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Effects of changes in the chain conformation on the kinetics of order-disorder transitions
in block copolymer melts

Toshihiro Kawakatsu
Department of Physics, Faculty of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-03, Japan
(Received 23 December 1996

The effects of long-range dynamical correlation in the kinetics of order-disorder transitions of symmetric
block copolymer melts are investigated on the basis of the time-dependent Ginzburg-Landau model that was
extended in such a way that the information on the chain conformation is incorporated using the path-integral
formalism. A simplified equation of motion for the order parameter is derived by a perturbation expansion of
the chain conformation around its Gaussian conformation. A series of computer simulations are performed to
show the importance of the effects of the changes in the chain conformation on the kinetics of order-disorder
transition of block copolymer melt$S1063-651X97)04309-3

PACS numbe(s): 82.20.Wt, 64.60.Ht, 83.10.Nn

I. INTRODUCTION dependent Ginzburg-Landg@DGL) model of phase sepa-
ration of a polymer blend or a block copolymer melt is given
Research on complex fluids, such as polymers, emulsionby the equation of motiof5,6]

and colloidal suspensions, is now one of the most active
fields in computational condensed-matter phygit®]. A 9 SE
common feature of these materials is the existence of meso- —¢K(r,t)22 J dr']\KK,(r,r')—,
scopic structures that are much larger than the microscopic at K’ Sy (1)
atomic length scale but much smaller than the macroscopic ) .
length scale. In the microscopic length scale, the material¥nere ¢« (r,t) is the local number density df-type seg-
are described using discrete atomic or molecular degrees §f€nts, K being the index of each componerf. and
freedom. On the other hand, in the macroscopic length scaléykx(r,r") are the total free energy and the kinetic coeffi-
the materials are treated as continuum media. The lengtéient, respectively, both of which in general depend on the
scale of the various supermolecular structures in complegonformation of the polymer chains.
fluids is located between these two limiting length scales. On the other hand, the conformation of a tagged chain of
The main difficulty in performing computer simulations of K type can be calculated within the mean-field approxima-
complex fluids using the microscopic description comedion (MFA) using the path-integral formalisi7—10]
from the extremely long characteristic time scales of the re-
laxation of these mesoscopic structures. This difficulty re-
quires us to construct models that are based on the meso- Qk(7.r;7',r)= > exd—BH+H)],
scopic or macroscopic level rather than the microscopic all conformations @
level. A typical example of mesoscopic models of complex
fluids is the Ginzburg-Landau model, where the mesoscopig/here 8= 1/T is the inverse temperature a@k(r,r;7’,r’)
structures are described by coarse-grained density variabl@s$ the joint probability that therth segment and the’th
or hydrodynamic variablef3,4]. There seems to be a gap segment of &-type chain are found at positiomsandr’,
between the microscopic approaches, such as the moleculgespectively. The right-hand side is a sum of Boltz-
dynamics method, and the above-mentioned mesoscopic agrann factors for all possible chain conformations under
proaches. The purpose of the present study is to try to bridggome external constraints, whe# is the Hamiltonian of
such a gap by incorporating microscopic information into thean ideal Gaussian chain f type andH(lK) is the interaction

mesoscopic models. potential between the monomers of the tagged chaiK of
type and the self-consistent external field imposed on the
monomersH{) andH{) are usually taken in the fornjg1]

(€

Il. MODEL
A. Basic equations . Nk dT dr(K)(T) 2
As a typical example of problems of complex fluids, we Ho _j 2p2l " dr : )

consider phase separation dynamics or dynamics associated
with the order-disorder transitions of polymer or block co-
polymer systems. The block copolymer is a polymer that is w_ [N (K)
) ; HV = d7Vi (r'™ (7). (4)
composed of two or more different types of polymer chains.
Such a molecular structure assigns the block copolymer the
amphiphilic nature and therefore the block copolymer playsiereNy is the total number of segments irkKatype chainp
the role of a surfactant in binary mixturgd]. The time- is the Kuhn statistical lengttr()(7) is the position of the
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rth segment of &-type chain,V¢(r) is the external field the free energy with respect to the density field are valid or
imposed on theK-type segment at position, andd is the (i) the system is far from the critical point and the chain
dimensionality of the system that is assumed to be 3 in théength is long enough so that the path-integral description
following, except for the computer simulations. It is useful toand the use of the Gaussian statis(@sis justified. In this
show that the path integr&y obeys the diffusion equation case, a direct numerical evaluation of the path inte(ais
[7-1Q necessary.
Apart from the equilibrium properties, the dynamic prop-
P b2 erties of phase-separation processes are also interesting and
E_QK(T,I’;T’,r,):{gVZ—BVK(I’)}QK(T,I’;T’,I”)_ lmportant in predicting the_ metastable phase-s_eparatgd _do-
®) main structures_ that cont_am many d_efects ar_1d in predlctl_ng
the macroscopic rheological properties. In this case, the in-
As the quantityQy is a sum of contributions from all formation on the chain conformation can be incorporated by

possible polymer conformationévhich can be identified Ccombining the dynamical equation of motigfh) with the

with possible paths of a quantum particle moving in a potenfree-energy functional calculated with the path integé!

tial Vi), Qg is called the path integral. Then the free energySuch a trial has started only recenfy9—22. However, in

F and the kinetic coefficiend . in Eq. (1) are calculated the d.y.namlcal modeling, a careful treatment of the kinetic
using this path integral. The free-energy functional at coefficient A« is required. As the kinetic coefficient con-
equilibrium is given by[10] tains effects of segment diffusion, the hydrodynamic interac-
tion, and other dynamical processes, it is very complex. In
dynamical simulations of the phase-separation processes us-

J er dr'Qu(0r:N r’)} +W[{br(N)}] ing the Ginzburg-Landau-type models, the kinetic coefficient
Ak almost always has been approximated by a local dif-

fusion process wher . is replaced by VS(r—r’)V’, L
, (6)  Dbeing the diffusion constari23—25, or approximated by a
sum of the local diffusion and a hydrodynamic correlation

whereW[{ 4} is the interaction energy between Segmentsthat is described using the so-called Oseen tef&@jr How-

andU(r) is the Lagrange multiplier for the incompressibili ever, basically the kinetic processes such as segment diffu-
condition grang P P Y sion and hydrodynamic processes are affected by the changes

in the conformation of constituent polymer molecules. This

leads to a nonlocal kinetic coefficief\tKK, that depends on
the chain conformation through the path integral
(7 i
Q(7,r;7",r").
In order to incorporate such nonlocal effects in the kinetic
On the right-hand side of Ed6), the first and the second coefficient into the model, one possible way is to use dy-
terms are the conformational entropy of the chains and theamical models of coarse-grained multichain systems and to
direct segment-segment interaction, respectively. The lagierform Monte Carlo or molecular-dynamics simulations
term is the correction for the double counting of the[27]. In these models, the system is composed of many
segment-segment interaction. This path-integral formalisnthains, each of which is treated as a set of many beads con-
within the MFA has been used widely and successfully tonected by chemical bondings, and therefore the models are
study equilibrium phase-separated structures in polymerather on the microscopic basis than the Ginzburg-Landau-
blends and block copolymer systefi&-10,12,13 A diffi- type continuum models. The Monte Carlo simulation by
culty of this approach comes from the heavy computer deSariban and Binder showed that the changes in the chain
mands that are necessary in evaluating the path integral. conformation do take place in the course of the phase sepa-
In the vicinity of the critical point of the phase separationration of a binary polymer mixture in a common solvent
or the order-disorder transition point, there is an approxi{27]. On the other hand, on the level of the Ginzburg-
mated method to evaluate the free enefgpy expanding it Landau-type descriptions, a model of nonlocal kinetic coef-
into a power series in the density fieldgx(r)} and by ficients has been proposed assuming biased reptation dynam-
relating the expansion coefficients to the density-density corics [5,6], where the chains are allowed to diffuse only along
relation functions that can be calculated using the randomits contour because the chains cannot cross each other. This
phase approximatiofRPA) [14,15. As shown by Fredrick- assumption leads to a picture of long-range hopping of a
son and Helfand16] and by Fried and Bind€fl7,18, the  segment from one end of the chain to the other ¢hdthe
use of the RPA is restricted to the weak segregation regimease of a diblock copolymer, a segment at one end is re-
(close to the critical pointof systems composed of long garded to jump to the junction point and simultaneously the
chains. Unless the above conditions are satisfied, correctiorsegment at the junction point is regarded to jump to the other
to the RPA cannot be negligible. Thus, in order to give aend) This picture is, of course, too simple to describe the
guantitative prediction of the phase-separated structureshain dynamics in real polymer systems, especially in a melt
within the MFA, we should restrict ourselves to one of the state where the reptation motion should be accompanied by a
following situations:(i) The chain length is sufficiently long relaxation of fluctuations in a segment density distribution.
and the system is close enough to the critical point so thafnother difficulty of this picture is the fact that, in the case
both the use of the RPA and the power-series expansion aff a strongly segregated block copolymer melt, the junction
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points are almost pinned at interfaces, which leads to aa perturbation expansion of the chain conformation around
extremely slow reptation motion compared to that assumethe Gaussian conformation as a reference state.
in the above pictur¢28]. However, such a simple picture is It is well known for melts of sufficiently long polymer
still a useful and tractable starting point in examining howchains that the polymer chain conformation is Gaussian
much the change in the chain conformation is important inrwhen there are no density fluctuations and composition fluc-
the dynamics of phase-separation of polymer systems. tuations. Such a Gaussian conformation is actually a solution
Only very few numerical works have been done on suctof Eq. (5) when there is no external fiel . As the confor-
phase-separation dynamics on the basis of the TDGL-typeational change of the polymer chain from its Gaussian con-
description with nonlocal kinetic coefficient that depends onformation is caused by the external filg , the conforma-
the chain conformation. Kawasaki and Kd@®] simulated a tional change can be treated as a series of perturbation
phase-separation process of binary polymer blend where thexpansion with respect tdy that is related to the segment

nonlocal kinetic coefficient\ k., (r—r') is assumed to be density distribution{¢y}. Here we show such a perturbation

constant within a certain range that models a nondeformegXpansion using a symmetric block copolymer melt as an

Gaussian chain. However, the assumption of nondeformegxample.

chains is not justified for chains that locate in the interfacial We will adopt the RPA in order to evaluate the expansion

region or in the microphase-separated block copolymer syscoefficients of the above-mentioned perturbation expansion.

tems [8,27]. In such regions, the chains are elongated oAs discussed in the Sec. Il A, the use of the RPA becomes

compressed by the interaction between segments and by th@reliable in the short chain limf.6-18. Due to this prob-

constraint force originating from the incompressibility con- lem, the following treatment should be restricted to the case

dition. with relatively long chain length and close enough to the
The aim of the present study is to estimate the effects o€ritical point.

changes in the chain conformation on the phase-separation Let us consider ai-B-type symmetric block copolymer

dynamics and to show the importance of incorporating thenelt that is composed dfl/2 segments oA type andN/2

information on the chain conformation into mesoscopic mod-segments oB type. Each segment is labeled by an index

els such as the TDGL model described by Eb), where so that Gs7<N/2 corresponds to thed subchain and

both the kinetic coefficienfi . and the free energ§ de- N/2=< <N corresponds to thB subchain, respgctively. Fol-

pend on the chain conformation through the path inte@ral lowing Ref.[6], the nonlocal kinetic coefficient ./ (r,r")

As the self-consistent field m,-|(1'<) depends on the local in Eq. (1) is related to the two segment correlation function

monomer densitie§pk(r)}, Egs.(1) and (2) form a set of

self-consistent equations. The dependence of the free energy P ..(r,r')=no(8(r—r (7)) —r(7'));{d(r)}), (8)

on the chain conformation will be reported elsewh@® 22|

and we will concentrate on the kinetic coefficient in thewhereno is the total number of chains in the systery)
present study. . andr(7') are the positions ofth and r'th segments of a
Note that there is a similarity between the above form“'tagged chain, and the averagfe{¢y(r)}) is the canonical

lation for polymer systems and the formulation adopted inyyerage under the condition that the density distributions are
the first-principles molecular-dynamics simulations for iy aq t0{ i (r)}.

atomic systems, which is known as the Car-Parrin&l®) Using P, ..(r,r"), the TDGL equatior(1) is rewritten as
method[30]. In the CP method, the density distributions of nT
valence electrons are obtained at every simulation time step

by solving a self-consistent equation for the wave functions J D, . SF
of the electrons that are equilibrated in the potential exerted E"bK(r): — ?2 dr' Py (r,r")y————, (9
by the atomic ion cores. In this CP method, the ion cores are K’ Ok (r')

treated as classical objects, while the electrons are treated as
guantum objects. In our polymer formulation, the path inte-whereD. is the diffusion constant along the chain due to the
gral Q in Eq. (2) corresponds to the wave function of the reptation motion,T is the temperature, anBy.(r,r') is
electrons in the CP method and the segment density distriefined by
butions{ ¢} correspond to the classical degrees of freedom,
respectively.

_ 92
P ,(r,r’)zj drj d7’ -
B. Perturbation expansion KK oK ok’ aTdt

When one wants to simulate the temporal evolution of the ] ) ]
phase separation of a polymer mixture taking the effects owhere the integraf,, dr is taken over th&-type subchain
the conformational change of the constituent polymer chainsf the tagged chain. In deriving E¢(9), we assumed biased
into account, one should solve the self-consistent set of equaieptation motion of the chair{$,6].
tions (1) and(2) directly, by a numerical integration method.  The incompressibility conditiof7) introduces a Lagrange
Such a numerical procedure requires enormous computenultiplier U(r) and 6F/8¢x in Eq. (9) should be replaced
power and is not an easy task even for a two-dimensionddy 6F/d¢x+U. Eliminating this Lagrange multiplied(r)
system. Thus it is important to estimate the effects of theusing the incompressibility conditiofT), we obtain for melts
conformational changes before performing the full numericabf A-B binary systemsincluding A-B-type block copolymer
simulation of Eqs(1) and(2). In the present study, we adopt melt9

PTT’(rirl)i (10)
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9 2D, SF Under the existence of the inhomogeneity of the density

—=X(r,t)= —f dr'A(r,r’) , (11  distribution, the block copolymer chains are deformed and

Jt T OX(r") therefore the chain conformation deviates from the Gaussian
conformation. We incorporate such an effect by a perturba-
tion expansion. For a tagged block copolymer chain in the
external field induced by the surrounding segment distribu-

X(r,t)= @a(r,t) = ¢g(r,t) (120 tions that are described by the order param¥{e), the path

integral defined by Eq2) is expressed as

where

is the order parameter of the phase separation and

oF_oF R 13 QK<r,r;r,r'>=f5{r(r>}exq—ﬂ<Ho+H1>], (19
X 5¢n  Ocbs

is the chemical potential difference of &nsegmentand 8~ whereH, andH, are now rewritten as
segment, which plays the role of the thermodynamic force
for the order parameter. For &3B symmetric block copoly-

2
mer melt,A is given in the Fourier space as H.= fN . ar/dr(z)
" Jo " '|20% dr
' 1 D D D D
A(9,9")= ——————(PaaPes—PagPga). (14 N2
> 2 Py Hy= fo dr[WA(r (7)) + UA(r(7))]
K/

For a symmetridA-B block copolymer of lengtiN, P_KK, n fN d iy 20

defined by Eq(10) is simplified to N/2 We((m)+Us(r(m)]. (20

Herew(r) is the segment-segment direct interactions given

Paa=Poot Pnizyniz) = Poniz) = Piniyos by

Pas=Poniy T Pinzn—Pon—Pinzyini) »

z
Wi (r)=— E[EKAd)A(r)_l_GKBd’B(r)]
Pga= P20t Pninigy = Pno— PNy »

z
=— 5 (exka— €xp) X(r) +const 21
Pes=Pnian2 T Pun—Pivan =P - (1) 2 (eka™ €ka)X(r) @)

level of our assumption of biased reptation of a diblock co-from the constraint that the density profilés, and ¢g sat-
polymer chain, one end segment<0 or 7=N) can be jsfy the relations

regarded to hop to the position of the junction segment
(7=N/2) and the junction segment hops to the other end
position (r=N or 7=0) due to the sliding motion of the Pa(r)+ dp(r)=do, Palr)—d(r)=X(r), (22
chain along its contour.

As a lowest-order approximation, we can use Gaussiawhere ¢, is the total segment density that is assumed to be
distribution of the chain conformation. Within this approxi- constant and the order parame¥r) is regarded as an ex-

mation, the Fourier transform of(r,r’) leads to[6] ternal parameter to which the segment distribution calculated
with the path integral19) should be adjusted. Using these
No(27)¢ constraints, we can determine the Lagrange multipli¢gs
Ao(0,0) =~y 14 nn2() — an(a)}6(a+q'), andUg. Then the expression 1, leads to
(16)
. . . 1 (N2
whereV is the system volume ang.(q) is defined for the Hi=—~— de dr'G(r(7)—r")X(r")
three-dimensional system as 2BJo
1 22 1 N
7.qQ)=1—exp—s7h°q°) a7 +ﬁ ledrf dr'G(r(7)—r")X(r")

or in the real space as

N
- fo drf (Pl (7), 23

3/2 3|r|2
Ar)=46(r)— exg — . 18
7(0)= 81 (ZWbZT) F{ 2b271 18 where we have defined
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(1) ! Jdr’G(r FX(r') (24) bx?
__ _ , _ 2
2B Cl= Nrae a3’ (20
1 (0<s7<N/2)
f(T):{—l (N/2<7=<N). @9

G(q) is the Fourier transform of the two-point density cor- Wherex=(1/6)Nb?|q|? and the factob is the inverse of the

relation function, whose explicit expression can be obtainedotal segment number density). Using the path integral
within the RPA as (19), one can calculat® _..(r,r") in Eq. (8) by

J s{r(m)}o(r(7)—r)s(r(7")—r’)exd — B(Ho+Hy)]

P, (r,r')=ng

@7
| strrnext - o1y

In order to evaluate Eq27) directly, we have to rely on whereQ(r) is defined by
an extensive numerical calculation. Here we instead expand
Eqg. (27) in a power series irH; and retain terms up to 1 1
second order. As the details of such a perturbation expansion Q(r)= Z—C,f dg —e "9, (30)
are described in the Appendix, here we summarize the re- (2m) 4
sults. The zeroth-order terms of the expansion give(EG). . o , . .
We find that the first-order terms vanish exactly. This is dueTPeesgeu;ri]rtnltt)geHsl;?ng Iz?/];??)? am fgk(i’r“;}?tiggdalss now ex-
to the special situation of our system of symmetric blockP PP
copolymergsee the Appendijx Then the first nontrivial con-
tribution arises from the second-order terms. This procedure 5 1\2 144
leads us to a complicated expression for the kinetic coeffi- (H1)o= ﬁ W
cientA(r) in Eq. (11), whose explicit expression in the Fou-
rier space is given in EqA12). (1 2 144

28

1 1 )
WJ’ dq?|X(q)|

In order to obtain an equation of motion for the order —f drf dr'Q(r—r")X(r)X(r").
parameter that is convenient for computer simulations, we Np?~ 24y
expand the perturbation terms i(q) in a power series in (31)
wave numbers anticipating that the perturbation terms are
dominated by the long-wavelength fluctuations in the ordelEquation(28) is our basic equation used in the analysis in the
parameterX(r). Retaining the leading contributions, we fi- present work. It can be regarded as a gradient expansion of

nally obtain the modified TDGL equation the original TDGL equatiorf11).
9 2D 1 11l. COMPUTER SIMULATION
- _ c _ T p2/g2 ’ et
EX(r,t)— T [(1 2'3 <H1>0) f drAo(r—r") A. Model equations for computer simulations
o In this section we investigate the effects of the conforma-
y oF  6b Nog. la(r)[2V oF tional changes on the phase-separation dynamics of a dense
SX(r") \% SX(r)||° A-B-type symmetric block copolymer system using com-

puter simulations on the modified TDGL equati8). In
28 the present study, we focus our attention on the kinetic co-
efficient A. In order to separate the effects of the conforma-
tional changes in the kinetic coefficient from the other ef-
fects, we neglect the hydrodynamic effecf@6] and
viscoelastic effect§31]. For the same reason we adopt a

In this equationAy(r—r")=Ay(r,r') is the Fourier inverse
transform ofAy(q,q’) defined in Eq(16) that is the kinetic
coefficient for undeformed Gaussian chains(r) is defined

in Eq. (17), and conventional free energy model for the block copolymer
melt that is split into two contributiongl5,24,25,32
1 )
_ —ig-rp _;
a(r) WJ’ dge™ """ [—iqQ(a)X(a)] F=FgtF,, (32)

whereF g andF, are the short-range part and the long-range

:Vf dr'Q(r—r")X(r’), (29 part of the free energy. The short-range part is usually as-
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sumed to be of the Flory-Huggins type or the Ginzburg-where the dimensionalitd is set equal to 2 in the simula-
Landau(GL) type. Here we adopt the GL type model given tions. The coefficients are defined by

by
b dj2 Rg -2 bd+2
1 D C u C:{X (—) } C=(—)
N _ 2~ y2 — 4 1 0 ’ 2 C ’
Fs Bf dr 2|VX(r)| > XA+ 2XAn)], (39 ¢ 3
whereD, c, andu are positive constants. The long-range part R,| 2 ¢
is calculated by applying the RPA to E(6) and retaining C3=6C1(?g> v (37

only the small wave-number contributions. Its explicit ex-

ression for a symmetric block copolymer melt is given b
F15] d pev J yWhereRg= JNDb?/6 is the gyration radius of the chain in its

Gaussian state. Here we note tRatcorresponds to the dif-
. 36 ference between the volume fraction of thesegments and
, , , that of theB segments in the equilibrium composition and is
FL_% bz‘szf drf dr'Qr=r)XnX(r"), G4 erefore Iessgthan 1. The Sarametég detgrmines the
lamellar domain spacing in units of the correlation length
where(Q(r) is defined in Eq(30). Thus the three dimensionless parame@ysC,, andC; can
In order to transform the equation of motion into a non-be fixed using the experimental data on the segment volume
dimensional form, we take the units of tinig, lengthl, fraction of the equilibrium composition, the equilibrium
energy €5, and the order parametet, as t,=V/nyD.c, lamellar spacing divided by, and the gyration radius di-
lo=D/c=¢, eo=1/8, andX,=13\/c/u, respectively. Here Vided by¢, respectively.
& corresponds to the correlation length of the phase separa-
tion apart from a factok/2 andX, is the difference between B. Simulation techniques
the number ofA segments and the numberBfsegments in

a unit volume of¢? in a bulk domain in the equilibrium state. . ; o ) )
dimensional system by numerical integration using the stan-

The corrt_elatlon _Iengthg IS determln_ed by the segment- ﬂard Euler difference scheme. The integral on the right-hand
segment interaction parameters and is the same order as the

interfacial thickness. Note thatis different from the char- side of Eq.(35) extends over a long-range due to the long-

acteristic length of the final microphase separated structurg 93¢ nature of the kinetic coefficien(r). As this convo-

; ) : Uition integral is transformed into a simple multiplication in
such as the lamellar spacing. Using these units, we obtain . " : .
the Fourier space, it is evaluated in the Fourier space at every

time step using the fast Fourier transfor{@FT) method

We solved the equation of motiof35)—(37) for a two-

d 12 , [26]. This method is also applicable for systems with hydro-
5X(r,t): _(1_5<H1>O)J drl4mne(r=r’) dynamic interaction§26]. Therefore, the present simulation

program is very easily extended to the systems with hydro-

= an(r=r1")]u(r)+C1V-[|a(r)[?Vu(r)], dynamic interactions by simply adding the Oseen tensor to

(35) the kinetic coefficientA,. The same technique is also used
for evaluating Eqs(29) and (31). We neglected the differ-
where all the quantities are now nondimensional and ences in the model parameters between the two-dimensional
system(2D) and the three-dimensional system. Although the
functionQ(r) takes different functional forms in 2D and 3D
systems, it does not present any difficulty to the present
simulation becaus@ is evaluated only in the Fourier space
where there is no difference in the functional form(a¢q)
2 between 2D and 3D systems.
d dr|? We performed computer simulation runs on the ordering
MM =8(N—| ————5| exg - —— |, process(microphase-separation processom a uniformly
6m(Ry/&) 6(R,/¢) .
g ¢ mixed state of the block copolymer. We set the parameters
C1=0.1%, C,=0.01QRy/&) "%, C3=6Cy(Ry/&)2(£IV),

(r)=4(r) ( d )dlze p{ dir”
= S X ——
o 12m(Ry/£)? 12(Ry/¢)?

p(r)=—V2X(r)=X(r)+[X(r)]® andRy/£=2.0, 3.0, 4.0, and 5.0, respectively. This selec-
tion of the parameterC,; corresponds to the weak-
+C2f dr'Q(r—r")X(r"), segregation regime. The system is divided into X228

square meshes with a mesh widik 1.0 and we impose a
periodic boundary condition on each side of the system. The
time mesh widthAt is taken as\t=0.01 for the system with
a(r)=Vf dr'Q(r—r")X(r"), Ry/£=2.0 andAt=0.001 for those withR,/£>2.0. Then
the equation of motion was integrated uptte100.0. The
initial values of the order paramet¥(r) at mesh points are
generated using independent normal random numbers with

2\ _ ' ot ’
<H1>°_C3f drf dr’Q(r=r)X(mX(r’), (36 mean 0 and standard deviation 0.1. In order to get statisti-
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20 40 60 80 100
t

FIG. 3. Same data as in Fig(&, but the unit of time for the
dashed curvgthe case with the perturbation tenmis properly
changed so that the asymptotic behaviors of the two curves fit each
other. Obviously, the curves do not fall onto a single master curve
in the early stage.

FIG. 1. Picture of the segment density distribution obtained by a
simulation on the full equation of motion including perturbation WhereS(k) is the structure function given by
terms. The system is divided in a 12828 square mesh with a
nondimensional unit. The parameters ar€,=0.1%, C, S(k)=(|X(k)[?), (39
=0.01(R,/€) 2, andRy/£=2.0. The time ist=50.0.

which is a function ok=|k| for isotropic systems. In Fig. 2
cally accurate data, we performed ten independent runs frofgmporal evolution of the characteristic wave numgt))
different initial conditions. is shown as a function of time, where the chain length is

taken to beR,/¢=2.0, 3.0, 4.0, and 5.0 in Figs(&, 2(b),

C. Kinetics of lamellar ordering from a uniformly mixed state 2(c), and Zd), respectively. In these figures the results of

The effects of the conformational change of the Chain,sim'ulations using the equation_ of motion Wi'thout the pertur-
i.e., the perturbation terms in E(B5), were investigated by bation terms are shpwn' by so_lld curves, while 'those with the
performing two types of simulation runs for each parametetfu" equation of motion including the perturbation terms are
set: one is a simulation on the full equation of moti@p)  Shown by dashed curves. We observe a non-negligible con-
and the other is a simulation where the perturbation terms iffioution from the perturbation terms that accelerates the or-
Eq. (35), ie., the terms containinngi)o and C,, are dering process, es_peC|aIIy in the early stage. We also notice
dropped. In Fig. 1 we show a typical picture of the Systemthat the contrlbutlon of the perturbation terms bgcomes
calculated using the full equation of motion including theIarger when the cham_l_en_gth becomes '0”9’?“ Here it should

I?e noted that the equilibrium lamellar domain sizes of these

perturbation terms. The picture is a snapshot of the syste . . i
with Ry/§=2.0 taken at=50.0. The black regions and the our case;(a)—(d) are different because of th_e d|fference In
the chain lengths. Moreover, the unit time scale

white regions correspond to thedomains and domains of - . . . o
a lamellar structure, respectively. The simulation without thefjoe_ch/;soiECCfL:ic?ilég g;ﬁ;ﬁ;eg;?r: Er?sih(&)'ljhzlgg)aagi:;g auan-
perturbation terms shows a similar domain structure. 9 gtn. 9

The ordering process is characterized by the temporaHtat'Ve comparison of the data shown in Figsaj22(d) is
not appropriate.

evolution of the characteristic wave number of the domain ; .
: : One may think that the perturbation effects only changes
structure that is defined by :
the rate of the ordering process and the temporal change of
the characteristic wave numbék(t)) is described by a

k(1)) = wk Kdk * K dk single scaling function by appropriately choosing the unit of
(k) Jo Sk)d / J'o Slodk, 38) time. We show in Fig. 3, the same data as in Fi@),2but

) |
0.6
A 0.58
g 0.56
FIG. 2. Comparison of the temporal change of
the characteristic wave numbers of the domain
structures for the case without the perturbation
terms(solid curve and the case with the pertur-
bation termgdashed curvefor various values of
the chain length{a) Ry/¢=2.0, (b) Ry/§=3.0,
(©) Ry/é=4.0, and(d) Ry/£=5.0, respectively.
The other parameters are the same as those in
Fig. 1.

V 0.54
0.52
0.5




56 EFFECTS OF CHANGES IN THE CHA . .. 3247

FIG. 4. Comparison of the temporal change of
the characteristic wave numbers of the domain
structures under an external shear flow. Solid
curves show the case without the perturbation
terms and the dashed curves show the case with
the perturbation terms. The chain length is fixed
to beRy/£=2.0. The frequency of the oscillation
of the shear flow is changed #&3) w=1.0, (b)
0=0.5,(c) ®=0.2, and(d) 0=0.1, respectively,
keeping the parameter,=0.1 constant.

0.7

0.68

0.66

< k(t) >

0.64
0.62

0.6

the time scale for the case with the perturbation termsyherey, is a constant,., is the side length of the system in
(dashed curveis extended by a factor 1.70 so that thethey direction, andw is the frequency of the temporal os-
asymptotic long-time behavior of the solid curve and thecillation of the shear flow.
dashed curve fit each other. It is obvious that these two In Fig. 4 we show the temporal evolution of the charac-
curves do not fall onto a single master curve in the earlyteristic wave numbetk(t)) for the same system as in Fig.
stage. Thus the effects of the perturbation terms are nd(a), where an external shear flow with various frequencies is
merely changing the time scale but changing the qualitativémposed. The parameters characterizing the shear flow are
behavior of the ordering process in the early stage to théaken to bew= 1.0, 0.5, 0.2, and 0.1 for Figs(&, 4(b),
intermediate stage. 4(c), and 4d), respectively, whiley,=0.1 is kept constant.
The oscillations of the curves are due to the external periodic
shear(42). Comparing Fig. 4) with Fig. 2(a), one recog-
nizes that the shear flow with a high frequeney 1.0 does
Next we investigate the effects of an external flow field,not give appreciable effects on the phase-separation dynam-
such as a shear flow. As the shear stress deforms the domags. In this case, as the frequengyis so large that the effects
structure, it will cause a stretching of the block copolymerof the stretching of the block copolymer chains are not ac-
chain. Thus we expect that the external shear flow will encumulated enough to make the perturbation effects en-
hance the effects of the perturbation terms. We performed Banced. On the other hand, when we use a shear flow with
series of simulation runs on the ordering processes under gnaller frequency» as shown in Figs. &)-4(d), the effect

simple shear flow. In this case, the left-hand side of the equakf chain stretching becomes important. In Figb)Awe rec-
tion of motion (35) is modified ag25] ognize that the case with the perturbation ter(dashed

curve relaxes much faster than the case without the pertur-
bation terms(solid curve$. In Fig. 4(c) the systems show
d d . . .
—X(r,t)= = X(r,t) + V-[v(r,t)X(r,t)]. (400  complicated behavior that results from the competition be-
ot ot tween the external shear deformation and the internal relax-
ation due to the segment diffusion. Finally, in the case with

As we did in the simulations described in Sec. Ill C, we the smallest frequencFig. 4d)], the system with the per-
neglect the contribution from the hydrodynamic interactionturbation terms(dashed curverelaxes to a final domain
between composition fluctuations at distant points and wétructure that is different from that of the system without the

assume that the velocity field(r,t) is given only by the Perturbation termgsolid curve. In this case, the final do-
external shear flow that has the form main structure of the case with the perturbation terms

(dashed curyeis an almost regular lamellar structure in
which the lamellar layers are aligned in the direction parallel
— (! to the external shear flow. Thus the extra relaxatjpertur-
v(r.H=((y.0y.0), “1 bation term} associated with the chain stretching enhances
the relaxation of the defects in the lamellar domain struc-
where y(y,t) is the shear rate. The FFT technique that istures. These results indicate that the effect of the changes in
used in our simulation requires the periodic boundary condithe chain conformation is enhanced by the external shear
tion [33]. In order to make the shear flop41) match the deformation and the defects in the domain structure relax
periodic boundary condition, we use the temporary and spanuch faster.
tially periodic shear flow

D. Kinetics of lamellar ordering under a shear flow

E. Intuitive explanation of the simulation results

) ) The simulation results presented in the previous subsec-
Yy, 1) = yosin(2my/L)sin(wt), (42)  tions show that the changes in the chain conformation give a
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non-negligible contribution to the ordering dynamics that ac-mermann for many useful comments and discussions. Com-
celerates the growth of domains. This acceleration of theutations were done using the FUJITSU VPP Computer at
domain growth can be understood by considering the relathe Institute of Solid State Physics, Tokyo University, Japan.
tionship between the chain conformation and the hoppin@he work was partially supported by the Scientific Research
range of the kinetic kerneh. When the phase separation Fund of the Ministry of Education, Science, Sports and Cul-
proceeds from the initial uniform state, composition fluctua-ture of Japan and by Japan-Germany Research Project spon-
tions with a characteristic length scale é§femerge. Such sored by JSPS.

composition fluctuations are described by nonzero order pa-

rameterX(r), where regions withX>0 and regions with APPENDIX: CALCULATION

X< 0 correspond to thé& domains and8 domains, respec- OF THE PERTURBATION EXPANSION

tively. As the A subchain and th& subchain of the block ] ) . )
copolymer are attracted by thedomain and th® domain, In thl_s ap'pendlx,lwe present the details of the perFurbatlon
the block copolymer chain is stretched when there is a gragXpansion in deriving Eq(28). We expand Eq(27) in a
dient of the order parametét(r). Equations(8)—(10) indi- power series i, and retain terms up to second order. Then

cate that the characteristic hopping range of the kinetic kere obtain
nel is given by the end-to-end distance of each subchain.

Thus the hopping range of the kinetic kernel is enlarged  P__(r,r')=no[(8(r(7) =) (7" ) —1"))q
when the block copolymer chain is stretched due to the local

gradient of the order parameter. This enlargement of the hop- =B(S(r(1)—r)&(r(7')—r")Ha)o
ping range is expressed by the last term on the right-hand 102 _ N ey 2
side of Eq.(28). (The perturbation term witl{H?), in the 2870 (n)=nar(r")=rIHDo

first term is merely a normalization factor over the entire +o(H§)]/[1—,B<H1>O
system and it does not have a local natufde enlargement L oia 5
of the hopping range makes the segments easier to diffuse, +3B%HDot0o(HD], (A1)

which accelerates the phase separation and accelerates the

relaxation of the defects in the domain structures, the lattewhere (), is the average over the Gaussian chain whose
effect being important in the ordering dynamics under theHamiltonian is given byH,.

shear deformation shown in Fig. 4. It is easy to show that

IV. CONCLUSION (H1)o=0, (A2)
In this paper we investigated the effects of the changes iypic, originates from the symmetric composition of the

the chain conformation that are introduceq into the time'block copolymer under consideration. Using this result, Eq.
dependent Ginzburg-Landau-type equation of mot|on(A1) can be rewritten as

through a perturbation expansion of the nonlocal kinetic co-
efficient around the Gaussian conformation. By computer ) ) )
simulations, we found non-negligible effects of the change in P+ (r.r")=ng(3(r(7) =r)(r(v")=r"))o
the chain conformation on the relaxation dynamics of the _ _ N
microphase-separated domain structures. This result shows Mo 8(r(7) =18 (7) =r")H1)o

the importance of including the microscopic information, +%no,BZ[((S(r(r)—r)5(r(7-’)—r’)Hi)0
such as the chain conformation, into the macroscopic model X
based on the continuum density variables. —(8(r(1)—r)8(r(7")—r"))o(H1)o]

An experimental check of the results presented in this
work is rather difficult because the experimental data always
contain the correction effects from the deformation of the . . .
polymer chains that are discussed in Sec. Ill. One Ioossibg\/e introduce the F9ur|er transform of any functions of the
way to check the deformation effect is a precise quantitativ orm R(r) andP(r,r) by
comparison between the experimental data and the results of
numerical simulations where the chain deformation effects i
are taken into account. In order to construct a model that can R(Q):HR“)](Q)ZJ drR(r)exdiq-r],
be used for this purpose, one should rely on a direct and
rigorous numerical calculation of the path integral that is
coupled with the time-dependent Ginzburg-Landau-type "N_ / / :f f / /
model. Such a trial is now under wg2]. P(a.a")=7Pr,r)la.a) dr | dr'P(r,r’)

+o(H3). (A3)

xXexdi(g-r+q'-r')]. (A4)

ACKNOWLEDGMENTS Then, we find
The author would like to thank D. Andelman, K. Binder,
H. Brand, M. Doi, R. Hasegawa, K. Kawasaki, T. Koga, K. 1
Kremer, H. Kuni, T. Ohta, Y. Okabe, A. Onuki, H. Otsuka, (H2)y=——
H. Pleiner, F. Tanaka, H. Tanaka, X.-F. Yuan, and W. Zim- (2m)9v

12N 6 \2
f dQ|l/f(Q)|2[bz—qz+2(bz—qz>



56 EFFECTS OF CHANGES IN THE CHA . .. 3249

X{gn(Q) = 4N} (A5)

whered is the dimensionality of the systeid,is the system
volume, g=|q|, #(q) is the Fourier transform ofs(r) de-
fined in Eq.(24), and %,(q) is the Fourier transform of the

density correlation function between two segments separated

by 7 on a Gaussian chain defined fi+=3 by

7AQ)=1—exg — £ 7b%q?). (A6) and

The other terms in EqA3) are very complex. Using the
definitions of the Fourier transform in EA4), we can re-
write Eq. (A3) as

no(2m)9
PTT'(qlq,): ° vV

1 2/42
(1_ EB <H1>0) 6(q+q,)h\7'*r’|(q)

nOIB ’ nOIBZ '
_WITT/(q’q )+ 2(27T)2d\77'7"(q!q )
+o(H?), (A7)

whereh,, Z,..(9,9'), and 7,.,.(q,q") are defined by
h.(q)=exd - 7b%q?],
Z+(9,9")=F(o(r (1) =r)a(r(7")—r")H1)ol(a,0"),

Tr(9,9)=F{ 8¢ (1) —1)8(r(7") =1 IH2)01(9,q").
(A8)

Substituting Eq(A7) into Egs.(14) and(15) and performing

some straightforward algebra using the Gaussian statistics
we find that only the following quantities are contributing to

PTT’(q’q,):
1
Too(@.0) =~ Tn(@.0') =~ | dkw(k)a(@+a' k)

X1,

0 k'l\I
l_ JEY

1
Ton(@.0) =~ Tuo(0,0') = | dkpk)a(a+a' k)

, N
X1, —0,q 5]
Iinyniz)(9,9") =0,
Ton)(4,9") = —ZInniz)(9.9")

1
-5 dkusara -k

x| 1y

/.N .N
-9 ,5) _thz(Q)M(O,k,E) ,

Tineo(9.9")=—Znz)n(d.9")

1
—- ] dkuos@ra—K

X

1

N N
—a.q; 5) - hN/Z(q’)u(O,k; 5”

(A9)

2
oo .91 = @.0')= sy | ok [ ok ko)

X 8(q+q’ —k—k")I(—k—k’,—k,0;N),

2
Ton(@.0)= ol 0,0) = 5y | k| Ak ko)

Xo(q+q'—k=k")J(q" —k=-k',q"~k,q";N),

2
t7(N/2)(N/2)(q1q,):(2—ﬂ_)dvj ko dk’ (k)
X(k')o(q+q"—k—k’)

X

N
2Jl<o,k',k+k';5)

1J kOk"N
+§2 1Yy 15 1]

2
'jo<N/2)(an'):JN<N/2)(an'):m[ dkf dk’ (k)

Xy(k")6(q+q —k—k")

X

‘] k/ /.N

| —ak -aa53
N
+hN/2(q)J2(OIkI!k+k,1§>

1J k k"N
+§ 3 _qv _qy_ 15 1

2
n7(N/2)0(q1q,):«7(N/2)N(q1q,):WJ ko dk’ ¢(k)

Xi(k')o(q+q"—k—k’)

x|

! k! ! . N
_q 1] _q quE
N
+hN,2(q’)J2(0,k’,k+ k';E)

1J "k—=q' k"N Al10
+5% a0 k=q,~K'5||,  (AL0)
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where we defined the functions

6
1101, 62iN) = a7zt an) ~n(Go) ]
6 2
IZ(qquZ;N):m[hN(ql)_hN(qz)] :

6
———] | ,03:N
bz(qi_qg)[ 1(d1,093:N)

—11(92,93:N) ],

J1(01,02,03;N) =

J2(01,02,03;N)=—211(d;,92;N)11(d2,05:N),
J3(d1,02,03;N)=—211(d1,02;N)11(0,93;N),

1(d1,02,03;N) +J2(d1,02,93;N).
(A11)

J(01.,92,03:N)=J

ThenA(q,q’) given in Eq.(14) is rewritten as

No(2m

Aqa)="22 (1— —ﬁ2<H1>o){4nN/z<q>— @)}

X 6(q+q’)+
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X Tinyni2(9,9") + Ton(9,9") — 2 To(ni2)(9,9")
—2Jn120(9.9")]

neB2V 1
- 2(277)df dk iy F00o(@:K) = 2Z(nrzy0( G, K)
—Zon(a,K) ][ Zoo( —k,a") = 2Zo(np2)(—K,0")
+Zon(—k,q")]. (A12)

This expression ofA is not simple enough to be used for

computer simulations. In order to simplify it, we adopt a

long-wavelength approximation where only the leading
terms in the expansion of the perturbation terms in power
series inq andq’ are retained. Then we obtain

(27T)d<
2V
0[32 b4N4

XA+t 75 216

A(q,9')= - §B2<H%>O>{47INIZ(Q)_ 7n(Q)}

X f dky(k)¢(q+q'—k')

X{k-(=k+a+q)Ha-q' )+, (A13)
where(H3), is now expanded in wave number to give Eq.
(31). Substituting this equation into E¢L1), we finally ob-
tain Eq.(28).
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