )
kb““ fl‘ a+1 ) ﬁC\"FI - f-p\+l s . kﬂ‘"+1 _ 1 i
ﬁ—”ﬂlcos L= 1 COST ATy - COSTs b - 08T, +1C°S"5_‘_;éz+lcos
4 ds ra ds ¥ ds }
- . T a3, LN =
* {SQ va A, 11 F,‘Ja Ua (&8

The path of integration must be taken along the geometrical ray determined by the
relations  kre'lsint = » = const. in the outer shell, and ##tlsint = a2 in
the fluid core. #: is the velocity of the dilatational wave in the fluid, as is given in (1).
The points A1 and A: on the boundary # = ¢ are determined by the above relations of

Ta—

m-- 1’

the ray curve, so that the angles < QOA1, 2 A1QA: and <2 A: OP are equal to

T—Tg—T4 and Fi—Ts
s+1 = omtl
seen from the rclation (58).
When the refracted wave is distortional, we get :

respectively, and the sum of these three angles is 0 itself, as is

in frmtets COSTs cos’ts costs G, N, exp if:

Opx ~ - et =57 (59)
(m+1)(s+ 13\/ (Br)™** psind cOST| COST2 --COSTG 5
where
1 = kb"" sint1 = ke sinty = petlsine: = potlsing = et sinty = &7 sinrs,
8 _ 1 ( 1 1 ,7)+____( L1 )
T 8n  m+1\TEblcosty, | kentlcosta s+1 \ petleosts | petTicosty
Pl sl 1)
m+1\ &entlcosts - E#mHicosts /’
kb-m‘—l B k(- a1 ﬁcl-i-l pc‘“ cnt L ~ atl
fa = cosT1 — "y costa + ST CO8Ta - COSTy — = COSTs +1°°q o
_ 4, ds 42 ds SP ds }
QG{EQ_IJ;_-{‘ Ll w T A, V0 | (60)

In the case when the primary converging wave is distortional « (40),

= pc“‘”’“ €087 Co8°T3 COSTs UnMn x5 ifs
s ~ e, (51)

(m+ 1)(5—1),\,‘ (&#)™*? psind cost) CoSTa+- COSTa, / — o

and in® pe ™t cos?rs cos®ts U.Naw exp ify
WEKL —~ ——=

2 _
(m+1)(s+ 1}\/ (br)** psinf costa COS'E's"-COSTu)‘//— 00
on

, (62)

R I‘f% + [}
and fi = i S{x ’;’f i PfTs}_

Az Az



ON THE PROPAGATION OF ELASTIC WAVES IN AN INHOMOGENEOUS SPHERE (II}

These waves have a focal surface
an
™ 0. 63)
The intensity of the waves in the vicinity of this surface can not be obtained by the
above approximation of the first order. It depends mainly upon the numerical values
of the elastic constants at the boundary of the fluid core whether the equation (63)
has a real root or not,

4. Approximate Values of the Reflection and Refraction Coefficients.

The behaviour of the various cocfficients of reflection and refraction at the
boundary # = ¢ are considerably complicated. @ Now as the radius ¢ and the order =
are assumed to be sufficiently large, the asymptotic formulas

YO (kO VESTE g Y& (k,c) VEE—E N
YO & : ¢ ! Y &, 0) = , 6D
(ka C) ‘e -EL__

and Y® (&,¢) Y2

N, Wyt

are useful for the approximate evaluation of the coefficients. Moreover with the help
of the values at the saddle point obtained in the last section, they can be much
simplified and depend explicitly upon the incident, reflected and refracted angles,
The coefficients coincide with those of plane boundary in this approximation, as is
expected naturally. It is convenient to write the values at the saddle point

n=ke+*sints = £"*'sints = potlsint (65)
for the calculation of all the coefficients together, Then we obtain the following
results :

o P S & P i
E = D! {slﬂ?ar’(san'reSanT3 - = 503*273) + -2 sin27a}, (66)
13 2 | :
F =D { kééi:’ sin2t’ cosTz cos?.ra}, (GYh)
G = D1 -{2_%:— sin2ts cos‘Z*rs}-, (68)
" = .
W = D= |sin2e’ (sine sin2es — —cosey) ~-4—sindnal, (69)
| R M J
U = D {2ipc'*'sint’ sin2re sin2ts), (70)
V = D' {—ike"* sin27’ sints Sinal}ral, (71
L = D {sin2e’ (sin2essin2es + 55 cos2es) ~ . ginge,] a2
1 B E: : i I
< .
M = D™ {% sin2z’ cosZ'rail, y (73)
)’ .
By -1 A ~ -
N = D {204 sin2e! cossal, (74)
where
n = 7 - .-.
D = sin2t’ {sinZz‘g sin2rs + — cos"‘?ra} + — sinZ2ra (75
& n
It is interesting to notice that there are simple relations
GM - GN_ _ UN_ S oM 7
1—_L—+E— 1i- 7 = F, iy e w i =1 V. (76)

among the above coeflicients.
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5. Numerieal ealevlation.

We will calculate the above results numerically with the help of observational data
in the seismic phenomena, which is in fact so complicated (see (4], [5]1) that we must
take only the mean values of the data. We assume that the densities of the media
and the velocities of dilatational (P-) and distortional (S-) waves just outside and inside
of the boundary of the fluid core, according to [6), are as shown in the Table 1.

Table 1.
| ' veloci ties
densities
' I P-wave S wave
outside \ g = 6.0 ‘ va = 130 o = 7.25
inside i ¢ = 95 | v = 85
s ket 85 neng v fen 85 4.0
va e 13.0 R v pct 725 — Th
and B 725
e DS BEEEE
g 15g = D578
Since = 7 ’ I
o A . A Myt
,‘/ p- = Vo and ~/ o = = Ve 2.18.
300 ! _
2 3 ’
C——F . Y —
1,00 ?“——j E i = — U =
: . A
SO —= ~N | 00 P i —
.30 Y :mu——A-//U [
2 _—57/ - AY ) O =—— # =
10 = e ] — ,l" = —
N e — s L I \
03 ‘) I 1 L 1 1 1 1 1 gk S ""“\
0 10 20 30 40 5 60 70 80 90° - : \
il 2'? .L‘['L:T “'1 —— v“__——_
Fig. 1 Coefficients of reflection and refcaction -EG5F{;.._ ———— %\ ya—
at the boundary of the fluid core {E;: P— L3
P reflection, F; P—S reflection, G; P-P -Gﬂ‘;'*{ o /L %
refraction}, and the incident angle =.. ;Jm' IID 210 310 AIU EIE - S|0°

With the help of these values, the reflection and
refraction coefficients can be calculated numeri-
cally for the angle of incidence, as in the figures
1, 2 and 3, where 72, 73 and ' are the angles of
incidence of P-, S- in the outer elastic shell and
P-wave in the fluid core respectively. F’, U, V', and N’ are given by the relations:

Fig. 2 Coefficients of reflection and refrac-
tion at the boundary of the fluid core
{U’; S-P refraction, V/; S P reflec-
tion, W; S-S reflecton}, and the
incident angle z..

F:

i
hontt

F,

u

= oMU, V= -k V' oand N = 0,

in places of (67), (70), (71) and (74) respectively.

N,



ON THE PROPAGATION OF ELASTIC WAVES IN AN INHOMOGENEOUS SPHERE (11}

200 N'

== =
50
30
20
0

05 - \

03— L

02 ™
0' L L i 1 i 1 I -
0 10 20 30 40

Fig. 3 Coefficients of reflection and refrac-
tion at the boundary of ths fluid
core against the mautle (L; P-P
reflection, M: P-P refraction, N,
P-5 refraction}, and the incident
angle -/,

It depends upon the assumed mechanical
structure (37) of the source of the distortional
waves that the displacements caused by once
reflected 'SS-wave are larger than the ones
caused by the primary S-wave, as shown in
Fig. 7, and that the displacements caused by
the incidence of the Sc¢S-wave behave them-
selves in peculiar appearance in Fig. 8.

In the previous paper the constant = was
assumed to take the value 3 in the numerical
calculation, where it was shown that the
assumption was valid where the depth was
not so large. It seems, however, to be better
to take the value » = 0.3 so far as our atten-
tion i8 concerned to the waves propagating to
a large distance from the source. The dis-

placements of the free surface (i. e, the surface of the earth) caused by an incident

wave have the radial (perpendicular to the surface) and the tangential

components #p and uvp :
COSTe COS2Ts 4
kar st

=g

Up = —pr o

when the incident wave is dilatational 4.

is distortional w, its components are

47 ; « iy
Us = — . PCoST: sin27e w,
gail
where g
o = {Sil’lZT’a gin? 3 + B

Up—-_k3

(horizontal)

287

. COSTz SInZts; e
—T'— .d, (l’ l_)

On the other hand when the incident wave

4ic

 REan (5%

0 COST: COS2Tz o,

=1
cos*2ty },

and a is the radius of the earth. The relation between 7: and =3 in the above formulas

has been given in (45).

[ Hp = apd,
and

3n 4,

ll’p=

l Uy = 33: al, r

If we write the above (77) and (78)
I us = oo,

20 Bs
1.5
L0k

Xs

Fig.

(T T R IR T/
4 Displacement coefficients of the free
surface duz to P-wave (ap; vertical, §p;

horizonlal) and the incident angle <.

L
i ) L_

05
Fig. 5

vertical,
incident

1 L] 1 1 A
0 15 20 25 .30

Bs: horizontae)
angle -

35°—~1—3

Displacement coefficients of the
free surface due to S-wave

(vs;
and the
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dp, s, ay and [y are the measure of the components of the displacements for the
given angle of incidence, as shown in Fig. 4 and 5, see (7). So far as the waves at a
large distance from the source is concerned, the depth of the source may be neglected
as compared to the radius of the earth. Then the expressions of various waves
become extremely simple.

Using the ordinary notations in the seismology, we get at the free surface, » = q,
the following formulas:

|2, 4/ m+1 1 ~/ tsm P from (19) in the previous paper,
. 3 &l
e sin2ra25in2ts — 5 cos*2rs —
(P = B 1 3 " ’?{1:;. from (27) there,
¢ sin2rasin2ts +%—cosﬂ2rs i
+1 1 tanT, COST: E

|PeP| = /’” T from the above (46).

sinff i{ a) r— [0 om the above (46)
i I
IS| = m+1 n  Jtants from (21) in the previous paper,

2 2a N sinf

. . &
sin2z28inl2ts ——=5cos’2rs 4
Jm+1l n i TR tants  from (35) there,

- 2a I
2a sin27a Sln2’1+i COS“')"' 2sind
1 . tant; cost: W
[Ses| — /mFL : . o
i " A rom the above (51).
a N sinf {(_%\ C Costi—cosTa T t ve (51)
|
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Fig. 8 Displacements of the free surface [

vertical, 2. horizontal} and the central Fig. 9
angle 4.



ON THE PROPAGATION OF ELASTIC WAVES IN AN INHOMOGENEOUS SPHERE (II)

The displacements of the surface at the point of emergence of these waves are shown
in Figs. 6, 7 and 8. The angles 2, 73, @1 and # in (46), (51) have the meaning shown
in Fig. 9,

6. Summary

An elastic sphere of large radius is assumed to have a concentric fluid spherical
core whose radius is aiso large. Both the media of ihe elastic shell and fluid core are
supposed to be inhomogeneous and the velocities of the elastic waves propagating in
them are proportional to #~* and »~* respectively, where s and s are arbitrary real
number and both are larger than —1. Then the wave eguations have rigorous solutions
expressed in terms of the Bessel functions. They are superposed so as to construct
the wave transmitted from a point source, which coincides asymptotically R™'exp(ikR)
when the medium is homogeneous. The distribution of the external force in the
vicinity of the source makes clear how the source concerned be constructed mechanically

to send out such waves as K 'exp(ikR) or fgﬁf (R exp (iER) ] approximately.

The most part of our attention has been confined to the waves which are reflected
and refracted at the inner fluid boundary. The results of general discussions have
been applied to the seismic phenomena. In the previous paper we took the wvalue
m =3, and calculated numerically. This is valid as far as our attention is confined to
the shallow part of the earth. It seems better, however, to take the value m = 0.3,
when the waves at a large distance from the source are taken into account. Thus we
have calculated numerically with the latter value of m in this paper, and obtained
consideradly different numerical results as compared to those of the previous paper.

Owing to the fact that the elastic properties of the earth crust are much compli-
caied, rather tedious calculation will be needed for the more precise explanation of the
actual seismic waves, if one wishes to start with the rigorous solutions of the wave
equations.

The authors are greatly indebted to Prof. H. HoNpA for his constructive criticism
in preparing the numerical calculation of the seismic waves in this article and the
previous paper.
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