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Introduction,

On the visco-elastic medium Hosali studied
the wave propagation in it, assuming the
stress components are the linear functions
of the strain components and their time
differentials.

After his assumption, however, if the
time differentials of the strain components
are very large comparing to the strain
components themselves, the stress com-
ponents are to be proportional to the time
differentials of the strain components or
the medium may be regarded to be viscous
fluid, and if, on the contrary, the time
differentials of the strain components are
negligibly small, the stress components are
to be proportional to the strain compo-
nents, or the medium may be regarded to
be perfect elastic. _

These results are quite contrary to our
fundamental idea of the visco-elastic me-
dium, which is practically viscous if the

strain varies very gradually and is perfectly’

elastic if the strain varies very quickly.

The present writer intended to improve
this contradiction by assuming the relatively
simple stress-strain relations. For the sake
of the mathematical facilities of further
developments in practical purpose, the
formula must be linear function of stress
and strain components and their time dif-
ferentials.

In Hosali’s assumption the time differen-
tial of the strain components only are in-
troduced, but the time differentials of the
stress components are neglected,

The writer introduced the latter in Hosa-
li's formula. This very simple and quite
natural improvement of the stress-strain
relation practically removed the contradic-
tions in the conclusions of the fundamental
properties of the visco-elastic medium.

Chapter 1.
Fundamantal Stress-strain Relation.

i. Henceforth, uniform isotropic mediom
only is treated, otherwise noticed. Or the
coefficients represent the elastic and vis-
cous properties of the medium are all inde-
pendent of the space co-ordinates. The
fundamental stress-strain relation is given
by

<a+ i )Xw (m NS )6+2(n e )eu |

(aéi-' aa_;)y = (x’+x?)0+2(u’+u%)ew
(a+a%)2;=(x’+m—§7)9+2(u'+uit)eﬂ
(a+§—z>Yz=<u’+w§T)ew
(et-2-)zu=(u '+y§—t)e”
(a+ gf ?Xy (.u +pi )e-u

) o pe O
2. When af(—éi—f, ‘ A E<LW and
M'E@g—tf, (1.1) becomes
3 3,5 @ '
a—t‘Xz=l"‘8t—g+2p‘—a“‘E“ezz, etc, ... .(12)

Integrating this with respect to {, we get

¢



LN

X, =a0+2pe.., etc,
which is the Jooke’s law for elastic medi-
gm. In° (1.3) the integrating constants
are dropped, but it does no changes in the
physical meaning.

4. When, on the contrary, it is assumed
that ag-}{?g, (1.1) becomes
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If in this formula, NE€r—7£ and
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which is the stress-strain relation quite
analogous to that in viscous medium. But
there is one important differece. As seen
in (12) A and g are Lamé's constants. If,
however, the ordinary assumption in viscous
medium fhat the mean of three normal
stresses on mutually orthogonal planes at a
point is egual to the statical pressure,
which is assumed here to be zero, is adopt-
ed, (1.5) gives
3n=—2y,

which cannot be fulfiled.

As there is, of course, no theoretical
foundation of this ordinary assumption in
viscous fluid, in visco-clastic medium this
assumption on the normal stresses may
be safely abandoned.
4. Most of amorphous mediums have practi-
cally elastic properties at low temperature,
and are viscous at high temperature. This
transition can be explained by that A’ and
o quickly diminish with increasing temper-
ature and A and g so vary to gain at last
the relation (1.6).
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Chapter II.
The Case of Slow Displacement.

5. There is no strict statical case in the
dynamics of the visco-elastic medium. Any
Stress applied to visco-elastic medium must
set it in motion however slow it may be.
We will deal at first the case only in
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which the square of wvelocity is negligibly
small or the term including the inertia of
particle can be neglected.
6. A body of any form subjected to the
action of a constant pressure P will be the
simplest state of stress. In this case the
stress will be giver by the equations
Xo=Yy=Zi=—P ]
and e 2.1
YV.=Z,=X,=0, [
which gives
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-ends,
lateral surface is another simple case. In
this case the stress components in the
-cylinder is given by '
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Integrating this and taking in account that

when ¢=0, §=0, we get easily

g= 3p { A2p ( 3 +2u )}
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Put this value of 8, in (2.5) in Article 6,
.8 is glven by
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8. A cylinder subjects to a tension at its
but with no force acting on the

Xox0, ¥Vy=2.=YV,=2,=X,=0,

-if the y-axis is taken parallel to the axis
.of the cylinder.

If X, is a function of time we get
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where C;, C, G/, and €S are integration

constants.

Case 1, If X2=T£ and at =0 e..=e,,=0,

aX ”

then =T d

we get from (2.16)

Flct)=aou+yf)Tt+{(N+u’.)+cz(h+u)}7’,

Fy(t)=

aX:r

J-{ax ey +aV T},

=0. In this case

————

o
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If there is no strain at /=0, then we get
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If £ is small but 7y=X. is finite, (2.19)
can bhe written as
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Constants in this eqation are to be deter--

mined by initial conditions.

§. Circular cylinder subjects to torsional
couple at its ends, but with no force on
the lateral surface is another simplest uni-
form deformation. Similar to the well
known case of pure elastic deformation of
circular cylinder, the couple at ends N~
and the torsional angle + is given by

5] +
(cz—[— JNM(L& +u=p %,
where 7 is the radius of the cylinder.

This case is easily solved when N is given
as a function of {. (2.22) can be written
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as
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where
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and
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Case 1. Put N=ui+N, we get
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If at {=0, =1, then we get
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then we get
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and if ’TU=70, then we get
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If further fis small, but N—m is finite,
then we get

2N

T --s--.(2.30)'

M)
Case 3. If #=0, or N=N, then
o
(a-'{—?t-)N = alNy.
In this case we gét

T=Te " (1—-8_%5 )
...... (2.31)
Onse 4. If N=0, then we get
T=T8" ';_.‘ . s (2.32)

10. From equation (2.32)in Article §, we
get
w0, . (2.33)
because r/ry must be decreasing with £,
From equation (2.31) we get
a>0, (2.34)
because + must be always positive if 1—0>0
and N,>0.
Put P=0 in (25) in Article §, we get
’ 4
0=0, eX_p( — %t)
In this case # cannot be greater than g,
therefore
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or A= J




