
On Visco-Elastic Medium. (Part III)

著者 Nakamura Saemon Taro
journal or
publication title

Science reports of the Tohoku University. Ser.
5, Geophysics

volume 2
number 2
page range 146-148
year 1950-08
URL http://hdl.handle.net/10097/44443



 (a  +  ixc)K2c20  +  ((A'+2µ')  +  +  2p)  }'720=0, 

                         tt 

ayav                              + a;  and in the case of a=0,  x+ 

                   (a +i1tcc)K262(u,  v, w) ++ iicetk}r'(u, v,  w)  =  0. 

 These equations can  b3 regarded to represent wave motions. 

 § 2. Taking the simplest case in which  a, v, w are all independent 
get 

        2a0a.  
 v.o_ andV2(u, v, w) =(u,  v,w).                                          ax 

                                                                       2 

 Assuming 

 we  get • 
 V20.  60(  ot2  32  +  ecc‘-"PYc. 

 Putting this in (5.  3), we get 

          pic2c,1'(a + iicc) + {(A! +2/10 +(X+20i/ce)(a2—/T+2ictie)=0. 
 Putting  the real and imaginary parts of this equation independently 

lowing equations are  •obtained  : 

 pec2a+  +  (a2--fr).-201cc(X+2p,)  .04 
and  ^3G3  +  (X  +  2/h)Ke  (  a2—ffl  +2a  (  X'  +  2iil  )  0, 

which gives
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                      Chapter V. Bodily Waves. 

 § 1. From equation (3.9) in Chapter III, taking divergence of each  term, we 

 ̀ a+  a) at{(V+ 2p1)-F(X+2tt)}V20,  (5.         21 p at 

and putting  0=0, we get 

 (a+.),2(a, v, w)=-1+ p, )V2(a, v, w).       at at2at (5. 

 If  u, v, w are proportional to  e.t, these equations become to 

 

.  _  

 1

get 

 1), 

2)

 (5. 3)

 Of y and  z, we

 (5. 4) 

  (5.  5) 

  (5.  6) 
to be zero,

 (5. 7)

fol-
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              a2-132=pic2c-2f ic26.2(X+ 2p.) + a (XI + 2p,f)   (X+  2
/1)2K2c,2+  (X'  --1-2p!)2 

 and af3 Y,(  pK(X-1-2p,)a—  (V+ 2j1)  2
{K2c2(X+  2p,}2+(Xf+  2/2)2 

 If we  denote the positive roots of (5. 8) by a and  0, then 
                             0+20e- (ce-1-tpyr+iicct 

 because the  'wave must be damped as it propagates and a  I 
sign. 
 By this evidence, from the second  equation of  (5, 8),  fi 

 tadned: 
 a(X+2p.)>Xi+2p,f• 
 Similarly the solution of (5. 2) can be obtained by replac 

 Xf+2p.1 respectively in (5.  b). We get thus 

             (u, v,  w), (0,  v„  11,0  " +  (0,  v„' w,) 
where  a' and  $1 are the positive roots of 

                             pet:2(06z+ ap!)                           130 — 
 µ3,062  +1.412  ' 

                                        Inc3c3(ttl—tk.  and                                    2 (1C2C2p2 

 As  a'  and  01  are  both  positive,  we get from the second 
 p,  a  >  w. 

 If specially 
 a(X+2p,)=-(X1+21f), 

then we get 

                        a=0 and  13=P  -  KC                                          X
+2/1, 

 +2 or the velocity of propagation  of the wave is,\I . The 
 P - - 

or  a=V+2/2/=0 is  included in this case, but this is  •more 

 If  Xf+2,td  =0 but not  a  =  0, then we get 

                                 pKc                           a2=2(X
+21.0{,s/rec,2+0—vc)-, 

                              play   02  WK2c2d-t-C4±Kcl.)                        2(x+2p,) 

 If specially a  </ce, then we get 

                   p/c2G211 ( ay3 1(ayi1 (a\G. 
               2(X+2/1)128KC )± 16Kc 

 83  pKc  (9+1 ( a\2_ 1(I (±)                2(X+2
p,)1-2OccSKC )16K

(5. 2) can be obtained by  replacing ik  ‘
9). We get thus 

(0,  v„  11,0  ct+ (0,  v„  tu,)e-(0,4430,1-iKa

147

  (5.  8)  

In the solution  'of (5. 1) is 

  (5.  9) 
and  $ must have the same 

the following relation is  ob-

 (5. 10) 
 wing ik  and  /././ to  X-F2p, and 

 (0,,,ii3oxi-wt,  (5. 11)

 1  •  .  (5. 12) 
equation of (5.  12)    

.   (5;  13) 

 (5. 14) 

 (5. 15) 

 case of perfect elastic body 

general.

G 

 a 

 Ke

 (5. 16)

  (5.  17)
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 If  a>  ice, then we get 

 co=   prec rt..,1 KC\2_1(\4+6 a1- KC1 Ke) }a—Kc],8     2(X+2,./.)L_V-+21a) 8a),,1) 128(a 

 2=   pKC  1+ 1 Kc \2_ 1 lrcc4 1Ke\6_  1 (Ke\8++      2(X+2p,)[{2 a)8c16 a)128[\a )a + 

 If  KC  =0, then we get 
 a 

 ci2„ pKect ()Kra 

                                                                                                                                                                                                                                                                                       • 

 2(X.+2/1)  82—  2(X+20 

 The velocityof the propagation of wave isgivenbyKr/13,which is" 

the case  rce is very small or the period of oscillation is infinitely long. 
 The general solutions  of . (5. 8) and (5.  12)  are• 

         plc2G2 1  rii 1  2  2  N.2  2  2/  -  \  ---N

 (5. 18)

      Q2 . ,", „A" m2 {,%./(1c20+ army+ K2c2 (a —— (K2c2 am))•,         +2/h) 

    02pfc2t21                     2c -IN/WO+ amyK3(.-.2(a — my+ (rec' + am)} ,    ••2(X+ 214)K 

          "20
K2621 {,(tec2+al)2 - et?  (a  —1)2  — (ic2(.,2 ± al)} ,          214, 

           pte 6.2  and80•-k/(K2c2+a/ )2+ K262(a —02+(rejt,;2+                 Klc2+/2 

 respectively,  .. 
where 

                      Xf.,.+.2p!µra> m= and  ajl 

                 

• - 

  

- • • X + 2/2 .

  (5.  19) 

 2(X+  2p,.)  
  pa

 (5.  20)

 (5. 21)

in


