FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY (2013, VOLUME 1, ISSUE 1)

Reaction of the α-azahetaryl-2-hydroxyacetophenones reaction with chloroacetyl chloride

Shokol T.V., Gorbulenko N.V., Khilya V.P.

Department of Chemistry, Taras Shevchenko National University of Kyiv Volodymyrska Street, 64/13, Kyiv 01601, Ukraine

<u>shokol_tv@univ.kiev.ua</u>

The reaction of α -azolyl-2-hydroxyacetophenones with chloroacetyl chloride in acetonitrile in the presence of pyridine resulted in 2-chloromethyl-3-azolylchromones, while both the α -(2-pyridyl) and α -(2-quinolyl) derivatives formed the products of the subsequent intramolecular cyclization with annelation of indolizine or pyrroloquinoline ring to the chromone core.

Introduction

Isoflavones are naturally occurring products that possess a wide spectrum of biological activity [1]. 3-Hetarylchromones, heterocyclic analogs of natural isoflavones, are known for their inflammatory, antiviral, anabolic. analeptic, hypoglycemic and hypolipidemic activities [2]. α-Azahetaryl-2hydroxyacetophenones are the key precursors for the synthesis of 3-azahetarylchromones. We have previously reported that α -azahetaryl-2hydroxyacetophenones underwent acylation, followed by cyclization with acetic anhydride, trifluoroacetic anhydride and ethoxalyl chloride to give 2-substituted 3-azahetarylchromones [3]. Treatment of α -aryl-2-hydroxyacetophenones chloroacetic anhydride with gave 2chloromethyl chromones [4].

Results and discussion

As part of our ongoing interest in the synthesis of the new 3-azahetarylchromones and to extend our earliar work on acylation of α -azahetaryl-2-hydroxyacetophenones, the

compounds **1.1a-1.10f** were treated with the excess of chloroacetyl chloride in acetonitrile in the presence of pyridine. Formation of 3-azolyl-7-chloroacetyl-2-chloromethylchromones **2.1a-2.6d** from α -azolyl-2-hydroxyacetophenones **1.1a-1.6d** occurs smoothly in 37-60 % yields. The ¹H NMR spectra of products **2.1a-2.6d** revealed the resonances of two methylene groups at 4.65-4.68 ppm (ClCH₂CO) and 5.10-5.58 ppm (2-ClCH₂) correspondingly.

Next we progressed on to elaboration of the hydrolysis of chloroacetates **2.1a-2.6d** to provide 3-azolyl-2-chloromethyl-7hydroxychromones **3.1a-3.6d**. As expected, the ¹H NMR spectra of compounds **3.1a-3.6d** showed disappearance of the signal at 4.65-4.68 ppm of the starting material, while 2-ClCH₂ signal remained intact. Finally, a new singlet at 10.77-10.96 ppm was assigned to the 7-OH group.

In contrast with α -azolyl derivatives, both the α -(2-pyridyl) (**1.7e-1.9e**) and α -(2-quinolyl) (**1.10f**) derivatives were found to form the products of the subsequent intramolecular cyclization with annelation of indolizine or pyrroloquinoline ring to the chromone core. This was confirmed by the presence of the characteristic signal of H6 at 7.70-7.80 ppm in the ¹H NMR spectra of the products **4.1e-4.3e** and H13 at 7.88 ppm in the spectrum of the product **6f**.

Hydrolysis of compounds **4.1e**, **4.2e** with 5 % NaOH afforded the 9-OH derivatives **5.1e**, **5.2e**.

Conclusion

In conclusion we have reported that the resultant structures in reaction of α -azahetaryl-2-hydroxyacetophenone with chloroacetyl chloride relied upon the structure of heterocycle in starting material.

Experimental part

Reaction progress and identity of obtained compounds were monitored by TLC on Merc 60 F_{254} silica gel plates using CHCl₃-MeOH (9:1) system. NMR spectra were

recorded on Mercury-400 spectrometer (spectrometer frequency for ¹H: 400 MHz) from DMSO- d_6 and CDCl₃ solns. The TMS signal was used as an internal standart. Elemental analyses for C, H, and N were performed using Perkin-Elmer C, H, N Analyser.

Compounds **2.1a**, **2.2a**, **2.4b**, **2.5c**, **3.1a**, **3.2a** and **3.4b** were synthesized according to a procedure reported in the literature [5-7].

3-Azolyl-2-chloromethyl-4-oxo-4*H*-7chromen-yl 2-chloroacetates (2.3b, 2.6d). General procedure

Pyridine (1.22 mL, 15 mmol) and chloroacetyl chloride (1.20 mL, 15 mmol) were added to a solution of compound **1.3b** or **1.6d** (5 mmol) in acetonitrile (15 mL), held for 24 h at room temperature, and obtained precipitate was filtered off and washed with water.

3-(1,3-Benzothiazol-2-yl)-2-chloromethyl-4oxo-6-propyl-4*H*-7-chromenyl 2chloroacetate (2.3b)

Yellow solid; yield: 1.39 g (60 %); mp 158 °C. ¹H NMR (DMSO-d₆): δ =0.98 (t, ³J_{HH} =7.2 Hz, 3H, CH₃), 1.66 (m, 2H, CH₂), 2.68 (t, ³J_{HH} =7.2 Hz, 2H, CH₂), 4.65 (s, 2H, ClCH₂CO), 5.58 (s, 2H, CH₂Cl), 7.46 (t, ³J_{HH} =7.2 Hz, 1H, H6'), 7.53 (t, ³J_{HH} =7.2 Hz, 1H, H5'), 7.67 (s, 1H, H8), 8.07 (d, ³J_{HH}=8.4 Hz, 1H, H7'), 8.09 (d, ³J_{HH}=8.4 Hz, 1H, H4'), 8.13 (s, 1H, H5).

Anal. Calcd for $C_{22}H_{17}Cl_2NO_4S$: C, 57.15; H, 3.71; Cl, 15.34; N, 3.03; S, 6.93. Found: C,

57.41; H, 3.87; Cl, 15.46; N, 2.76; S, 7.11.

2-Chloromethyl-8-methyl-3-(2-methyl-1,3thiazol-4-yl)-4-oxo-4*H*-7-chromenyl 2chloroacetate (2.6d)

Colorless solid; yield: 0.73 g (37%); mp 195 °C

¹H NMR (DMSO-d₆): δ =2.37 (s, 3H, 8-CH₃), 2.76 (s, 3H, 2'-CH₃), 4.68 (s, 2H, ClCH₂CO), 5.10 (s, 2H, CH₂Cl), 7.29 (d, ³J_{HH}=8.4 Hz, 1H, H6), 7.94 (s, 1H, H5'), 8.02 (d, ³J_{HH} =8.4 Hz, 1H, H5).

Anal. Calcd for C₁₇H₁₃Cl₂NO₄S: C, 51.27; H, 3.29; Cl, 17.80; N, 3.52; S, 8.05. Found: C, 51.49; H, 3.42; Cl, 17.92; N, 3.20; S, 8.23.

3-Azolyl-2-chloromethyl-7-hydroxy-4H-

chromen-4-ones (3.3b, 3.5c, 3.6d). General procedure. A solution of compound 2.3b, 2.5c or 2.6d, (3 mmol) in a mixture of EtOH (50 mL) and 37% HCl (1 mL) was refluxed for 1.5 h, then set aside overnight at room temperature, filtered off and washed with ethanol and water.

3-(1,3-Benzothiazol-2-yl)-2-chloromethyl-7-

hydroxy-6-propyl-4*H*-4-chromenone (3.3b)

Yellow solid; yield: 1.11 g (96 %); mp 305 °C. ¹H NMR (DMSO-d₆): δ =1.00 (t, ³J_{HH} =7.2 Hz, 3H, CH₃), 1.67 (m, 2H, CH₂), 2.65 (t, ³J_{HH} =7.2 Hz, 2H, CH₂), 5.56 (s, 2H, CH₂Cl), 6.95 (s, 1H, H8), 7.43 (t, ³J_{HH} =7.6 Hz, 1H, H6'), 7.51 (t, ³J_{HH} =7.6 Hz, 1H, H5'), 7.86 (s, 1H, H5), 8.04 (d, ³J_{HH} =8.0 Hz, 1H, H7'), 8.07 (d, ³J_{HH} =8.0 Hz, 1H, H4'), 10.89 (s, 1H, OH).

Anal. Calcd for C₂₀H₁₆ClNO₃S: C, 62.26; H, 4.18; Cl, 9.19; N, 3.63; S, 8.31. Found: C, 62.48; H, 4.43; Cl, 8.99; N, 3.33; S, 8.54.

2-Chloromethyl-6-ethyl-7-hydroxy-3-(5phenyl-1,3,4-thiadiazol-2-yl)-4*H*-4chromenone (3.5c)

Colorless solid; yield: 1.19 g (99 %); mp 236 °C ¹H NMR (DMSO-d₆): δ =1.28 (t, ³J_{HH}=7.2 Hz, 3H, CH₃), 2.71 (q, ³J_{HH}=7.2 Hz, 2H, CH₂), 5.49 (s, 2H, CH₂Cl), 6.98 (s, 1H, H8), 7.55 (m, 3H, H3', H4', H5'), 7.89 (s, 1H, H5), 8.07 (m, 2H, H2', H6'),10.96 (s, 1H, OH).

Anal. Calcd for C₂₀H₁₅ClN₂O₃S: C, 60.23; H, 3.79; Cl, 8.89; N, 7.02; S, 8.04. Found: C, 60.45; H, 3.86 Cl, 9.00; N, 6.89; S, 7.79.

2-Chloromethyl-7-hydroxy-8-methyl-3-(2methyl-1,3-thiazol-4-yl)-4*H*-7-chromenone (3.6d)

Colorless solid; yield: 0.95 g (98 %); mp 240 °C ¹H NMR (DMSO-d₆): δ =2.30 (s, 3H, 8-CH₃), 2.79 (s, 3H, 2'-CH₃), 5.02 (s, 2H, CH₂Cl), 7.02 (d, ³J_{HH}=8.8 Hz, 1H, H6), 7.78 (d, ³J_{HH}=8.8 Hz, 1H, H5), 7.91 (s, 1H, H5'), 10.77 (s, 1H, OH). Anal. Calcd for C₁₅H₁₂ClNO₃S: C, 55.99; H, 3.76; Cl, 11.02; N, 4.35; S, 9.96. Found: C,

55.73; H, 3.85; Cl, 11.00; N, 4.60; S, 9.79.

12-Oxo-12*H*-chromeno[3,2-a]indolizin-9-yl acetates (4.1e, 4.2e). General procedure

Pyridine (1.6 ml, 20 mmol) and chloroacetyl chloride (0.88 g, 11 mmol) were added to a solution of compound **1.7e** or **1.8e** (10 mmol) in acetonitrile (15 mL). The reaction mixture was refluxed for 20 min and then was cooled to room temperature. The resultant precipitate was filtered off and recrystallized from *o*-xylene.

8-Methyl-12-oxo-12*H*-chromeno[3,2a]indolizin-9-yl acetate (4.1e)

Green solid; yield: 2.46 g (80 %); mp 265 °C ¹H NMR (DMSO-d₆): δ =2.33 (s, 3H, CH₃), 2.37 (s, 3H, CH₃CO), 7.05 (d, ³J_{HH}=7.6 Hz, 1H, H10), 7.07 (t, ³J_{HH}=7.6 Hz, 1H, H3), 7.32 (t, ³J_{HH} =7.6 Hz, 1H, H2), 7.74 (s, 1H, H6), 8.07 (d, ³J_{HH}=8.4 Hz, 1H, H11), 8.25 (d, ³J_{HH} =8.4 Hz, 1H, H11), 8.25 (d, ³J_{HH} =8.4 Hz, 1H, H11), 8.61 (d, ³J_{HH}=6.4 Hz, 1H, H4).

Anal. Calcd for $C_{18}H_{13}NO_4$: N, 4.56. Found: N, 4.45.

10-Ethyl-12-oxo-12H-chromeno[3,2-

a]indolizin-9-yl acetate (4.2e)

Green solid; yield: 1.99 g (62 %); mp 202 °C

¹H NMR (DMSO-d₆): δ =1.25 (t, ³J_{HH}=7.2 Hz, 3H, CH₃), 2.37 (s, 3H, CH₃CO), 2.65 (q, ³J_{HH}=7.2 Hz, 2H, CH₂), 7.08 (t, ³J_{HH}=7.6 Hz, 1H, H3), 7.33 (t, ³J_{HH}=7.6 Hz, 1H, H2), 7.40 (s, 1H, H8), 7.70 (s, 1H, H6), 8.08 (s, 1H, H11), 8.25 (d, ³J_{HH}=8.4 Hz, 1H, H1), 8.60 (d, ³J_{HH}=6.4 Hz, 1H, H4).

Anal. Calcd for C₁₉H₁₅NO₄: N, 4.36. Found: N, 4.21.

12-Oxo-10-propyl-12H-chromeno[3,2-a]-

indolizin-9-yl 2-chloroacetate (4.3e) was obtained from comp. 1.9e (2.71 g, 10 mmol) and chloroacetyl chloride (1.75 mL, 22 mmol) according to a procedure for comp. 4.1e.

Green solid; yield: 0.25 g (68 %); mp 278 °C

¹H NMR (DMSO-d₆): δ=0.92 (t, ${}^{3}J_{HH}$ =7.2 Hz, 3H, CH₃), 1.66 (m, 2H, CH₂), 2.62 (t, ${}^{3}J_{HH}$ =7.2 Hz, 2H, CH₂), 4.62 (s, 2H, ClCH₂CO), 7.07 (t, ${}^{3}J_{HH}$ =7.6 Hz, 1H, H3), 7.33 (t, ${}^{3}J_{HH}$ =7.6 Hz, 1H, H2), 7.40 (s, 1H, H8), 7.74 (s, 1H, H6), 8.08 (s, 1H, H11), 8.28 (d, ${}^{3}J_{HH}$ =8.0 Hz,1H, H1), 8.62 (d, ${}^{3}J_{HH}$ =5.6 Hz, 1H, H4).

Anal. Calcd for C₂₀H₁₆ClNO₄: Cl, 9.59; N, 3.79. Found: Cl, 9.59; N, 3.84.

9-Hydroxy-12*H*-chromeno[3,2-a]indolizin-12ones (5.1e, 5.2e). General procedure

A mixture of the corresponding acetates **4.1e** or **4,2e** (5 mmol) in 50 mL of EtOH and 5% water solution of NaOH (4 mL, 5 mmol) was refluxed for 1 h, diluted with water (100 mL), refluxed for 5-10 min, neutralized with HCl to pH 7 and the resultant precipitate was filtered off and recrystallized from DMF.

9-Hydroxy-8-methyl-12*H*-chromeno[3,2a]indolizin-12-one (5.1e)

Yellow solid; yield: 1.13 g (86 %); mp 218 °C ¹H NMR (DMSO-d₆): δ =2.30 (s, 3H, CH₃), 7.10 (d, ³J_{HH}=8.4 Hz, 1H, H10), 7.30 (t, ³J_{HH}=7.6 Hz,

1H, H3), 7.70 (s, 1H, H6), 7.73 (t, ${}^{3}J_{HH}$ =7.6 Hz, 1H, H2), 8.08 (d, ${}^{3}J_{HH}$ =8.4 Hz, 1H, H11), 8.25 (d, ${}^{3}J_{HH}$ =7.6 Hz,1H, H1), 8.60 (d, ${}^{3}J_{HH}$ =6.4 Hz, 1H, H4), 10.40 (s, 1H, OH).

Anal. Calcd for C₁₆H₁₁NO₃: N, 5.28. Found: N, 5.09.

10-Ethyl-9-hydroxy-12*H*-chromeno[3,2a]indolizin-12-one (5.2e)

Yellow solid; yield: 1.00 g (72 %); mp 217 °C ¹H NMR (DMSO-d₆): δ =1.25 (t, ³J_{HH}=7.2 Hz, 3H, CH₃), 2.65 (q, ³J_{HH}=7.2 Hz, 2H, CH₂), 6.88 (s, 1H, H8), 7.35 (t, ³J_{HH}=7.6 Hz, 1H, H3), 7.73 (t, ³J_{HH}=7.6 Hz, 1H, H2), 7.80 (s, 1H, H6), 8.09 (s, 1H, H11), 8.25 (d, ³J_{HH} =8.4 Hz,1H, H1), 8.59 (d, ³J_{HH} =6.4 Hz, 1H, H4), 10.41 (s, 1H, OH).

Anal. Calcd for $C_{17}H_{13}NO_3$: N, 5.02. Found: N, 5.00.

9-Ethyl-10-methoxy-7*H*-chromeno[3',2':3,4]pyrrolo[1,2-a]quinolin-7-one (6f)

Method A. Product **6f** was obtained from compound **1.10f** (0.48 g, 1.5 mmol), pyridine (0.3 mL, 3.7 mmol) and chloroacetyl chloride (0.13 mL, 1.65 mmol) in CH₃CN (11 mL) according to a procedure for compound **4.1e**.

Method **B**. Product **6f** was obtained from compound **1.10f** (0.64 g, 2 mmol), pyridine (0.3 mL, 3.7 mmol) and chloroacetic anhydride (0.88 g, 10 mmol) in CH₃CN (10 mL). The reaction mixture was refluxed for 5-10 min, poured onto water (100 mL) and the resultant precipitate was filtered off and washed with EtOH.

Yellow solid; yield: 0.27 g (52 %, method **A**), 0.5 g (74 %, method **B**); mp 301-302 °C

¹H NMR (CDCl₃): δ =1.26 (t, ³J_{HH} =7.2 Hz, 3H, CH₃), 2.72 (q, ³J_{HH} =7.2 Hz, 2H, CH₂), 3.94 (s,

3H, CH₃O), 6.84 (s, 1H, H11), 7.47 (t, ${}^{3}J_{HH}$ =7.6 Hz, 1H, H2), 7.51 (d, ${}^{3}J_{HH}$ =8.4 Hz, 1H, H4), 7.65 (t, ${}^{3}J_{HH}$ =7.6 Hz, 1H, H3), 7.82 (d, ${}^{3}J_{HH}$ =7.6 Hz, 1H, H1), 7.88 (s, 1H, H13), 8.13 (s, 1H, H8), 7.96 (d, ${}^{3}J_{HH}$ =8.8 Hz, 1H, H5), 8.37 (d, ${}^{3}J_{HH}$ =8.8 Hz, 1H, H6).

Anal. Calcd for C₂₂H₁₇NO₃: N, 4.08. Found: N, 4.01.

References

[1] A.L. Kazakov, V.P. Khilya, V.V. Mezheritskii, G. Litkei, Natural and modified isoflavonoids [in Russian], Izd. Rostovsk. Univ., Rostov-on-the-Don (1985).

[2] N.V. Gorbulenko, V.P Khilya, *Ukr*. *Khim. Zh.* **1994**, *60*, № 1, 79-91.

[3] M.S. Frasinyuk, В.П, Хиля, *Khim. Geterotsikl. Soedin.* **1999**, *35*, 3-23. [*Chem. Heterocycl. Comp.* **1999**, *35*, 3-22].

[4] A.-G. Cassella Farbwerke Mainkur, GB Pat. Appl.1016088 (**1964**).

[5] T.V. Shokol, N.V. Gorbulenko, V.P.
Khilya, *Khim. Geterotsikl. Soedin.* 2011, 47, 1567. [*Chem. Heterocycl. Comp.* 2011, 47, 1298].

[6] T.V. Shokol, N.V. Gorbulenko, A.V.
Turov, V.P. Khilya, *Khim. Geterotsikl. Soedin.* **2012**, 48, 1266-1271. [*Chem. Heterocycl. Comp.* **2012**, 48, 1181-1186].

[7] T.V. Shokol, V.V. Semenyuchenko,
V.P. Khilya, *Khim. Geterotsikl. Soedin.* 2004,
40, 1840-1847. [*Chem. Heterocycl. Comp.*2004, 40, 1588-1594].