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A thermodynamic model of the rotational phase transition in solid C60 is presented. The phase
transition which appears at 257 K is a first-order phase transition in which a competition occurs
between entropy gain by rotation and energy gain by intermolecular attraction. The anomaly in the
specific heat, and the entropy and enthalpy changes observed at the critical temperature are well

reproduced in the present numerical results.

I. INTRODUCTION

Fullerene C60 has attracted much interest in many
fields of science as a new form of carbon; it is an
aromatic molecule with high symmetry. Solid C6o
has a face-centered-cubic (fcc) crystal structure above
T,=257 K, and below T, the solid fcc phase is trans-
formed into a simple cubic structure (sc) or Pa3
symmetry. The first order orientational phase transi-
tion has been investigated by many experimental tech-
niques such as x-ray difFraction, nuclear magnetic res-
onance (NMR), s specific-heat measurements, s Ra-
man spectroscopy, inelastic neutron scattering,
electron diffraction, and other transport experiments.
These experiments show that below 257 K, each C60
molecule rotates in a discrete rotation about a specific
threefold (Cs) axis in a single (111) direction. In the
low temperature sc phase, each of the four molecules in
a unit cell has a different (111) direction, though the
center of mass of each molecule is the same as that for
the fcc phase. In the high-temperature fcc phase, the
threefold axes rotate freely and all four molecules are
equivalent. However, the temperature dependence of the

C NMR spin correlation time, v, which is obtained
from the spin-lattice relaxation time, Tq, shows that for
phases both below and above T the rotations exhibit an
activation-type behavior in which the difFusion constant
D is given by D = De exp( —T~/T). Here the T~'s are
activation temperatures for discrete rotation below T,
(T&" ——2100 6 600 K) and for rotational motion above
T, (T& ——695 + 45 K). Even above T, the activated
motion shows that the molecule jumps &om one local
potential minimum to another. Neutron inelastic and
Raman scattering experiments show that the librational
motion around a local potential minimum has a broad
peak at about 2.4 rneV, which decreases with increasing
temperature. Thus the specific heat due to the libra-

tional motion saturates at about 30 K (Ref. 20) (Dulong-
Petit law), above which the librational motion can be
considered classically. Because of the order of magnitude
difFerence in thermal energy, the anomaly in the specific
heat just below T, does not come &om the specific heat
associated with the librational motion.

Using an intermolecular model potential, many theo-
retical calculations have been reported such as the molec-
ular dynamics of discrete rotation in C60,2 ' 2 calculation
of the librational and intermolecular vibrational disper-
sion relations, ' and Landau theory. However, to our
knowledge, no published model predicts the characteris-
tics of the anomaly of the specific heat at the first order
phase transition at 257 K.

In the present paper we consider a simple but realis-
tic model for the discrete rotation of C60 molecules to
describe the phase transitio:. In Sec. II the model is
described and in Sec. III the calculated thermodynamic
properties near T, are presented and discussed. In Sec. IV
a summary of this paper is given.

II. MODEL

The model that we consider consists of three states: (a)
the freezing of any discrete rotation, (b) discrete rotation
with three positions per molecule for rotation about the
threefold axis, and (c) discrete rotation not only about
the threefold axis but also about a fivefold (C5) axis, thus
yielding a total of 90 positions.

In a C6o molecule, there are 10 C3 axes, and 6 C5 axes.
If a Cs axis is frozen in the (1, 1, 1) direction in the low
temperature simple cubic phase, then the only possible
discrete rotation is about the C3 axis in which there are
three potential minima. When we also consider 30 sym-
metry operations about 6 C5 axes at high temperature,
all C3 axes permute with each other and thus we will
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Ng! N2!N3!

Using the Stirling formula, logzp N! N log~p N —N, we
calculate the entropy, S, which is given by

S = k~ logyp W

NkI3 (Xi logip Xl + X2 logip X2 + X3 logip X3)

+Nk~ (X2 logip 3 + X3 logip 90) &

where

3

N=) N, , X, =N, /N, and

have 90 potential minima. Here we have three absolute
potential minima and six local minima per C3 axis. We
did not consider the rotation about 20 C2 axes because
the rotation angle 180 is large and the potential barrier
for this rotation would be expected to be high.

All motions which are relevant to the phase transition
are the hopping between local potential minima below
and above the phase transition. Actually the nuclear
magnetic resonance experiment shows an activation-
type temperature dependence of the spin correlation time
7. with two diferent activation energies of 2100 K and
700 K for the lower and higher temperature phases, re-
spectively, which we assigned to the discrete rotation
about the C3 and C5 axes, respectively. This assign-
ment is reasonable in light of the potential calculations
in which the authors show that some local minima whose
depths are 0.1 —0.2 eV.

In states (b) and (c), there are 3 and 90 equivalent
sites, respectively, which correspond to the potential min-
ima for the discrete rotation. When we assume Nq, N2,
and N3 molecules of a total of N molecules are in (a), (b),
and (c) states at a given temperature, the total number
of states, W, is given by

where the dimensionless parameters n, P, and the func-
tion p which depends on Xq are expressed as

( T l
n = 1+3exp

~

——
~

(T = J /k~),

( T )
P = 90exp

~

——
T)

( Tb
p(Xi) = exp

~

——nXi
~

(Tb —— z Jb/ka)

(6)

Because of the simple model that we use, there is only
one solution of Eq. (5) at any temperature. Thus the
thermal equilibrium value of Xq is easily obtained nu-

merically. The corresponding values of X2 and X3 are
given as follows:

X2 ——(n —1)Xi and X3 ——1 —X2 —Xi.

In Fig. 1, the temperature dependences of Xq, X2, and
X3 are plotted by dotted, dashed, and solid lines, re-
spectively, as a function of T/Tb with a fixed ratio of
T /Tb = 1/3. The choice of this ratio is motivated by
the observed ratio of the two phase transition temper-
atures, 87 K/257 K being close to 1/3. From Fig. 1,
Xq, the probability that a molecule is frozen, decreases
monotonically in the range 0.05 ( T/Tb ( 0.21 and at
T/Tb = 0.21 there is a discontinuous change in many
properties, characteristic of a first order transition. Here-
after we denote this temperature by T, = 0.21'. The
onset value denoted by To/Tb = 0.05 is defined by the
temperature where X~ becomes 0.99. It is clear from
Eq. (7) that the increase of X2 (or the decrease of Xi)
starts from T = 0 where Xq 1.0. Thus we need the
above definition.

In Fig. 2, the onset temperature normalized by T~,
Tp/Tb (dotted line), the critical temperature normalized
by Tb, T,/Tb (solid line), and the change of Xi at T„AXi
(dashed line), are plotted as a function of T /Tb From.
the figure, the onset temperature is seen to be propor-

The internal energy E consists of two parts as follows:

Nz Jg 2E = NJ Xi — (Xi—+ X2),
2

1.0

0.8— X,

in which J (& 0) stands for the energy gained from
freezing the motion for the (a) states, and Jb (& 0) and
z = 12 are the intermolecular attractive interaction and
the number of the nearest neighbor molecules, respec-
tively. Here we assume that the attractive interaction
acts only when two molecules in (a) or (b) states are
nearest neighbors.

In the thermal equilibrium state, we can minimize the
free energy, I" = E —TS, with respect to Xq and X2
keeping the temperature fixed and the condition that
Xy + X2+ X3 ——1. Eliminating X2 and X3, we obtain a
self-consistent equation for Xz,

0.6

0.4

0.2

0.0
0.0

X,

0.1 0.2 0.3

1
Xg ——

n + Pp(Xi)
' (5)

FIG. 1. Temperature dependence of Xq (dotted line), X2
(dashed line), and Xs (solid line) plotted as a function of
T/Tb
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FIG. 2. The onset temperature of decreasing X~ normal-
ized by Tq, To/Tg (dotted line), the critical temperature nor-
malized by Tz, T, /Tb (solid line), and the change of Xz at T„
EXi (dashed line) are plotted as a function of T /Tq

tional to T . As for the transition temperature T„ there
is no significant dependence of T, on T for T /Tg & 0.3
and then for higher values of T /T~, a linear dependence
on T for T /Tg & 0.3. The discontinuous change of Xi
at T, is observed for T /Ts & 0.6 with a maximum at
T /Ts 0.25. For T /Ts & 0.6 there is no significant
discontinuous change in AXq but rather a continuous
change occurs. For the case of T /Tg 0.0, there is
no difference in the internal energy between Xq and X2
and we do not consider this unphysical case further. As
shown in Fig. 2, our model is applicable for a wide region
of T /Tg from 0.1 to 0.6. Hereafter, we consider only case
T /Tg = 1/3 which gives the best results in comparison
to experimental data for solid C60.

FIG. 3. Temperature dependence of the entropy S/Nka in
dirnensionless units.

entropy change at T, is the increase in the number of
equivalent states from 3 to 90 and the corresponding en-
tropy difference ES = NkII ln30 = 28.3 J/K i mol
in very good agreement with the experimental results.

B. Free energy

In Fig. 4, the free energy I' (dotted line) and the inter-
nal energy E (solid line) normalized by NkIsTs are plot-
ted by putting the solution of Eqs. (5) and (7) into F
and E. The free energy is continuous for the whole tem-
perature range but has a kink at T = T, (see Fig. 4) cor-
responding to the discontinuous change of Xq as shown
in Fig. 1. With increasing T, the internal energy in-
creases from the lower temperature range, reflecting that
the energy gain associated with the freezing molecules,

III. THERMODYNAMIC PROPERTIES
AND DISCUSSION 1.0

Using the self-consistent solution of Xq discussed
above, we calculate the entropy, free energy, internal en-
ergy, and specific heat as a function of the normalized
temperature T/Tg.

0.0— E

A. Entropy
-1.0—

FIn Fig. 3, the entropy S normalized by Nk~ is plot-
ted as a function of T/Ts by putting the solutions of
Eqs. (5) and (7) into Eq. (2). The entropy increase
associated with the transition &om the &ozen state to
the discrete-rotation states occurs from 0.05' all the
way to the discontinuity at T, . Above T the entropy
S saturates to the value of Nk~ln90 = 4.5Nk~ or
37.4 J/K mol i. The entropy change at T, in the
present calculation is 2.30NkIr or 19.1 J/K i mol i. The
experimental speci6c heat results show a discontinuity
of 30 J/K mol between the above two values of
19.1 and 37.4 J/K mol . The basic idea behind the

-2.0
0.0

I

0.1
I

0.2 0.3

FIG. 4. Temperature dependence of the free energy
F/Nk~T& (dotted line) and the internal energy E/Nk~T&
(solid line) in dimensionless units. A discontinuity in the
derivative of E is seen at T . The derivative of I" with re-
spect to T is not continuous at T, which appears as a kink
in the 6gure.



2146 R. SAITO, G. DRESSELHAUS, AND M. S. DRESSELHAUS 49

J, is decreasing. At T = T, there is a discontinuity of E
through loss of the intermolecular interaction, Jb, by an
order-disorder transition. As mentioned above, the inter-
nal energy from the librational motion is not considered
here. Since the specific heat for 24 librational modes
is expected to be saturated to 12R (R = Nk~) above
T = 30 K, the internal energy from the librational mo-
tion is 12RT which does not depend on Xq and thus can
be excluded from the model. Since we do not consider the
effects of pressure in the thermodynamic model, we can
compare the present discontinuity in the internal energy
with the discontinuity in the enthalpy. The present calcu-
lated result of the enthalpy change, AH = QE, at T = T,
is 0.475NkBTb. If we use Tb ——1224 K so as to reproduce
the critical temperature T, = 0.21Th ——257 K, we obtain
AH = 4829 J mol = 6.71 Jg which is comparable to
the results of the differential scanning calorimetry exper-
imental value of AH = 5.9 Jg . Thus both T, and AE
can be explained consistently with the same parameter
of Tb = Jb/k~ = 1224 K.

heat and decreasing Xq are different, the small difference
of T/Tb = 0.04 and To/Ts = 0.05 in the previous section
is not meaningful. The specific heat in the figure satu-
rates at about AC„ I.ONk~=8. 3 J/K mol starting
at T/Tb - 0.1, and has a sharp peak below T, and then
decreases to zero for T ) T, . The excess heat capac-
ity which is obtained by subtracting the contribution of
the librational and vibrational motions from C„ is quite
similar to the experimental results. It is noted that
the peak value of C„near T, does not have an impor-
tant physical meaning since the calculation uses discrete
points for specifying T. Thus the peak would show a
larger value if we take values of T closer to T,. On the
other hand, the excess specific heat at T/Tb = 0.1 may
be compared to the glassy transition observed at 87 K
in which a jump in C„of AC„= 7 J/K mol was
reported, in satisfactory agreement with our calculated
result of 8.3 J/K i mol . This excess heat capacity at
T/Tb = 0.1 may be identified as a Schottky type specific
heat anomaly.

C. Specific heat D. Discussion

The specific heat C„ is calculated by

dE
dT

( Nz Jso. 'i dXi NZJb& 2d
2 1dT'

(8)

where we use the fact that

Xg + X2 ——O.Xg,

10.0

8.0-

dXg
and we calculate by differentiating Eq. (5) with re-

dT
spect to T. In Fig. 5, we show the specific heat C„/NkB
as a function of T/Ts.

The specific heat in Fig. 5 increases starting from
T/Tb = 0.04. Since the definitions of onset for the specific

In Table I, we compare the experimental data with the-
ory. In spite of the simple picture of the phase transition
described by the present model, good agreement between
the model and the experimental data is achieved.

The temperature dependence of the order parameter
Xz may be compared with that of an x-ray diffraction
spot such as (4,5,1) (Ref. 26) and (4,5,0) (Ref. 4) which
are forbidden in the fcc structure. The (4,5,1) [or (4,5,0)j
peak intensity decreases &om its value at very low tem-
perature and experiences a discontinuous jump of about
half of its intensity at T = 255 K. The T dependence of
this x-ray peak is similar to that for Xq shown in Fig. 1.
We also compare these values in Table I.

A discontinuity in the order parameter is observed,
too, in the low-energy region of the Raman spectrum
( 30 cm ). The observed temperature dependence of
the libron intensity and the uncorrelated I orentzian scat-
tering intensity are similar to the temperature depen-
dence of X2 and X3, respectively.

The present model does not consider any change in the
free energy associated with the lattice constant jump at
T observed by x-ray and neutron experiments in the
vicinity of T, . According to the discontinuous change
from discrete rotation to relatively free motion, the lat-

6.0—
TABLE I. Thermodynamic quantities of the phase transi-

tion of solid C6o.

4.0

2.0

bH (Jg ')
bS(JK mol )
AC„(Jg ')
AXg

Model
6.7
19.1
8.3
0.41

Expt.
5.9b

30.0
7c

0.4—0.5

at T =255K
at T=255K
atT=70 90K
at T =255K

0.0
0.0 0.1 0.2 0.3

FIG. 5. Temperature dependence of the specific heat
C„/Nka in dimensionless units.

When we use Tb ——1214 K.
Reference 4.' Reference 9.

~ Intensity of fcc forbidden x-ray peaks (4,5,0) and (4,5,1)
(Refs. 4 and 26).
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tice should be expanded by being &ee &om very weak
van der %aals interaction and &om weak Coulomb in-
teractions between electron-rich double-bond regions on
one molecule and electron poor pentagon regions on the
adjacent molecule. This effect may be included in Jb if
Jp is a function of the lattice constant. Weak hysteresis
effects near T are characteristic of a first-order transi-
tion in which there is a local maximum in the free energy
between two local minima as a function of order parame-
ter. Though the two local minima have equal energy, hys-
teresis appears at T = T„because the order parameter
cannot jump from one minimum to another. To account
for this situation requires higher order terms in the order
parameter in the free energy, 2 and such terms are not
considered in the present model. It is noted that the dis-
continuous jump in Xi in the present model corresponds
to a smooth change from one minimum to the other. Such
higher order terms could appear when J and Jb depend
on X; or when we consider a more realistic model beyond
the mean field model. The important point to be stressed
is the basic picture of the phase transition as the compe-
tition between entropy gain by rotation and energy gain
by intermolecular attraction.

The present model does not explain the anomalies ob-
served in a number of experiments at 165 K.~s This
anomaly may have something to do with alignment of the
double-bond with pentagons in preference to hexagons
below 165 K and little preference between them above
165 K. This phenomena is referred to as merohedral dis-
order. Some structural studies have suggested a doubled
lattice constant for C60 in the low temperature phase.
In order to explain such an effect, at least next-nearest-
neighbor interactions must be considered. Another im-
portant point that we should mention is the glassy phase
transition which is not included clearly in the present
model though we can explain the excess specific heat as-
sociated with such a transition. Because of the cubic
symmetry of the solid, the relative orientations of the C60

pentagons on one ball relative to its 12 nearest neighbors
is prescribed. This restriction makes it impossible for
the 12 pentagonal faces to line up perfectly with double
bonds on adjacent molecules. Thus an intrinsic residual
disorder must remain at low temperature, which is de-
scribed by fluctuations in the order parameter. Thus a
more realistic model is necessary for explaining the re-
laxation process in detail.

IV. CONCLUSION

In summary, we propose a simple but realistic statisti-
cal model for the phase transition of solid C6o in which
the molecules can have any of three possible states: (a)
a frozen state, (b) a three-state discrete rotation about
a single axis, or (c) a 90 state associated with 90 rota-
tions about both threefold and fivefold axes. The order-
disorder transition from (b) to (c) is modeled by a first
order phase transition in which discontinuous jumps of
the order parameter, the internal energy, and the entropy
at T, are well reproduced by fitting the energy parame-
ters J and Jb (or T and Tb) so as to obtain the tran-
sition temperature T,. The temperature dependence of
the specific heat, the order parameter, and the increase
in specific heat at 80 K are in good agreement with
experimental data.
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