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We propose a continuum model for phase separating binary mixtures containing an amphiphilic block
copolymer that serves as a surfactant. The model is an extension of a recent density functional theory
for block copolymer melts, and the model takes the intramolecular structure of the block copolymer
molecule (surfactant molecule) in an averaged sense. We show results of a computer simulation on this
model, and discuss the important contributions from the intramolecular structure of the surfactant to
the phase separation dynamics, which have usually been neglected in the recent simulations on the phase
separation of surfactant solutions that use continuum descriptions.

PACS number(s): 36.20.—r, 64.60.Cn, 82.70.Kj

I. INTRODUCTION

A rich variety of self-assembling supermolecular struc-
tures of surfactant solutions have been attracting the at-
tention of physicists, chemists, and engineers [1,2]. So
far, most of the investigations have been focused on the
static aspects of these self-assembling structures. In a
series of recent works [3-5], we explored a dynamical
model, which is called a hybrid model, for the surfactant
solutions, where the intramolecular structure of the sur-
factant molecule is explicitly taken into account by com-
bining a continuum description and a molecular descrip-
tion. In this hybrid model, the degree of freedom of the
solvent is coarse grained, while the surfactant is treated
as discrete molecules.

The aim of the present paper is to propose another
simplified dynamical model, where the coarse-graining
procedure is also adopted to the surfactant, and therefore
the model is described by fully continuum descriptions.
Although there exist several continuum models for sur-
factant solutions using Ginzburg-Landau expansions
[6-8], intramolecular structures of the surfactant mole-
cule were totally neglected [6] or incorporated only par-
tially through a director field of the surfactant molecules
[7,8]. Such treatments are valid as long as the surfactant
molecule is small compared with the characteristic length
(for example, average domain size or the correlation
length of the composition fluctuation) of the binary mix-
ture. However, if the surfactant molecule is so large as to
be comparable or greater than the characteristic length of
the binary mixture, more detailed information on the in-
tramolecular structure should be taken into account.
This is the case for an amphiphilic block copolymer. For
a block copolymer with a sufficiently large polymeriza-
tion index (> 1000 and ~ 10000), its gyration radius can
be of the order of 10~ 100 A, which is much greater than
the molecular scale.

A well known approach to investigating microphase
separating block copolymers is the density functional
(DF) approach [9-13]. In the DF approach, the chain
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conformation of the block copolymer is described by a
monomer density distribution function, and the total free
energy of the system is given as a functional of such a
monomer density distribution function. Leibler explored
a DF theory for the microphase separating block copoly-
mer melts near the critical point (weak segregation re-
gime) [9], while the same approach was also successfully
applied to microphase separations well inside the coexist-
ing region (strong segregation regime) [10—12]. Recently,
such DF approaches were used to investigate the forma-
tion and dynamics of microphase separated structures of
block copolymer melts [13]. In these DF approaches, the
chain conformation and the composition of the block
copolymer chain are taken into account in an averaged
sense. In this paper, we combine the time dependent
Ginzburg-Landau (TDGL) model with the DF descrip-
tion of block copolymer melts in order to investigate
self-assembling processes of binary mixtures containing
block copolymers.

II. MODEL

Our model is a simple extension of the DF theory for
block copolymer melts [9-13]. A naive description of
our model has already been described in our recent paper
[14]. Here we present a detailed derivation of the model.
For simplicity, we consider a simple case of an 4 /B
binary mixture containing an 4 -B type block copolymer,
where the 4 monomer and the B monomer of the block
copolymer are assumed to be the same as the 4 molecule
and the B molecule of the binary mixture, respectively
[14]. In general, a C-D type block copolymer serves as a
surfactant in an A4 /B binary mixture, when the C and the
D monomers are chemically similar to the 4 and the B
molecules of the binary mixture [12]. An extension of the
present model to such a general situation is straightfor-
ward.

Let us denote the number densities of the 4 molecules
and the B molecules of the binary mixture at position r as
¢ 4(r) and ¢5(r), and those for the 4 monomers and the
B monomers of the block copolymer as ¥ ,(r) and ¥z(r).
As we are interested in the formation process of self-
assembling structures, whose time scale is much longer
than that of the sound waves, the mixture can be regard-
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ed as incompressible. Assuming that the molecular
volumes of the A monomer and the B monomer are
equal, the incompressibility condition can be expressed as

¢A(r)+¢3(f)+¢A(f)+1/)B(f)Epo , 2.1)

where p, is the total monomer number density. The
relevant order parameters for the system are

X(r)=¢ 4(r)—¢p(r), Y(r)=9¢ (r)—9p(r),
(r)=¢ (r)+dg(r), P (r)=y¢  (r)+p(r).

The incompressibility condition, Eq. (2.1), leads to the
fact that only three of these order parameters are in-
dependent. We choose X, Y, and ¥ as the independent
parameters.

The total free energy functional F is divided into the
short range part Fg and the long range part F; [11,13].
Using a cubic lattice model, the short range part is ex-
pressed by the following free energy functional (see the
Appendix) [14,15]:

2po

(2.2)

2
5= Jar =2+ v+ S v+ pP?

+pol(¢+X)In(¢+X)+(d—X)In(¢p—X)

+(Yp+Y)n(¢p+Y)+(p—Y)n(y—Y)]

(2.3)

where kjp is the Boltzmann constant, T is the tempera-
ture, z is the total number of the nearest neighbor sites on
the lattice (z =6 for cubic lattice), a =p, !>, and y is the
usual y parameter defined by

+ constant contributions ,

X=X~ 53X a4 tX58)> 2.4)

X 44> XBB> and X 4p being the interaction energy between
A-A, B-B, and A-B nearest neighbor pairs divided by
kgT. The constant contributions to the free energy in
Eq. (2.3) arise due to the conservation laws for the fields
X, Y, ¢, and ¢, and these contributions do not play any
role in the dynamics.

The long range part F; originates from the conforma-
tional entropy of the block copolymer chain. As the 4
block and the B block of a block copolymer chain are
connected by a chemical bond, a macrophase separation
is inhibited for the block copolymer. Such a character im-
poses a penalty on the long wavelength fluctuations in the
field Y (r). Following Ohta and Kawasaki [11], we write
this penalty as
FL=afdrdr’G(r—r')[Y(r)—f’][Y(r')—17] , (2.5
where G(r) satisfies V?G(r)=—8(r), Y is the spatial
average of Y(r), and a is a positive constant. Fourier
transformation of Eq. (2.5) leads to F;, ~a3(1/k?)|Y,|?,
and therefore this free energy imposes a penalty on the
long wavelength fluctuations in Y(r). Since the long
wavelength composition fluctuation should be suppressed
especially for shorter block copolymer chains, the penalty
coefficient a increases as N decreases. More precisely, it
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is known that a depends on the polymerization index N
of the block copolymer chain as a~N ~2 [11].
For the dynamics, we adopt the purely dissipative dy-
namics as is done for the usual TDGL model:
axX LXVZS_F

ot 8x ’

where F=F¢+F;. We assume similar equations of
motion for Y(r,z) and 9(r,?). In Eq. (2.6), we neglected
the cross coupling currents between different order pa-
rameters and the thermal fluctuation effects. The hydro-
dynamic interaction, which is also neglected in Eq. (2.6),
becomes important in the later stage, as is actually ob-
served in the real experiments using polymer blends and
block copolymers [16]. Within a certain time regime (in
the early stage), one can neglect such a hydrodynamic in-
teraction. A simple order estimate of the characteristic
time scales associated with the present system is given in
our previous work [5].

(2.6)

III. NUMERICAL SIMULATION

We performed a numerical simulation based on the
model presented in the preceding section. As the loga-
rithmic functions in the free energy expression Eq. (2.3)
are highly nonlinear functions, the equations of motion
are stiff differential equations, which are not suitable for
numerical simulations. In order to avoid this difficulty,
we expand Eq. (2.3) in a power series of the order param-
eters (the so-called Ginzburg-Landau expansion). Such
an expansion is justified when the system is in the vicinity
of the critical point, where the amplitudes of the fluctua-
tions are small. We also add a term |V¢|? to Eq. (2.3)
that is irrelevant to the physical properties but improves
the stability of the numerical scheme. The details of the
expansion procedure are given in the Appendix.

Numerical simulations from initial random distribu-
tion of the three-component mixture were performed.
The system is a two-dimensional square box, which is di-
vided into 128 X 128 meshes with a mesh width 1.0. We
impose periodic boundary conditions on each box side.
The initial configurations of the fields X(r), Y (r), and
¥(r) at each mesh point were generated using Gaussian
random numbers with mean values X, ¥, and ¥ and the
values of variance 0.04%, 0.04%, and 0.04, respectively.
We choose the parameters as L =L¥=1.0, X=0.0
(symmetric composition of the binary solvent), ¥=0.0
(symmetric block copolymer case), =0.2 (20% block
copolymer volume fraction), the coefficient of the term
|Vy|? as 1.0, and z=6 and y=0.5, respectively. The
equations of motion, Egs. (A4), were integrated numeri-
cally using the standard Euler scheme with a time mesh
At=0.005 up to 400000 steps (# =2000.0). We per-
formed a series of simulation runs, changing the value of
a as a=0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0, keeping
the other parameters constant. This corresponds to
changing the polymerization index of the block copoly-
mer chains, keeping the total volume fraction of the
block copolymer constant. In the following, all the data
shown are averaged over five independent runs using
different initial configurations.
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In Fig. 1, snapshots of the fields X(r,¢), Y (r,t), and
8Y(r,t)=1(r,t)—1 at t =2000.0 are shown for the cases
with (a) @=0.0, (b) a=1.0, and (c) a=10.0, respectively.
In each case, the left-hand figures show the
configurations of the fields, where the regions with posi-
tive field values are shaded. The right-hand figures are
the cross-section profiles of the fields along the horizontal
line that passes the center of the box. The case (a) is iden-
tical to a phase separating A4 /B binary mixture because
there is no long range interaction coming from the chain
connectivity. On the other hand, the polymer effect is
important in cases (b) and (c). In case (b), a clear domain
structure, which resembles that of the microphase
separating block copolymer melt [13], is formed for the
fields X and Y. The domain structure in case (c) has a
somewhat intermediate nature between the two cases (a)
and (b), which suggests that the polymer nature becomes
less important for short block copolymer chains (note
that a is a decreasing function of the chain length). In
cases (b) and (c), the distribution of 8y shows that the
block copolymer is accumulated at interfaces between
domains, which is expected from the surfactant nature of
the amphiphilic block copolymer.

Scattering structure functions for the fields X and Y,
denoted as Sy(k,t) and Sy(k,?), are defined as

Sylk, 1) =X ()2, Sylk,0)=]Y ()], 3.1
where X,(¢) and Y,(¢) are the Fourier components of
X(r,t) and Y (r,¢) with the wave vector k. In Figs. 2 and
3, we show temporal changes of the characteristic wave
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FIG. 1. Snapshots of the fields X(r,7),
Y (r,t), and 84¢(r,t) at t =2000.0 are shown for
the cases with (a) a=0.0, (b) a=1.0, and (c)
a=10.0, respectively. The left-hand and the
right-hand figures show the configuration of
the fields and the cross-section profiles of the
fields, respectively.

numbers {ky(¢)) and {(ky(z)), which are defined as the
first moments of Sy(k,t) and Sy(k,t) [5] for various
values of a. Note that the characteristic lengths of the
spatial patterns of X(r,t) and Y(r,t) are inversely pro-
portional to these characteristic wave numbers.

Figure 2 shows the data for the cases with smaller
values of a, i.e., for longer block copolymers. One finds
that the two characteristic wavelengths (ky) and (k)
behave in almost the same manner. There is no penalty
for the macrophase separation for the case with =0.0,
and both characteristic wave numbers {(ky) and (ky)
continue to decrease as t /3, like the phase separating
simple binary mixture without hydrodynamic effects [17].
As a increases (the length of the block copolymer chain
decreases), the phase separation is more and more slowed
down, and finally the domain structures are almost
frozen. The final domain structures become more and
more fine grained as a is increased. Such a feature is well
known for microphase separating block copolymer melts
[9-11,13]. Therefore, the final domain structures in
these cases are dominated by the phase separation of the
block copolymers, just like the case where selected sol-
vents are solvated into microphase separating block
copolymer melts [18]. One can also observe that the
domain structure in the early stage becomes more fine
grained as the chain length of the block copolymer is de-
creased (a is increased). This tendency shows that the
phase separation at the initial stage is affected by the in-
tramolecular structure of the block copolymer chain, as
we pointed out in our previous works [4,5].

The behavior of the characteristic wavelengths changes

FIG. 2. Temporal changes of the charac-
teristic wave numbers (a) (ky()) and (b)
(ky(t)) for a <1.0.

time time
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qualitatively for a> 1.0 (short block copolymer chains),
which are shown in Fig. 3. In this region, the phase sepa-
ration for the field X [Fig. 3(a)] is not frozen by the block
copolymer within the same time range for the domain
freezing for the cases shown in Fig. 2. Contrary to such
behavior, one verifies in Fig. 3(b) that the temporal
change in the characteristic wave number for the field Y
is almost frozen in the late stage. This means that the mi-
crophase separation of the block copolymer no longer
dominates the entire phase separation due to the
insufficient length of the block copolymer chain. One
can, however, still observe a slight slowing down of the
phase separation for the field X in the late stage, which
should be attributed to the surfactant nature of the am-
phiphilic block copolymer [5,6]. As is theoretically
known, the surfactant property becomes small for shorter
block copolymer chains [12]. Therefore, the slowing
down of the phase separation becomes less noticeable for
the shortest block copolymer case (a=10.0).

In order to confirm that the phase separation is dom-
inated by the microphase separation of the block copoly-
mer for @ <1.0, we plotted in Fig. 4 the values of the
characteristic wave numbers (ky(t)) and (ky(7)) at
t =2000.0 (=t,) in a double logarithmic plot. As is ob-
served in Fig. 2, the domain structures are almost frozen
at this time for 0.1 <@ <1.0. Within such a parameter
range, we observe a power law dependence {k(t,)) ~a®,
with 6~ 1. Such a power law dependence is actually ex-
pected for microphase separating block copolymers in the
weak segregation regime [9,13]. In the weak segregation
regime, the domain size is known to be proportional to
N'/2) N being the chain length of the block copolymer.

0.5 ; .
g '<kx> o
§ 0.4 © cky> ° . ° o
1] :
= 03t o : 4
© .
2 S 1/4
I L
0.0l .
107 10° 10

a

FIG. 4. The values of the characteristic wave numbers
(kx(t)) and (ky(t)) at t =2000.0 are shown as functions of c.

Combining this relation with a ~N ~2, one obtains the re-
lation {(k(t,)) ~a'/*. Therefore, this result shows that
the final domain structures are maintained by the block
copolymers for a < 1.0.

Next, we discuss the changes in the domain morpholo-
gy. In order to discuss the domain morphology quantita-
tively, we calculated the scaled scattering function Sy (x),
defined by

Sylk,t)=C(ky()) 748y [k /{ky(t)], (3.2)

where d is the spatial dimension [5]. In Fig. 5, we show
the scaled scattering function Sy(x) in double logarith-
mic plots for the cases (a) @=0.0, (b) a=1.0, and (c)
a=10.0, respectively. In order to eliminate the finite size
effects of the simulation system, these scaled scattering
functions are obtained at (a) £ =100.0, (b) r =250.0, and
(c) t =300.0, when the domain structures for the respec-
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FIG. 5. The scaled scattering function Sy(x) for the cases (a)
a=0.0, (b) a=1.0, and (c) @=10.0 in double logarithmic plots.
These data are obtained at (a) ¢ =100.0, (b) £ =250.0, and (c)
t =300.0, respectively, when these domain structures have al-
most the same characteristic wave number.
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tive cases have almost the same characteristic wave num-
bers (see Figs. 2 and 3). Case (a) corresponds to the
characteristic scaled scattering function for a phase
separating binary mixture, which has a main peak at
x =1 and has a shoulder at x ~3, the latter shoulder
originating from the local lamellar ordering of the
domains. Such a shoulder becomes much more pro-
nounced in case (b) and the main peak becomes sharper
than in case (a). This confirms our speculation that the
domain structure is dominated by the microphase separa-
tion of the block copolymer, which leads to a lamellar
structure in the present symmetric block copolymer case.
The scaled scattering function in case (c) resembles that
in case (a), which means that the phase separation in this
case is dominated not by the microphase separation of
the block copolymer, but by the phase separation of the
binary solvent.

In our previous simulation, using another model called
the hybrid model [5], we reported that the main peak of
the scaled scattering function becomes broader when we
add a surfactant into a binary solvent mixture. Such a
main peak broadening was attributed to the undulation of
the interfaces caused by a buckling of the surfactant
sheets on the interfaces. This apparently contradicts the
results shown in Figs. 5(a) and 5(b), where the main peak
becomes sharper when adding the block copolymer.
However, the phase separation was obviously dominated
by the binary solvent in Ref. [5]. Therefore, we should
compare the results in Ref. [S5] with those in Figs. 5(a)
and 5(c), where there is very little difference in the main
peak width. This is due to the fact that the phase separa-
tion has not proceeded enough to produce the interfacial
undulation in Fig. 5(c).

Actually, a broadening of the main peak can also be
observed in the present simulation at later times. In Fig.
6(a), we show a comparison of the scaled scattering func-

102 N
£ s a =00 (t=4500)

FIG. 6. A comparison of the scaled scattering functions be-
tween the two cases a=0.0 and ¢=10.0 at a later time than
those in Fig. 5. (a) Scattering functions from the field X (r)
(selective scattering from the solvent) and (b) scattering function
from the field X (r)+ Y(r) (total scattering from the sample) are
shown, respectively. These scattering functions are calculated
at t =450.0 for a=0.0 and at ¢t =2000.0 for a=10.0, respec-
tively, when these domain structures have almost the same
characteristic wave number.
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tions SX(x) for the two cases a=0.0 and a=10.0, calcu-
lated in the later time stage than those in Fig. 5. Here
again, the times are chosen so that the characteristic
wave numbers of the two domain structures have almost
the same value. One finds an obvious broadening of the
main peak for the case with a=10.0, as was predicted in
our earlier simulation [5]. We also show in Fig. 6(b) the
scaled scattering functions Sy | y(x) for the total mono-
mer concentration difference, including monomers of the
block copolymer, X(r)+Y(r), for the same domain
structures as in Fig. 6(a). One can still observe the main
peak broadening in Fig. 6(b), which means that the main
peak broadening originates from an irregularity in the
domain shape and not from some irregularities in the in-
terfacial structure caused by the adsorbed block copoly-
mers. A sample domain structure for the case with
a=10.0 is given in Fig. 1(c). One can easily understand
that the interface undulation is the origin of such a main
peak broadening. It will be worth noting that in real neu-
tron scattering experiments, the scattering data that cor-
respond to those in Fig. 6(a) can be obtained by using
selectively deuterated samples, while the data corre-
sponding to Fig. 6(b) can be obtained using normal pro-
tonated samples.

IV. CONCLUSIONS

We proposed a dynamical model for a phase separating
ternary mixture of an A solvent, a B solvent, and an 4-B
type block copolymer, where the intramolecular structure
of the block copolymer chain is taken into account using
a result from recent density functional treatment of block
copolymer melts [9-13]. We found that the behavior of
the phase separation is qualitatively different between the
case with longer block copolymers and the case with
shorter block copolymers. When the block copolymer is
sufficiently long, the phase separation is dominated by the
microphase separation of the block copolymer, where the
scattering function has a sharp main peak compared to
that for the case of simple binary mixture without the
block copolymer. If the block copolymer is relatively
short, the phase separation is driven by the binary solvent
and the block copolymer plays the role of a surfactant,
which slows down the phase separation in the late stage.
In such a case, we found a broadening of the main peak
of the scattering function, as was predicted in our earlier
work [5].

Recently, Laradji and co-workers reported results of
two types of simulations on the same problem treated in
the present paper [6,19]. One is a simulation using a con-
tinuum model, which corresponds to the short chain limit
(a— ) of the present model, where the intramolecular
structure of the surfactant is not taken into account [6].
The other is a molecular dynamics simulation using a
molecular model, where the surfactant molecule is
modeled as a pair of an 4 monomer and a B monomer
connected by a harmonic spring [19]. In these two simu-
lations, Laradji et al. found qualitatively the same results
as those reported in the present article. One important
difference is the fact that Laradji et al. did not observe
the broadening of the main peak of the scattering func-
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tion when the surfactant is added to the binary mixture
[19], which seems to contradict our finding. We expect
that such a contradiction may come from the difference
in the sizes of the surfactant compared to the domain
size. In the present simulation and in our previous simu-
lation [5], the chain length of the block copolymer can be
of the same order as the domain size [see Figs. 1(b) and
1(c)], while Laradji et al. used a rather smaller surfac-
tant molecule, which does not have a polymer nature.
This point should be clarified in future studies.

The present model can also be extended to investigate
the phase separations in the presence of asymmetric sur-
factants. We investigated such a phase separation pro-
cess using the hybrid model [14,20], where we found a
crossover phenomenon in the phase separation associated
with a morphological change in the domain structure.
Thus, it will be important to check using the present
model whether the results of the hybrid model are not an
artifact of its particular characteristics arising from the
combination of a molecular description and a continuum
description [3-5].
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APPENDIX: DERIVATION
OF THE FREE ENERGY FUNCTIONAL
AND ITS GINZBURG-LANDAU EXPANSION

In this appendix, we derive the short range part of the
free energy functional, Eq. (2.3), and perform a
Ginzburg-Landau expansion of the total free energy func-
tional, Egs. (2.3) and (2.5), to derive expressions for the
equations of motion used in the actual simulation.

First we derive Eq. (2.3). We assume that the system
consists of monomers distributed on a cubic lattice with a
lattice spacing a. The short range part of the free energy
Fg comes from the interactions between monomers
(denoted as E) and the entropy of the transactional de-
grees of freedom of the monomers (denoted as S). Using
the local mean field approximation, Fg=FE — TS is given
by [14]

kT

2po

—a*{X 44 1Vp 4 |2+XBB|VPB|2+2XABVPA ‘Vpgll,
(A1)

E=

fdl'[z{XAAPZA +X58P5 +2X 48P 4P3}

S=—kp [dr[¢ Jng ,+¢5Inds+ 4y, +5Ings)] ,
(A2)

where px(r)=¢g(r)+yg(r) (K = A4 or B), and the other
variables are the same as those defined in the text. In
deriving (A2), we regard the block copolymer chain as a
set of free monomers apart from the long range interac-
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tion arising from the connectivity of the chain, which
gives the long range part of the free energy F;. Introduc-
ing the order parameters defined in Egs. (2.2), Eq. (A2)
can be rewritten as Eq. (2.3).

Next we perform the GL expansion. Substituting Egs.
(2.3) and (2.5) into Eq. (2.6), and rescaling the variables
with the unit of length ay!/?, the unit of time
2a2ypo/kpy TLX, and the unit of number density p,, the
equations of motion are rewritten into a dimensionless
form as

%X(r,t)=V2 —2Y(X +Y)— VX + V) +1n2TX

¢o—Xx |’
D ¥e,0)=L V2 | —zx(X + V)~ VX + V) +In Y
a v—Y
~LYa(y-Y), (A3)
2_v2
L pr=Etvm =L
3t —X

where all the variables are nondimensionalized and
LY=LY/LX [¥=LY/LX and a=aL”*.

Let us denote the average value of ¥(r) as ¥ and intro-
duce a deviation of ¥(r) from its average value as 8¢, i.e.,
8Y(r)=1y(r)—1. When the system is close to the critical
point, the variables X, Y, and 8¢ are small, so that the
equations of motion can be expanded in power series in
these variables. Then we obtain the following TDGL-
type equations of motion up to the lowest relevant order:

B xiv | —zyx+1)-vAx+1)+ 2 [1+ 22 (x
at A
+i_3 1433 | x3 ,
3¢
0y _+ye 2 2 8
L y=LW? | -2y X+Y)—-V2X+V)+= [1-2X |y
ot ¥ ¥
+—2_3— 1—3% Y |-LYa(y—-Y),
3y ¥
(A4)
O _Fvg2|y L1 1 8¢ (42
5, SU=L*v? 2 $+_ zs¢+$2 1+2$ X
1 8¢ |2
—— 1—2%¥ |y
s ¥

These are basic equations of motion for our model simu-
lations [21].

In the actual numerical simulations presented in this
article, a term with the form [dr|V8y|® is added to the
free energy F in order to make the computational scheme
more stable. Such an extra term does not change the
physical properties of the model.
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FIG. 1. Snapshots of the fields X(r,t),
Y(r,t), and 8¢(r,1) at r =2000.0 are shown for
the cases with (a) a=0.0, (b) a=1.0, and (c)
a=10.0, respectively. The left-hand and the
right-hand figures show the configuration of
the fields and the cross-section profiles of the
fields, respectively.
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