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Abstract

We have investigated the dynamical interaction between a galactic disk and numerous surrounding dark subhalos
as expected for a galaxy-sized halo in the cold dark matter models. Our particular interest is to what extent accretion
events of subhalos into a disk are allowed in light of the observed thinness of a disk. Several models of subhalos
were considered in terms of their internal density distribution, mass function, and spatial and velocity distributions.
Based on a series of N -body simulations, we find that disk thickening, quantified by the change of its scale height,
∆zd, depends strongly on the individual mass of an interacting subhalo, Msub. This is described by the relation
∆zd/Rd � 8

∑N

j=1(Msub,j /Md)2, where Rd is the disk scale length, Md is the disk mass, and N is the total number
of accretion events of subhalos inside a disk region (≤ 3Rd). Using this relation, we find that an observed thin disk
has never interacted with subhalos with a total mass of more than 15% of the disk mass. Also, a less-massive disk
with a smaller circular velocity, Vc is more affected by subhalos than a disk with a larger Vc, in agreement with
observations. Further implications of our results for the origin of a thick disk component are also discussed.
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1. Introduction

The cold dark matter (CDM) paradigm has become a
standard framework for understanding structure formation in
the Universe. According to this theoretical paradigm, the
growing process of self-gravitating structures is hierarchical in
the sense that small dark-matter halos virialize first, and aggre-
gate successively into larger and larger objects. This clustering
process of dark-matter halos is successful for explaining a wide
variety of observations, including the large-scale distribution of
galaxies.

In this CDM scenario, N -body simulations are an impor-
tant tool to investigate the non-linear growth of cosmolog-
ical structures. Early N -body simulations based on the CDM
models suffered from the so-called over-merging problem, i.e.,
substructures are disrupted very quickly within dense environ-
ments (Summers et al. 1995). However, recent high-resolution
N -body simulations have revealed the presence of hundreds
of dark-matter substructures (subhalos) that survive on not
only cluster scales, but also on galactic scales (Moore et al.
1999; Klypin et al. 1999). This large number of subhalos
in a galaxy-sized halo is in contrast to only about a dozen
satellite galaxies in the Galaxy, which confronts the so-called
the Missing Satellite Problem. Several authors have argued
that this apparent discrepancy could be resolved by consid-
ering some suppressing process for star formation, such as
gas heating by an intergalactic ionizing background, or energy
feedback from evolving stars. In whatever models relying on
the suppression of galaxy formation, a typical galaxy-sized
halo should contain numerous dark subhalos.

Then, there is a possibility that a large number of subhalos
interact frequently with a stellar disk embedded at the center of
a halo, so that the disk would be dynamically heated and thick-
ened. On the other hand, an observed galactic disk is rather

thin; the scale height (or half thickness) is only about ∼ 250pc
in the Galaxy. Likewise, recent observations of external disk
galaxies (Kregel et al. 2002) suggest that the observed scale
height of a disk, zd, is confined to some limiting value relative
to the scale length of a disk, Rd, i.e., zd/Rd < 0.2.

This observed thinness of a disk provides important limits
on disk heating due to infalling satellites. Tóth and Ostriker
(1992) analytically evaluated this effect and concluded that an
observed disk like that of the Galaxy within the solar radius
should have interacted with satellites with no more than 4%
of the present disk mass within the last 5 Gyr. Subsequent
numerical simulations of an interaction between a disk and
a single satellite (e.g. Velázquez, White 1999) showed that their
analytical estimation for disk heating was somewhat too high
because an actual interaction process is highly non-linear and
more complicated than a simplified analytical representation.
Interactions with many subhalos would be much more compli-
cated, and thus require a more detailed analysis.

Font et al. (2001) have conducted numerical simulations of
interactions between a disk and numerous subhalos based on
the CDM models. They concluded that the effect of subhalos
on a disk is rather small, and therefore subhalos do not conflict
with the presence of a thin disk, since their orbit seldom take
them near the disk. However, it is worth noting that in their
simulation the initial scale height of a disk (700 pc) was already
thick compared with the observed one in the Galaxy (∼250pc),
thereby leading to a possibly underestimating the disk-heating
effect. Their simulation was also limited to only one realiza-
tion of subhalos; it is yet unclear whether the derived weak
effect of subhalos on a disk is general or not. Ardi et al. (2003)
have investigated more details in this disk heating by subhalos.
They found that a more massive subhalo is more effective to
heat the disk than a less massive one. However, in their calcu-
lation subhalos were represented by rigid bodies that never lose
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their mass, irrespective of tidal effects of a host galaxy, so that
the disk heating was overestimated. Also, the applicability of
their result to an actual disk, especially, to what extent accre-
tion events of subhalos into a disk are allowed, remains unclear.

Our aim of the present work was thus to set more
useful limits on the dynamical interaction between numerous
subhalos and a galactic disk. For this purpose, we conducted
a series of numerical simulations, in which a self-gravitating
disk was embedded in a dark halo containing many subhalos.
In this work we set an initially thin disk with a scale height of
250 pc, in contrast to previous numerical studies starting from
a scale height of ∼ 700 pc, much larger than the observed one
(Velázquez, White 1999; Font et al. 2001). Several models
for the system of subhalos in a host halo were taken into
account in terms of their mass function, spatial distribution, and
velocity distribution. We also considered two different models
for the internal density distribution of subhalos: point-mass
and extended-mass models. In the latter model, subhalos are
affected by a tidal field of a host galaxy, so that they lose their
mass during the course of their orbital motions. Based on our
simulations, we investigated the dependence of the disk heating
on the model parameters and applied our analysis to under-
standing an observed thin disk in the context of disk heating by
subhalos.

This paper is organized as follows. In section 2 we describe
our galaxy model, which is composed of halo, bulge, and disk
components. The models of subhalos are also described in this
section. In section 3 we present the results of our numerical
simulations. In section 4 we analyze our results and present our
prediction for the relation between the disk heating by subhalos
and an observed thin or thick disk. Finally, in section 5 we
present our conclusions.

2. Models

2.1. The Galaxy Model

Our galaxy model is composed of three components: a disk,
a bulge, and a dark halo. To investigate the self-gravitating
response of the disk component to orbiting subhalos, we
modeled the disk by a self-consistent N -body realization of
stars under the influence of an external force provided by the
rigid bulge and halo components. The methods of Hernquist
(1993) were utilized to set up a disk consisting of a distribution
of N -body particles. A detailed description of the technique
can be found in Hernquist’s paper.

The density distribution of the disk is initially axisymmetric,
ρd(R,z), using cylindrical coordinates (R,z), while the bulge
and halo are spherically symmetric, ρb(r) and ρh(r), respec-
tively, using the galactocentric distance, r . These density distri-
butions are given by

ρd(R,z) =
Md

4πR2
d zd

exp(−R/Rd) sech2(z/zd), (1)

ρb(r) =
Mb

2π

ab

r(ab + r)3 , (2)

ρh(r) =
Mh

2π3/2

αh

rc

exp(−r2/r2
c )

r2 + γ 2 , (3)

Table 1. Galactic parameters.

Symbol Value

Disk:
Nd

∗ 46000
Md 5.6× 1010 M�
Rd 3.5 kpc
zd 245 pc

Q� 1.5
R� 8.5 kpc
ε 70 pc

Bulge:
Mb 1.87× 1010 M�
ab 525 pc

Halo:
Mh 7.84× 1011 M�
γ 3.5 kpc
rc 84 kpc

∗ The number of particles used for the disk.

Fig. 1. Rotation curves for our disk galaxy model.

where Md, Mb, and Mh correspond to the masses of the disk,
the bulge, and the halo, respectively. The disk parameters, Rd
and zd, denote the radial scale length and vertical scale height,
respectively. The parameter ab denotes the scale length of the
bulge, while γ and rc are the core and cut-off radii for the halo
and αh is a normalization constant. We chose these parameters
so that the model would approximately match the observed
characteristics of the Galaxy; the values of the parameters are
listed in table 1. It is worth remarking that we considered an
observed thin scale height for the disk, namely zd = 245 pc, in
contrast to the models by Font et al. (2001) and Velázquez and
White (1999), adopting zd = 700 pc. In order to prevent the
disk from gravitational instability, we adopted a stable disk by
setting Toomre’s Q parameter at the solar radius R� = 8.5kpc
as Q� = 1.5. The rotation curve of our galaxy model is
shown in figure 1. The rotation speed at the solar radius was
Vc(R�) ≈ 240kms−1.
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Table 2. The parameters of the subhalo models.

Model Number of a Mhigh Mlow nsub
∗

subhalos [kpc] [M�] [M�]

point-mass models with β = 0

A 784 70 108 108

B 784 140 108 108

C 392 140 2× 108 2× 108

D 261 140 3× 108 3× 108

E 200 175 4× 108 4× 108

F 318 87.5 109 108

G 313 280 109 108

H 175 140 1010 108

I 1141 175 1010 107

J 1959 140 109 107

extended-mass models with β = 0

K 318 87.5 109 108 182
L 175 140 1010 108 182
M 362 24.5 109 108 182
N 200 175 4× 108 4× 108 182
O 112 70 7× 108 7× 108 182
P† 280 52.5 1010 108 170
Q 173 24.5 1010 108 170

point-mass models with β = 0.5

R 197 140 1010 108

S 362 87.5 109 108

T 249 140 3× 109 108

U 361 157.5 109 108

∗ The number of particles used for each subhalo.
† Only in this model, the total mass of the subhalo system is 13% of that of the host galaxy.

2.2. Subhalo Models

We constructed a set of subhalo models in our numerical
simulations, designated as models A to U, as tabulated in
table 2, to investigate how different physical properties of
subhalos affect the disk heating process. Each model assump-
tion is explained as follows.
2.2.1. Mass function, spatial distribution, and velocity

anisotropy
We considered a mass spectrum for the realization of each

subhalo with a mass Msub. According to the results of cosmo-
logical N -body simulations by Moore et al. (1999), Klypin
et al. (1999), and Ghigna et al. (2000), this mass function can
be fitted to a power law with an index of about −2. We thus
adopted the form

N (Msub) dMsub ∝ M−2
sub dMsub. (4)

For the convenience of numerical analysis, we set the higher
and lower mass limits for this mass function designated
as Mhigh and Mlow, respectively, and examined the role of
individual subhalo masses in the disk heating. The normal-
ization of proportionality (4) is given by the total mass of the
subhalo system, which is about one-tenth of the mass of a host
halo according to Klypin et al. (1999) and Ghigna et al. (2000).

We thus set 0.1Mh as the total mass of the subhalo system.
Recent high-resolution N -body simulations have shown that

the spatial distribution of subhalos in a host halo is less concen-
trated than the host’s density profile (Gao et al. 2004), which is
often represented by the so-called NFW profile (Navarro et al.
1997). However, in even most recent simulations the mass and
force resolutions are yet insufficient, so the true spatial distri-
bution of subhalos is unclear. In the present work, instead
of trying to set a realistic spatial distribution (which is yet
unknown), we adopted a tractable model for it and attempted
to extract general results that do not depend on this particular
setting. Thus, for the initial spatial distribution of subhalos in
a host halo, we adopted the Hernquist model (Hernquist 1990),
in which the number density n(r) of subhalos at the galacto-
centric distance r is given as

n(r) ∝ 1
r(a + r)3 , (5)

where a is the scale length in the spatial distribution. It is
worth noting that the inner density distribution of this model
is similar to that of the NFW profile. The change of the
parameter a affects the incidence of subhalo–disk interaction,
which is mostly effective at r � 10kpc, since a smaller a yields
smaller pericenters and apocenters for the orbits of subhalos.



838 H. Hayashi and M. Chiba [Vol. 58,

Fig. 2. Distributions of the pericenter and the apocenter of the subhalos in Model F (left panel) and Model G (right panel).

This is highlighted in figure 2, where the distributions of the
pericenters and apocenters of subhalos are shown for Model F
(a = 87.5 kpc) and Model G (a = 280 kpc), while having the
same velocity distribution (see below). It follows that the
number of subhalos orbiting interior to r = 10kpc is larger for
Model F than for Model G, and the dependence of this number
on the scale length, a, is also seen in other models.

For the initial velocity distribution of subhalos, we took the
moments of the collisionless Boltzmann equation following a
procedure described by Hernquist (1993). The velocity ellip-
soid at each spatial location was calculated from the moment
equations, and then the velocity components were randomly
selected from the Gaussian distributions for the corresponding
velocity ellipsoid.

We adopted two different models for the velocity anisotropy
of the subhalo system, which is parameterized by β ≡ 1 −
0.5(σ 2

θ + σ 2
φ )/σ 2

r , where σr , σθ , and σφ are the radial, zenithal,
and azimuthal velocity dispersions, respectively. One is the
isotropic model of β = 0, which acts as our standard model.
The other is the radially anisotropic model characterized by
β = 0.5. This anisotropic model is motivated by the results of
cosmological N -body simulations (Diemand et al. 2004; Abadi
et al. 2006), which show an increase of β with r , starting β ∼ 0
at a halo center to β � 0.5 in its outer parts. For the sake of
simplicity, we assume β is constant along r in our model.
2.2.2. Effect of baryon condensation

In hierarchical galaxy formation models, stars are formed
by the condensation of cooled baryons at a halo center, subse-
quently forming a disk component. The condensed baryons
or disk pulls the surrounding dark-matter particles inward,
thereby increasing the central concentration of a dark halo
(e.g., Gnedin et al. 2004). This effect of baryon condensation
is also expected to modify the space and velocity distributions
of subhalos, compared with those obtained by dissipationless
N -body simulations (Gao et al. 2004).

We took into account this effect in our model by slowly
increasing the total masses of the disk and bulge components
over a period of 10 Gyr, after setting the initial distribution
of subhalos in the presence of a (smooth) halo alone. When
the total masses of the disk and bulge components reached
the values listed in table 1, the position and velocity of each

subhalo were recorded for use in further calculations of disk
heating. In this experiment, we treated a subhalo as a point
mass and neglected the interaction between different subhalos.

This treatment of the baryon condensation effect is admit-
tedly highly ideal and not self-consistent, because we neglected
the simultaneous modification for a smooth halo component.1

However, the rate of the interactions between subhalos and
a disk is somewhat increased by this gravitational effect of
baryonic matter, thereby allowing us to carry out a statisti-
cally meaningful analysis on the properties of the disk heating.
In fact, this effect of baryon condensation resulted in a few
percent increase in the number of subhalos having pericenters
smaller than ∼ 10 kpc, which yielded a sufficient amount of
interaction events over the interval of numerical simulations.
2.2.3. Internal density distribution

We considered two different models for the internal density
distribution of a subhalo: point-mass and extended-mass
models. In the former models, since point-mass subhalos
survive eternally in our simulations, it was postulated that
subhalos are supplied through their continuous accretion into
a host halo from outside, even if some of them disappear due
to tidal destruction. In the latter models affected by tides, we
assumed a King-model profile, characterized by a concentra-
tion parameter, cKing = log10 (Rt/Rc), where Rt and Rc denote
tidal and core radii, respectively. For these latter models, the
tidal effects of the disk (as well as the bulge and halo) on
subhalos are explicitly taken into account. While the adoption
of a King-model profile is admittedly ideal, recent cosmolog-
ical simulations by Kazantzidis et al. (2004) imply that the
internal density distributions of subhalos may be described
reasonably well by a more-centrally concentrated universal
profile or the NFW profile with some tidal outer limit. We
therefore adjusted our King models to match the NFW profile
in the following manner. Firstly, based on the method outlined
in NFW, we determined a set of model parameters in the NFW
profile (see appendix 1 for details). Secondly, we estimated
a parameter, cKing, whereby the half-mass radius of the King
1 Our adoption of an isothermal-like profile for a smooth halo

[equation (3)], in comparison with an NFW-like profile derived from
N-body simulations, suggests the consideration of baryon condensation
for the halo setting.
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Fig. 3. Growth of the disk thickness for Model F. The left and right panels show edge-on views of the disk at the beginning (t = 0) and the end
(t = 4.9Gyr) of the simulation, respectively.

model would be equal to that of the NFW model. Finally, we
obtained a tidal radius, Rt, as a limiting radius of the tidal effect
of a host galaxy at the initial position of a subhalo. Thus, Rt is
derived from the relation

Mtot(< r)
r3 =

Msub

R3
t

, (6)

where Mtot(< r) is the total mass of a host galaxy interior to r

and Msub(< Rt) is the mass of a subhalo. For this estimation
of Rt, we assumed a spherically symmetric potential for a host
galaxy, where the disk is made spherical with a mass distribu-
tion Md(r) = Md[1 − (1 + r/Rd) exp (−r/Rd)]. We also took
into account the effects of baryon condensation for getting the
initial position of a subhalo.

The parameters for point-mass models and extended-mass
models that we calculated are summarized in table 2.

2.3. Method for Numerical Simulation

For the point-mass models we used a tree algorithm with a
tolerance parameter of θtor = 0.7 (Barnes, Hut 1986; Hernquist
1987). For the extended-mass models we used GRAPE5
systems at the National Astronomical Observatory of Japan.
The time integration was made with the leapfrog method and a
fixed time step of 0.41 Myr. The softening length for N -body
particles was ε = 70 pc. We used Nd = 46000 particles for the
disk; the numbers of subhalo particles are listed in table 2.
Since the mass of the subhalo is negligibly small as compared
with that of the host galaxy, we neglected the forces between
the subhalos in the point-mass models. In contrast, for the
extended-mass models, we fully took into account the gravi-
tational interaction between the subhalos for the convenience
of numerical calculations using GRAPE5. We followed the
evolution for up to 4.9 Gyr.

3. Results

Based on numerical simulations of the models defined in the
previous section, we now examine the effects of subhalos on
the disk structure and dynamics, especially to elucidate the
dependence of several different properties of subhalos: their
internal density distribution, mass function, and spatial and
velocity distributions.

In figure 3 we show an edge-on view of the disk for Model F
at the beginning (t = 0) and the end (t = 4.9Gyr) of the simula-
tion. The disk has been thickened and tilted by the gravitational
interaction with orbiting subhalos. To estimate the change
of the disk kinematics and thickness at specific locations, we
consider the tilt of the disk and use the axes aligned with
the principal axes of the disk inertia tensor. The heating and
thickening of the disk can be described by the changes of
the velocity dispersions (∆σR , ∆σz ) and by the increase of
the scale height, ∆zd. To calculate these quantities, the disk
was stratified in concentric cylindrical annuli with a width of
δR = 700 pc and the particle properties were averaged in each
annulus. The scale height in each annulus R of the disk,
zd, is defined by the mean square of the z-coordinates, i.e.,
zd(R) ≡ 〈z2〉1/2. We note that at the beginning of the calcula-
tions, zd was a constant of 245 pc, as given in equation (1).

In addition to the dynamical effect of subhalos, the simulated
disk is subject to internal heating due to two-body relaxation
among the disk particles; this numerical heating always took
place in numerical simulations with a modest number of parti-
cles. We evaluated the effect of internal heating by evolving the
disk in isolation, i.e., in the absence of subhalos. This effect is
typically characterized as ∆zd = 0.23 kpc, ∆σR = 7.2 km s−1,
and ∆σz = 5.7 km s−1 at the solar radius after 4.9 Gyr. In the
following, the notation ∆zd means the difference of a scale
height between t = 4.9 Gyr and t = 0, and ∆σR and ∆σz also
mean the change of the velocity dispersions after 4.9 Gyr.
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Fig. 4. Kinematical properties of the disk after 4.9 Gyr for different subhalo models. The thick solid lines show the initial setting and the thin solid lines
show the effects of internal heating in the absence of subhalos. The dashed, dotted, and dash-dotted lines show Models A, F, and G, respectively.

3.1. Global Properties of the Disk Evolution

Figure 4 shows the kinematical properties of the disk for
Models A, F, and G, including the impact of internal heating
in our calculations. It is evident from this figure that thick-
ening of the disk does not occur uniformly at all radii; given
the complexity of the final disk structure, we found it conve-
nient to sample the kinematics at R = R�, 3Rd, and 4Rd,
which was sufficient to provide us with a global view of
the heating and thickening. The growth of the disk thick-
ness in Model A is ∆zd ∼ 0.57 kpc, 0.61 kpc, and 0.67 kpc
at R = R�, 3Rd, and 4Rd, respectively, those values in
Model F are 1.19 kpc, 1.37 kpc, and 1.60 kpc, and those values
in Model G are 0.28 kpc, 0.31 kpc, and 0.39 kpc. The increase
in the radial and vertical velocity dispersions after 4.9 Gyr in
Model A is given as (∆σR,∆σz ) = (18.8,15.4), (17.4,13.8),
and (16.6,11.9)kms−1 at R = R�, 3Rd, and 4Rd, respectively,
those values in Model F are (32.2, 26.1), (30.1, 23.9), and
(25.4,22.8)kms−1, and those values in Model G are (9.9,8.2),
(10.5,7.5), and (13.5,8.2)kms−1.

In these experiments, the main difference between Model A
and Model F resides in the individual masses of subhalos,
parameterized by Mhigh and Mlow (see table 2): for Model A
all subhalos have 108 M� as Mhigh = Mlow = 108 M�, whereas
for Model F the presence of more massive subhalos than
108 M� is allowed as Mhigh = 109M�. Therefore, a comparison

between the results of these two models highlights the effect of
individual masses of subhalos on the disk heating, where we
note that a slight difference in parameter a between the models
by a factor 1.25 yields essentially no difference in the results.
It is clear that the presence of a few, but massive, subhalos
(Model F) is more effective for disk heating than the case of
many, but less massive ones (Model A), as already pointed
out by Ardi et al. (2003). This suggests that the disk heating
process is more sensitively enhanced than being proportional to
individual subhalo masses; massive subhalos are more impor-
tant for disk heating. Also, compared with Model F, Model G
with the same values for Mhigh and Mlow yields a weak effect
on the disk. The main difference between these two models
is the spatial distribution of subhalos, parameterized by a (a =
87.5kpc and 280 kpc for Models F and G, respectively), which
affects the pericenter distributions of subhalos, especially at
r � 10kpc (see figure 2). Therefore, we find that the number of
subhalos crossing the disk is also important in quantifying the
disk heating.

Figure 5 shows the growth of the disk velocity dispersions
in the radial and vertical directions at R = R� for Models F
(the point-mass model), K, and L (the extended-mass model).
This figure shows that the disk velocity dispersion for Model F
continues to grow throughout the simulations, whereas for
Models K and L the growth of the velocity dispersion almost
stops at t ∼ 1Gyr. It is worth noting that in these latter models
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Fig. 5. Growth of the disk velocity dispersion in the radial and vertical directions at R = R� for Models F (dashed lines), K (dotted lines), and
L (dash-dotted lines). In Model F subhalos are represented by point masses, whereas in Models K and L they have a King-model profile. The thick solid
lines show the effect of internal heating in the absence of subhalos.

subhalos can lose their mass at the interaction with the disk,
unlike the former point-mass models in which subhalo masses
remain the same. Thus, for the extended-mass models the
effect of subhalos on the disk is temporal; subhalos appear to
lose almost all of their mass at the first interaction with the disk,
so that their role in the disk heating is effective only at the first
interaction with the disk.

3.2. Disk Thickness vs. Subhalo Masses

In this section we consider in more detail the effect of
orbiting subhalos on the growth of the disk thickness. As
discussed above, the change in the disk scale height, zd,
depends on R, in such a manner that ∆zd is somewhat larger at
larger R. To quantify this disk thickening as a function of the
accreted subhalo masses, we utilize the disk scale height at the
outer edge of the disk, R = Rout, where the stellar light distri-
bution is expected to diminish steeply with R. This truncation
of a stellar disk has actually been observed, where the stellar
light declines more steeply than an exponential profile for a
main disk, and drops to low values beyond the so-called trunca-
tion radius (van der Kruit, Searle 1981a, b, 1982; Kregel et al.
2002). This usually occurs at a radius of 3–5 disk scale length
(Kregel et al. 2002), so in our work we adopt Rout = 3 Rd as
a characteristic outer edge of the disk, at which the change of
the disk scale height is evaluated. Also, to analyze the relation
between the change of the disk thickness and the orbits of the
accreted subhalos, we estimate the number of times that each
subhalo crosses the disk region at R ≤ 3Rd during the course
of its orbital motion.

We carried out simulations for several different models
of point-mass subhalos with β = 0. Figure 6 shows the
relation between the growth of the disk scale height at R =
3 Rd (i.e. ∆zd/Rd) and the combination of each mass of a
subhalo, Msub,i , and the number of times that it crosses the
disk at R ≤ 3 Rd during the course of its orbital motion,
denoted as Ni [i.e.

∑
i Ni(Msub,i/Md) for the left panel and∑

i Ni(Msub,i/Md)2 for the right panel]. Here, the abscissa
for the left panel is proportional to the total accreted mass
of subhalos, whereas that for the right panel is proportional

to the sum of the squared masses of subhalos. As is evident,
while the left panel shows no correlation between the abscissa
and ordinate axes, the right panel shows a significantly tight
correlation, thereby indicating that the growth of the disk thick-
ness is proportional to the sum of the squared masses of the
subhalos; if so, the disk thickening is more enhanced for more
massive individual subhalos, as already shown in the previous
subsection. We thus investigated this relation for different
subhalo models, as shown in figure 7. In the left panel we
consider the extended-mass models with β = 0 (filled squares)
compared with the point-mass models with β = 0 (open circles).
We note here that in the extended-mass models subhalos lose
almost all of their mass at the first interaction with the disk,
so we adopted Ni = 1 for such a case. The right panel shows
the case of an anisotropic velocity distribution with β = 0.5
for the point-mass models (filled triangles) and with β = 0
for the point-mass models (open circles). As is evident from
these panels, several different models yield an almost universal
relation between ∆zd/Rd at R = 3Rd and

∑
i Ni(Msub,i/Md)2

at R ≤ 3Rd.

4. Discussion

4.1. Dependence of Disk Heating on Subhalo Masses

From the results of subsection 3.2, we find that the disk
thickness increases with the accretion of subhalos into a disk.
Our numerical experiments suggest the following universal
relation:

∆zd

Rd
= α

∑
i

Ni

(
Msub,i

Md

)2

, (7)

where α is a constant of � 8, Rd is the disk scale length, zd
is the disk scale height at R = 3Rd, and Ni is the number of
times that subhalos with an individual mass of Msub,i cross
a disk at R ≤ 3 Rd (noting that Ni = 1 for the extended-
mass models as subhalos lose their mass at their first inter-
action with the disk). In this expression, subscript i denotes
an individual subhalo given at t = 0 in our simulation. An
alternative, more useful expression based on equation (7) is
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Fig. 6. Relation between the growth of the disk scale height at R = 3Rd and the combination of each mass of a subhalo Msub,i and the number of times
that it crosses the disk at R ≤ 3Rd, denoted as Ni , for the point-mass subhalo models with β = 0 (Models A to J listed in table 2). The abscissas in the
left and right panels show

P
i Ni (Msub,i /Md) and

P
i Ni (Msub,i /Md)2, respectively. Notice that the effect of internal heating has been subtracted in these

plots.

Fig. 7. Same as figure 6, but for several different subhalo models plotted on logarithmic scales. The left panel shows the extended-mass models with
β = 0 (filled squares) compared with the point-mass models with β = 0 (open circles), whereas the right panel shows the case of an anisotropic velocity
distribution with β = 0.5 for the point-mass models (filled triangles) and point-mass models with β = 0 (open circles). The solid lines show the fitting to
the relations for the point-mass models with β = 0 by the least-squares method, dashed lines for the extended-mass models with β = 0, and dotted lines
for the point-mass models with β = 0.5.

derived as follows. Supposing that the disk has experienced
the accretion of subhalos having an individual mass of Msub,j

with j = 1, . . . ,N at R ≤ 3 Rd, where the repeated accretion
of a subhalo in the course of its orbital motion is regarded as a
separate accretion event with a mass Msub,j , and N denotes the
total number of such events. Then, we obtain the relation

∆zd

Rd
� 8

N∑
j=1

(
Msub,j

Md

)2

, (8)

which holds a more useful form for any applications than
equation (7). Notice that although this relation is derived
from simulations over the interval of 4.9 Gyr, this is applicable
to longer time evolution by considering the total number of
subhalos crossing a disk, N .

As equation (8) indicates, the increase of the disk thick-
ness is proportional to the square of the masses of accreted

subhalos. This mass dependency in the disk heating process
can be understood if we consider the transfer of kinetic energy
from the subhalos to the disk through dynamical friction. Here,
we present a summary of this derivation; more details are given
in appendix 2.

Firstly, the vertical equilibrium between the kinetic and
gravitational energy allows us to relate the velocity disper-
sion, σz , and the scale height, zd, of a disk. Assuming that a
disk is an isothermal sheet, we obtain

σ 2
z = 2πGΣ(R)zd, (9)

where Σ(R) is a surface density of a disk at R (e.g. Spitzer
1942). Secondly, we consider the energy input into disk stars
getting through subhalo–disk interaction: the energy loss of
a subhalo is equal to the energy pumped into a disk. This
energy loss, ∆Esub, is derived by the integral over an orbit of
a subhalo,
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∆Esub =
∫

Fdrag ds, (10)

where Fdrag corresponds to the dynamical friction. Using the
Chandrasekhar formula for Fdrag, each subhalo with mass Msub
is subject to a frictional force with Fdrag ∝ M2

sub. Finally,
combining equation (9) with (10), we obtain

∆zd ∝ ∆σ 2
z ∝ ∆Esub ∼ Fdrag · zd ∝ M2

sub. (11)

Therefore, the dependence of ∆zd on Msub, as discussed in
section 3, is understood within the framework of dynamical
friction between a subhalo and a disk.

4.2. Comparison with an Observed Thin Disk

Recent observations of external disk galaxies by Kregel et al.
(2002) have suggested that the thickness of a (thin) disk is
confined to some limiting value relative to the scale length of a
disk, which is expressed as zd/Rd < 0.2. Kregel et al. (2002)
have also shown that the distribution of zd/Rd tends to have
an increasing dispersion with increasing maximum circular
velocity, Vc, of a disk, in such a manner that a larger Vc allows
a smaller zd/Rd; conversely, a disk with a smaller Vc is likely
to be thicker.

An observed thin disk with zd/Rd < 0.2 suggests that the
accretion of subhalos has been rather insignificant, since a disk
with a current mass was formed. Using equation (8), this
observed limit implies

(∑
j M2

sub,j

)1/2
< 0.15 Md. Thus, we

find that an observed thin disk has not ever interacted with
subhalos with a total mass of more than 15% of the disk mass.

The dependence of zd/Rd on Vc may be understood as
follows. Let 〈M2

sub〉 be the mean square of a subhalo mass,
defined as 〈M2

sub〉 =
∑N

j M2
sub,j /N . Then, equation (8) can be

written as

∆zd

Rd
∝ N

〈M2
sub〉

M2
d

. (12)

We suppose that N , the number of subhalos that cross a disk at
R ≤ 3Rd, is roughly proportional to the spherical volume with
radius 3Rd inside a dark halo, given the spatial distribution of
subhalos. This reads N ∝ R3

d. Also suppose that the central
disk surface density, Σ0 = Md/(2πR2

d), is nearly the same for a
disk galaxy, which may correspond to nearly the same central
surface brightness for a bright disk (e.g., Freeman 1970). Then
equation (12) is rewritten as

∆zd

Rd
∝ 〈M2

sub〉 ·V −2
c , (13)

where Vc is the disk circular velocity derived from V 2
c ∝

GMd/Rd.
Thus, if the observed disk thickness is controlled by disk-

subhalo interaction, i.e., zd ∼ ∆zd, and 〈M2
sub〉 is roughly the

same for each disk galaxy, we find that the effect of subhalos on
a disk with a smaller mass is more significant than a disk with
a larger mass. This is in good agreement with the observation
(Kregel et al. 2002) that a disk with smaller Vc is likely to be
thicker.

4.3. Relation to the Origin of a Thick Disk

In recent years, new datasets for the thick-disk component
of the Galaxy as well as for a thick disk of an external galaxy
have been available, showing several important properties of a
thick disk. Based on the third data release of the Sloan Digital
Sky Survey (York et al. 2000), Allende Prieto et al. (2006)
found that stars belonging to the thick disk have no vertical
metallicity gradient. The rotational velocity for the same stars,
however, shows a vertical gradient of ∼ −16 km s−1 kpc−1

between 1 and 3 kpc from the Galactic plane. The observa-
tions of an external disk galaxy (Yoachim, Dalcanton 2006)
have shown that the ratio of the total luminosity of a thick
disk to that of a thin one is related to the circular velocity
of a galaxy, in such a manner that the ratio tends to increase
with decreasing circular velocity; a less massive galaxy has a
brighter (and possibly more massive) thick disk relative to a
thin one. These properties of a thick disk are expected to set
important constraints on its origin.

Here, we consider the possibility that a thick disk has been
formed by the dynamical effect of numerous dark subhalos on
a pre-existing disk. This interaction effect may be rather weak
at the current epoch, because only a small fraction of subhalos
would cross a disk (Font et al. 2001), but the effect at early
times may have been more significant due to a smaller disk
mass and larger accretion rate of subhalos onto a parent halo. If
so, a pre-existing disk should have suffered from considerable
heating at early times, which would result in the formation of a
thick disk; subsequent slow accumulation of baryonic gas in a
plane may form a thin-disk component.

To assess this possibility in light of the observed properties
of a thick disk, we investigated the properties of a disk thick-
ened by subhalos in our model. Figure 8 shows the distribution
of the stars in Model F at the end of the simulation (t = 4.9Gyr),
differentiated by the initial (t = 0) positions at either z < 245pc
(left panel) or z > 245 pc (right panel). As is evident, the
disk stars are well mixed by disk heating. This suggests that
even if a pre-existing disk had a metallicity gradient, the disk
heating by interactions with subhalos would have wiped out
this gradient, leaving a thick disk, in agreement with observa-
tions. It is also suggested that this disk heating process prompts
a vertical gradient in rotational velocity. This is explained as
follows. A heated disk puffs up not only in the vertical, but also
in the radial direction, where the stars located at high |z| have a
large radial velocity dispersion compared with those at low |z|,
and thus have small rotational velocities on average due to the
effect of asymmetric drift; given a gravitational force inward,
the increase of radial pressure of stars reduces the effect
of the centrifugal force. This vertical gradient in rotational
velocity was actually obtained in our simulation models, as
shown in figure 9. It was found that the gradient amounts to
−(10–30) km s−1 kpc−1 between 1 and 3 kpc from the plane,
in good agreement with the observations. This experiment
suggests that the presence of a vertical gradient in rotational
velocity of a thick disk may be an important clue to distin-
guishing the scenarios for the origin of a thick disk; models
invoking monolithic disk collapse (Burkert et al. 1992) or a
chaotic merging event of building blocks (Brook et al. 2004) at
early times of a galaxy may have difficulties in this regard.
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Fig. 8. Distribution of stars in Model F at the end of the simulation (t = 4.9Gyr), differentiated by their initial (t = 0) positions at z < 245pc (left panel)
and z > 245pc (right panel).

Fig. 9. Mean azimuthal velocity of the stars located at annulus
R = R� ± 1.05kpc as a function of the distance away from the plane,
for Models D and E. Note that both models show a similar vertical
scale height, zd ≈ 1kpc, at the end of the simulations (t = 4.9Gyr).

A more definite picture for the formation of a thick disk
must await more elaborate modeling of a forming galaxy in the
context of hierarchical clustering. In particular, each galaxy
has a different merging history of subhalos, and so different
spatial and velocity distributions, which inevitably affect the
interpretation for the observed properties of a thick disk, such
as for its fraction as a function of a disk mass. Also, observa-
tions show that almost all of the disk galaxies have a distinct
thick disk in addition to a thin component. This implies that
the dynamical effects of subhalos on a disk are significant only
before a specific epoch, and the subsequent formation of a
thin disk is unaffected by subhalos, although it is yet unclear
if this is applicable to all galaxy-sized halos having different
merging histories. Therefore, to assess the scenario, more
detailed numerical studies are required that take into account

the growth of both a dark halo and a disk simultaneously.

5. Conclusions

We summarize our conclusions as follows:

• The dynamical effects of subhalos on a disk are repre-
sented by the relation between the change of the disk
scale height, ∆zd (measured at the disk edge R =
3Rd) and the individual masses of subhalos, Msub, i.e.,
∆zd/Rd � 8

∑N

j=1(Msub,j /Md)2, where Rd is the disk
scale length, Md is the disk mass, and N is the total
number of accretion events of subhalos inside a disk
region (≤ 3Rd).

• If subhalos with a total mass of more than 15% of the
disk mass interact with a disk, then the disk thickness is
made larger than the observed range.

• A less-massive disk with a smaller circular velocity, Vc,
is found to be more affected by subhalos than a disk
with larger Vc, which is in agreement with the observed
properties of a thin disk.

• Stars in a significantly thickened disk by subhalos appear
to be well mixed, and show a vertical gradient in their
rotation velocity, being similar to the observed properties
of thick disks in the Galaxy.

We note that relation (8) obtained here is universal, and is
thus useful for applications to any relevant issues, including the
dynamics of an evolving stellar disk at the center of a growing
dark halo. Such detailed studies of a galactic disk compared
with recently increasing datasets of a remote disk galaxy will
be of great importance, and is left to future work.

The numerical computations reported here were carried
out on GRAPE systems (project ID: g05b05) kindly made
available by the Astronomical Data Analysis Center (ADAC)
at the National Astronomical Observatory of Japan (NAOJ).
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Scientific Research (15540241, 17540210) from the Ministry
of Education, Culture, Sports, Science and Technology.

Appendix 1. NFW Profile

The NFW density profile is given by

ρ = ρcrit
δ0

(r/rs) (1 + r/rs)2 , (A1)

where ρcrit is the critical density of the Universe, rs is a scale
radius, and δ0 is the characteristic density contrast. Following
NFW, we define the limiting radius of a virialized halo, r200, to
be the radius within which the mean mass density is 200ρcrit.
Also, the concentration parameter of a halo is defined as c =
r200/rs, with which δ0 is given as

δ0 =
200
3

c3

[ln(1 + c)− c/(1 + c)]
. (A2)

To put the NFW density profile in a cosmological context,
we need to calculate the concentration factor, c, which is
related to δ0 via equation (A2). The appropriate value of c

depends on halo formation history and on cosmology. NFW
proposed a simple model for c based on halo formation time.
The formation redshift, zcoll, of a halo identified at z = 0 with
mass M is defined as the redshift by which half of its mass
is in progenitors with the mass exceeding f M , where f is a
constant. With this definition, zcoll can be computed by simply
using the Press–Schechter formalism (e.g. Lacey, Cole 1993),

erf




δc(zcoll)− δ0
c√

2[∆2
0(f M)−∆2

0(M)]


 =

1
2
, (A3)

where ∆2
0(M) is the linear variance of the power spectrum

at z = 0 smoothed with a top-hat filter of mass M , δc(z) is
the density threshold for spherical collapse by redshift z, and
δ0

c = δc(0). NFW found that the characteristic overdensity of a
halo at z = 0 is related to its formation redshift, zcoll, by

δ0(M,f ) = C(f )Ω0[1 + zcoll(M,f )]2, (A4)

where the normalization C(f ) depends on f and Ω0 is the
current density parameter of the Universe. We take f = 0.01,
as suggested by the N -body results of NFW. In this case
C(f )≈3×103. Thus, for a halo of given mass at z = 0, one can
obtain the concentration factor c from equations (A2)–(A4). In
practice, we first solve zcoll from equation (A3) and insert the
value of zcoll into equation (A4) to get δ0. We then use this
value of δ0 in equation (A2) to solve for c.

In this experiment, we adopted a standard set of cosmolog-
ical parameters as Ω0 = 0.3, Λ= 0.7, h= 0.7, and σ8 = 1.3, where
Λ is the cosmological constant, h is the normalized Hubble
constant of h ≡ H0/100 km s−1 Mpc−1, and σ8 parameterizes
density fluctuations at 8h−1 Mpc.

Appendix 2. Derivation of Equation (8)

We show here the derivation of equation (8) based on the
following dimensional analysis.

Firstly, we derive the relation between the vertical velocity
dispersion, σz , of disk stars and the scale height, zd, of a self-
gravitating axisymmetric disk in cylindrical coordinates (R,z).
For the limit of a thin disk where z-derivatives dominate over
R-derivatives, an equation for the vertical equilibrium and the
Poisson equation read, respectively,

1
ρd

∂(ρd σ 2
z )

∂z
+

∂Φ
∂z

� 0,
∂2Φ
∂z2 � 4πGρ, (A5)

where ρd is a mass density of a disk and Φ is a gravitational
potential. Integrating the second equation over all z gives the
surface mass density Σ(R) vs. Φ, i.e., 2πGΣ(R) � ∂Φ/∂z.
Then, inserting this into the first equation, and assuming ρd ∝
exp(−z/zd) and σz is constant, we obtain zd �σ 2

z /[2πGΣ(R)].
This equation suggests that the change in the disk thickness is
related to the change in the velocity dispersion, i.e.,

∆zd � ∆σ 2
z

2πGΣ(R)
. (A6)

Secondly, the change in the velocity dispersion, ∆σ 2
z , is

related to the energy input into disk stars getting through
subhalo–disk interaction: the energy loss of a subhalo is equal
to the energy pumped into a disk. Denoting this energy loss as
∆Esub per a subhalo, the resultant ∆σ 2

z for a disk with a total
mass, Md, reads

∆σ 2
z =

2∆Esub

Md
. (A7)

We note that ∆Esub is derived by the integral over an orbit of
a subhalo,

∆Esub =
∫

Fdrag ds ∼ Fdrag zd, (A8)

where Fdrag corresponds to a dynamical friction. Using the
Chandrasekhar formula for Fdrag, each subhalo with mass Msub
is subject to a frictional force with

Fdrag =
4πG2M2

sub ρd lnΛ
v2

sub

[
erf(X)− 2X√

π
e−X2

]
, (A9)

where lnΛ is the Coulomb logarithm, X ≡ vsub/(
√

2 σ ) with
σ being the disk velocity dispersion, and vsub is the subhalo’s
velocity. For vsub, we suppose that it is represented by the virial
velocity of a smooth dark halo with mass MH and radius rH,
giving v2

sub ∼ GMH/rH. Furthermore, if Md and Rd for a disk
is some fraction of MH and rH, given as Md = f1 MH and Rd =
f2 rH, where typically f1 ∼ f2 ∼ O(10−1), we obtain v2

sub ∼
GMd/Rd. For ρd, we set ρd ∼ Md/(R2

d zd).
Finally, using the above equations, the change in the

disk thickness induced by N accretion events of subhalos is
estimated by

∆zd ∝ N∆σ 2
z

GΣ
∝ NG2 zd M2

sub ρd/v
2
sub

GΣMd
∝ NM2

sub

ΣMd Rd
. (A10)

Thus, we obtain

∆zd

Rd
∝ N

M2
sub

M2
d

, (A11)

which is consistent with equation (8).
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