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  1.  Introduction. 

  In  1915  G. I. TAYLOR obtained a formula 

 expressing the rate of the vertical transfer 

 of heat by turbulence. In obtaining this he 

 assumed that there is no resultant transfer 

 of mass across any horizontal plane. How-

 ever when the heat is transferred vertically 

and the vertical distribution of temperature 

changes, the change of the vertical distri-

bution of pressure will be followed. This 

means that the  mass  is transferred vertically 

and so TAYLOR'S assumption is not correct. 

 We obtained an equation which expresses 

the rate of the vertical transfer of heat and 

the change of the temperature of the air 
 '

taking the transfer of mass into consideration 

and compared this with results obtained by 

observations. 

§ 2. The  Vertical  Transfer of  Heat  and 
    the  Change of Air Temperature. 

  Let us first obtain the rate of the vertical 

flow of heat across any horizontal plane. 

Let an eddy start from  zo at time  to, hav-

ing the potential temperature  (zo,  to) ap-

propriate to that point, and let it reach 
a level z, at time t. The absolute tempera-

ture of the eddy at its new level will be 

 (1).)7±1 x 0  (zo,  to). At each stage the eddy 
takes up the pressure of its surroundings, 

and in  'mixing  it shares with its surround-

ings its excess or defect of thermal energy.
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 The motion of the eddy across the hori-

 zontal plane at z is therefore equivalent to a 

 flow of heat 

      I =  pC  ja,V  (1-1T1  0  (Zu,  t  5)  ,    -  (1) 
 where w is the vertical component of the 

 turbulent velocity of the air and is the 

 summation over all eddies which reach the 

 new level in  unit  time. Provided  zr,  z 

 and — I are both  small 

                       DO   6  (
zo,  /0)  =  (z,1) +  (zo  z) 

       + (10t)af)   (2) 

and so 

 I =  (z,t)  w 

 )z '00   w  (zo  z) tv(to  01. 
  (3) 

  In the above equation p  f,tv  is the flow of 

mass across horizontal plane at level z and 

will be written as 

   p 2 —at(Pp),  (4) 

where  p, is the pressure at the ground. In 

the second term  if we put K=  —1:w(zo —  z), 

then K is the so-called eddy conductivity. 

Again if we  assume the distribution of  t, — t 

as same for both eddies  from upper and 

lower level than  z, which will not be an 

unreasonable assumption, then 

 w  (to  —  t)7-  to  —  w,



hence 

 ae   ao         tv (t
o 0=4, t -at E uM9  at 

Thus 

   — pc 4+; )7 -CK 3a°, +0—g p 
     pcvlic( aT +1,\ RT2_o_p)}         azg p at(P                                  

• • • • - • • • • • • • (5) 

where is the dry adiabatic lapse rate of 

the air temperature. 

 The net  gain  of heat in the layer between 

z and z + dz level is equal to the product of 

 pc, and the change of the temperature in 

the layer. Therefore the change of the air 

temperature at z is given by  -aT =  a K(  aT   +r) 
 ataz\\ az 

        R

PPa  
              (PoP)}.• • .    (6) 

             When the total mass of the air undergoes no 

change  pu must be constant. Substituting 

the expression  P•=--•PoexPRfinto 

                        T 

 g dz 

 0 

(6) we get 

    aT=K(aT±r)+ 7-2  a f'dz 
 atazazat T 

 0 

  (7) 

This is the equation which gives for the 

change of temperature by turbulence. 

§ 3. Application of the Result to the 

 Atmosphere. 

(1) The diurnal variation of temperature. 
  As an example of the application of the 

above result to the atmosphere, let us find 

the change of temperature with height in 

the form of the curve of diurnal variation 

of temperature for the case when K is con-

stant with height. As it is not easy to get 

a general solution of the equation (7), we 

shall make an approximate calculation as-

suming the second term of the right-hand
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                                side of the equation to be 

  ao other terms. 
E tv (to t)=- t -at E u.40                                      From TAYLOR's equation

smaller than

   aT       Ka2T    (8) 
    at 

we have T =  Be•"+  et  , where c = Ka2 and a 

is generally a complex number. Introducing 

this into the second term of the right-hand 

side of (7) we have 

  az1.(T2 atadzT)=13c (1—2e,,z) 
Putting this expression into (7) and  solving. 

the equation 

 aTa, T   = K a
z,+ Bc (1-20-)  at 

we have 
          a

32   T=C  (1  --2z+e'r)+E+ Fz. 
 (9). 

  Let the temperature at the ground be 

given by 

           T  =  To + A sin qt, 

 then  To+  A sin qt =  35  Get + E, 

 from which 

   C3iA,  c  iq,  E  =  TT. 

 Thus we have 

 T=Tu—Oz 

   — 3AT.ri exp( 2K(1+i)z+ igt)   5L   

         1 

 x fi-F-Tv 2K (1i) z 

 2  

 + 3  exP(---,N/2qK  (1  +  i  )  z)11 
 =  To-13z+3 -  Ae-"qsin(qt bz) 

 5 

      +  sin(qt bz+ 7r  ) 

                        4                

)         +(qt-2 bz)f ,  •  (10) 

 where  /3 is the mean lapse-rate during the 

 period and denotes the symbol to take the 

 real part of the following expression and

 4.
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 3    +  —
5  AN/G2+  H2  e-'zsin(qt—bz+a)  • (11) 

where  G=  1+bz2 6—')z cos bz,         23 

 H bz 2 e_')z sin bz,               3 

and a  = tan-1                  G " 

Then the amplitude of the  diurnal variation

 IS— 

tg? 

 4 

                                   7T 

                          Fig.  1  Rati,) of  Amplitudes  Eeferrod to  h2.

of temperature at any height z will be 

  /1.,/  G2  + 

Solving the equation (8) we have 

   T  To  —  Oz  +  Ae-""sin  (q1—  bz),  •  •  (12) 

so the amplitude by TAYLOR's expression 
will be given by 2Ae-'z----2Az. TAYLOR com-

pared the above result with observations 
made on the Eiffel Tower and evaluated the 

mean value of K for the whole year as  105 

 in  C.  G.  S. units. 

 Now the diurnal variation of temperature 

at the ground can be represented with rea-

sonable accuracy by a single sine-term of 

period 24 hours. Thus q  =  27r  /  (24  X  60  x  60) 
 7.  3  x  10-5 and  b  =  2  x  10-5 for  K  =  10'. 

Then at z =  500  m the diurnal variation falls 

to  0.37 of the surface value and 0.05 at 

 1500  m. The ratio of the diurnal variation 

deduced  from (11) and (12) or  A;1  Az is 

     ,  equal to3—sN/G- +  112, which is the function 

of bz  only. Values of  A;1  A, were illustrated 

in Fig. 1 with reference to bz, and were 

tabulated below for a range of height below 

2000 m assuming as K  =105.
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Let us now compare these results with obser-

vations made at  Lindenberg.

 From the above table we can find that 

TAYLOR's result holds only below 500 m from 

the ground and the discrepancy increases 

with height, which means that K must in-

crease with height in  TAYLOR's expression. 

On the contrary our result holds fairly good 

up to higher levels even  if K is assumed 

to be constant. 

 The lag in the occurrence of maximum  tem-

perature from the ground to the height z is 

bz in TAYLOR's expression and bz — a in our 

expression. Therefore if we assume as K 

 —10', the latter is more retarded up to 

about 125 m  from the ground and beyond this 

level it is gained than the former. 

 However in practice the method to compare 

 our result with TAYLOR's one from the lag 

in the time of maximum temperature between 

any two levels is unreliable on account of 

the difficulty in estimating the extent of the 

lag. 

 (  2  ) Change in the distribution of tempera-

     ture within a  current of air. 

 When a current of air, after being heated 

during the passage over warm land, passes
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over a cold sea, heat is transferred vertically 

downward. Suppose the air on reaching the 

coast had a constant lapse-rate  /3, its surface

temperature being  T0. Let the surface tem-

perature of the sea be T1. Then the solution 

of equation (8) which was given by TAYLOR 

will be written down as 

   T =  To  — 
                                          zi./4KT                  2  

    +  (T1  —  To)  {1 —  J  e--"Wx}  ,  •  .  (13) 
                             Tr 

 0 

whereas the temperature from (7) is given 

by 

 T  To—  (3,z  ±  (T1—  To)

                  ziv4A-rt  X  {1 —2(f e-z2dx+ lict))- 
  AfTt 24Kt 

 ..........  •  •  -  •  (14)

approximately. TAYLOR has deduced values 

of K of the order of  103 from the vertical 

distribution of temperature above the Great 

Banks of Newfoundland. He  obtained this 

value from the height at which the inver-

sion ceased, but it is impossible by this 

method to decide which result is in closer 

agreement with observations. 
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