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"§ 1. Law of Similitude and the Effect.
of Viscosity.

Model experiment of Tsunami or seismic

sea waves demands to satisfy the law of

similitude. However it is generally impos-
sible when the effect of viscosity is taken
into consideration and jt has heen consi-
dered this effect as considerabily serious on
the model experiment.(¥®» This erroneous
consideration comes from the fact that we
have been concerned only with the mole-
cular viscosity of water of which coefficient
is nearly same both for the sea and the
model. In these circumstances, however,
turbulent viscosity predominates the mole-
cular viscosity and its coefficient of the
sea water is considerably larger than that
of the water in the model. Therefore we
shall examine the effect of viscosity again
from the standpoint of the law of similitude.
The equation of motion of the sea water

is
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and the elevation of water from the un-

disturbed level is given by
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In the case of the model .these equations
are
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respectively. Here x~ and «’-axis are chosen
in the direction of the propagation of the
wave and y- and y'-axis vertically upwards.

If we put
x=Lyx', y=Dg, t=Tot,

77 =Dun’,‘~':j—": (I)D%-
and introduce these into (1) and (2) we
get
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Then from the law of similitude
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Fig. I

When: we are concernied only with molecu-
lar viscosity @, must be equal to unity,

therefore La=Du'-fl , and Ty=Dy% In usual
cases D)y should be about 100 and so the
time must be redaced to 1710000 and the
horizontal dimension to 10-°. In such circum-
stances no experiment can be performed.
However the value of the turbulent viscos-
ity of the sea water is about 100 in the
bay. On the contrary it is much smaller in
the model. Observations in the Japan Sea
show that turbulent viscosity depends on
the wvelocity of the sea water and is about
4 when the velocity is very small. If we
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adopt this value for the model ¢p,=100/4==25
and if we assume D,=100. then L,=4000
and 7,=400 which is a suitable reduction
for experiment. As the value of the coeffi-
cient of turbulent viscosity is not definite,
especially that of the water in the model,
we cannot perfectly satisfy the law of si-
militude, but the effect of viscosity can be
fairly reduced by adopting the adeguate
dimensions of the model.

§ 2. Bffect of Viscosity on the Height
of Wavez in the Bay.

4s a simple case we consider a rectangu-
lar bay whose lengthis L and depth is D
which is uniform throughout the bay. Tsuna-
mi is supposed to invade the bay in the direc-
tion of its length. We shall obtain the height
of wave in the bay giving the changes in
the elevation at the mouth of the bay.

Introducing the expression E£= f udt into

(13 and (2) we get
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As the horizontal velocity # depends on y
the eguation of continuity is given by
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From (3) and {4) we get
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{f we take the origin of the axes of coor-
dinates at the bottom of the open end which
communicates with the sea boundary and
initial conditioms are expressed as follows

- o 9 -
gu—O at y=0, -, =0 aty=D,
l?]:f(i} at x=0, %:0 at x=1L,

=0 when 7=0.
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fhe condition at ¥=0 means that the
water is at rest at the bottom of the sea,
and that at y=D is given by the stress
condition at the surface. Again the condi-
tion at x=L means that the closed end of
the bay coincides with the loop of the

»=0 and

wave. To solve the equation (5) we shall

first obtain the solution for p=1 at x=0

and then the sclution for »=j{{) at x=0.
Putting

E=XCOTW Y +1} -
and introducing it into (5) we have
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If we separate the terms which contain ¥

from those not contain, 1
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From (8)
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where b is in general a complex number,
and so

T=e", y=A ex13<\/§y)+ Bexp(—\/?:;y)'

Therefore by (7)

X=Fsin cx+ F'cos ¢x
where
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Thus we get
=M (Esiner+ Fcoscx)
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9 denotes the symbol to take the real part
of the above expressicm,

From conditions at the surface and the
hottom of the sea

A+ B+1=0,
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“Thus the height of wave is expressed as
n= -—%a—x£ Edy

¥4
=?R%e'”(E coscx—Fsincx)+ 1.

Using the conditions at the open end (or
n=1 at x=0) and the closed end

s+4-L

E=0, cx——5n, 5=012,.-..

Consequently
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From the initial conditior, or =0 when
£=0
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Thus we can get the height of wave with
the condition that u=1 at x=0. The
solution for #=jf() at x=0 is given by
Duhamel’s theorem as
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When the viscosity is neglected
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so introducing these into (11) we get the
height of wave directly and this is in ac-
cordance with the result obtained by G.

Nishimura & K. Kanai ® using the Stokes’
methad,

As an example when f(f)=H sin o,
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for non-viscous fluid, where
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For viscous fluid, from (8) -
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but it is difficult to get the value of &
from the above equation. However, as in
general
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If we put
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When we compare this with that of non-
viscous fluid, it is easily seen that for
forced oscillation the amplitude is larger
and the phase is more retarded than the
latter and for free oscilllation the ampitude
is larger at first but it decreases exponen
tially and the phase is also retarded. After
a long time free oscillation diminishes and
so0 the difference between them increases
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as the time elapses.

In the near future we intend to make a
mode] experiment of Tsunami in Shizugawa
Bay, Miyagi Ken, Japan. In this case

L=15km, D=6m and if we assumne
#fp=100, then £,=0.066. The longest period
of the free oscillation of this bay is

131 min. :

In Fig. 2 the relative height of waves
at the open end with the closed end or
7z-c/H is illustrated, assuming «=27/30 x 60
or the period of forced osciilation as 30
min. This ratio depends not only on the
coefficient of viscosity but on the period
of free and forced oscil-
lation. In the case of the
above example the ratio
me=nfH of viscous fluid
is ‘at first about 109
smaller than that of the
non-viscous fluid, hbut its

difference increases as.
the time elapses. In the
same way the relative
height of the wave in
the bay and in the model
in which turbulent viscos-
ity is not same will be-
obtained with ease.
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